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Abstract. We study algebraic and topological properties of the group of all
surjective isometries on several spaces of vector valued analytic functions and
vector valued Lp spaces (1 ≤ p ≤ ∞). We also derive the form for the surjective
linear isometries on the vector valued little Zygmund space.

1. introduction

Let E be a Banach space and let G(E) be the group of surjective linear isome-
tries of E. Under the standard composition of operators and the strong operator
topology, the isometry group G(E) is a topological group.

The problem of describing all the surjective linear isometries supported by a
given Banach space goes back to Banach. In [3], it was shown that surjective linear
isometries on spaces of continuous functions defined on a compact metric space
are weighted composition operators. Since Banach’s initial work, the isometry
group has been completely characterized for many Banach spaces. For a survey
of these results we refer the reader to the books [12] and the references therein.
It is a consequence of a result by K. Jarosz [18] that every Banach space can be
equivalently renormed so that the isometry group is isomorphic to S1. Further
there are extremely non complex Banach spaces whose isometry group is a discrete
Boolean group, see [17] and also [16].
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Isometries on a given function space, for which a characterization is known, are
often described in terms of a list “symbols”. As for example, a surjective linear
isometry T, on C(Ω), the space of continuous functions defined on a compact
metric space Ω, is of the form

T (f) = λf ◦ ϕ, ∀ f ∈ C(Ω),

with λ : Ω→ S1 continuous and ϕ a homeomorphism of Ω. We refer to λ and ϕ as
the symbols associated with T . This fact determines an algebraic decomposition
of the isometry group of certain classes of function spaces in terms of the isometry
groups of the respective symbols. This motivates the main ideas addressed in this
paper. More precisely, we study the algebraic structure of the isometry groups
for several vector valued function spaces and from that draw conclusions about
topological properties of those groups.

These questions were previously considered by Berkson and Porta for the
isometry group of Hp(4), where 4 denotes the open unit disc in the complex
plane. In [5], it is shown that G(Hp(4)) � S1 × Aut(4), for 1 < p < ∞ but
G(H1(4)) ∼= S1×Aut(4). Arazy, in [1], characterizes the isometries of the sym-
metric sequence spaces E and observes that G(E) ∼= G0 o P , the semi-direct
product of G0 ( the group of all diagonal multiplications by modulus 1 com-
plex numbers) with P ( the group of all isometries defined via the action of a
permutation). Recently, in [14], Gardella and Thiel have derived a similar de-
composition for the standard Lebesgue space, Lp with p ∈ [1,∞) \ {2}. More
precisely, G(Lp(Ω, µ) ∼= Aut∗(Ω)oL0(Ω, S1), where L0(Ω,S1) is the Abelian group
(under pointwise multiplication) of all measurable functions Ω→ S1 and Aut∗(Ω)
is the group (under composition) of regular set isomorphisms on the σ-algebra of
µ-measurable subsets of Ω.

In this paper we investigate algebraic and topological properties of the group
of all isometries for vector valued versions of Hardy spaces, Novinger–Oberlin
spaces, little Bloch and Zygmund spaces and classes of Lp spaces. For all these
spaces, the form for the surjective isometries leads to a natural decomposition
of the group of all isometries which implies some topological properties of those
groups.

Further, we also extend a characterization of the surjective isometries on the
scalar valued little Zygmund space, presented in [7], to the vector valued little
Zygmund space with the range space satisfying some additional properties. This
is obtained by transferring a surjective isometry on the little Zygmund space
to the little Bloch space and then employ a characterization of the surjective
isometries on the latter derived in [8].

Throughout this paper we use the notation G = H oK to denote the semidi-
rect product of the subgroups of G, H and K where H is a normal subgroup of
G. Since we will appeal to [11, Theorem 12 (p. 180)] in many occasions to follow,
we state this theorem for an easier reading.

Theorem. (cf. [11]) Suppose G is a group with subgroups H and K such that
H is a normal subgroup of G and H ∩K = 1. Then HK is isomorphic to HoK,
(HK ∼= H oK). In particular, if G = HK then G is the semidirect product of
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H and K, G ∼= H oK.

We also set some notation to be used in this paper. We recall that the symbol
4 denotes the unit open disc in the complex plane and the group of disc auto-
morphisms, Aut(4), is the set of all σ : 4 → 4 given by σ(z) = λ z−z0

1−z0 z with
z0 ∈ 4 and λ a modulus 1 complex number.

2. Algebraic and Topological Structure of the Isometry Group
of H1

H(4)

Let H be a separable and complex Hilbert space with inner product 〈·, ·〉 and
induced norm ‖ · ‖H. We recall that a function f : 4→ H is analytic if and only
if for every w ∈ H, the complex valued function z → 〈f(z), w〉 is analytic. The
set {

f : 4→ H s.t. f is analytic and sup
0<r<1

∫ 2π

0

‖f(reiθ)‖H dθ is finite

}
,

endowed with the norm ‖f‖H1
H(4) = 1

2π
sup0<r<1

∫ 2π

0
‖f(reiθ)‖Hdθ, is a Banach

space denoted by H1
H(4).

Theorem 2.1. (cf. [10]) T : H1
H(4) → H1

H(4) is a surjective linear isometry
if and only if there exists a unitary operator U and a disc automorphism ϕ such
that for every f ∈ H1

H(4) and z ∈ 4

(Tf)(z) = Uϕ′(z)f(ϕ(z)). (2.1)

In the following lemma U(H) denotes the unitary group on H.

Lemma 2.2. G(H1
H(4)) is isomorphic to U(H)× Aut(4).

Proof. We define Φ : G(H1
H(4))→ U(H)× Aut(4) as follows Φ(T ) = (UT , ϕ

−1
T )

where UT and ϕT are the symbols associated with the isometry T as in Theorem
2.1. We first show that Φ is well-defined, in other words the representation
described in Theorem 2.1 is unique. Towards this, we assume that there exists a
unitary operator VT and a disc automorphism ψT such that, for every f ∈ H1

H(4)
and z ∈ 4,

UTϕ
′
T (z)f(ϕT (z)) = VTψ

′
T (z)f(ψT (z)).

This equation applied first to a constant function equal to v, a unit vector in H,
and then to f(z) = zv yields

ϕ′T (z)UTv = ψ′T (z)VTv and ϕ′T (z)ϕT (z)UTv = ψ′T (z)ψT (z)VTv.

These equations imply that ϕT = ψT and UT = VT . It is clear that Φ is bijective.
We now show that Φ is a homomorphism. Given T and S isometries, then
Φ(TS) = (UTS, ϕ

−1
TS) and

TSf(z) = UTUS(ϕS ◦ ϕT )′(z)f(ϕS ◦ ϕT (z)).

The uniqueness of the representation in (2.1) applied to TS implies that UTS =
UTUS and ϕ−1TS = (ϕS ◦ ϕT )−1 = ϕ−1T ◦ ϕ

−1
S . This completes the proof. �
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Remark 2.3. The previous result defines two natural subgroups of the isometry
group: the subgroup isomorphic to U(H) consisting of isometries of the form
f → Uf with U a unitary operator onH and the subgroup isomorphic to Aut(4),
consisting of isometries of the form f → f ◦ ϕ with ϕ ∈ Aut(4).

There are many more subgroups of the isometry group that can be associated
with specific subgroups of Aut(4). For example,

(1) The subgroup consisting of two elements, the identity and a composition
operator with a disc automorphism whose square is equal to the identity,
this means a disc automorphism of the form ϕ(z) = z0−z

1−z0z , for a given

|z0| < 1.
(2) The subgroup consisting of composition operators f → f ◦ ϕ with ϕ a

parabolic automorphisms with a given fixed point α of modulus 1. These

are automorphisms of the form, ϕ(z) = (1−ic)z+icα
−icαz+1+ic

, with c ∈ R. This
collection of automorphisms define a subgroup of Aut(4).

It is also straightforward to establish the existence of finite cyclic subgroups
of Aut(4) but a complete classification of all subgroups of Aut(4) seems to be
unknown.

We consider the isometry group of H1
H(4) and of U(H) both endowed with the

strong operator topology, and Aut(4) with the uniform topology.
In the proof given for Lemma 2.2 we consider the group isomorphism Φ :

G(H1
H(4)) → U(H) × Aut(4) defined by Φ(T ) = (UT , ϕ

−1
T ). The next result

shows that Φ is a homeomorphism.

Lemma 2.4. G(H1
H(4)) is homeomorphic to U(H)× Aut(4) .

Proof. We show that Φ and Φ−1 are continuous maps. Since Φ is a group ho-
momorphism it is sufficient to show the continuity of Φ at Id. Towards this we
consider a sequence of operators Tn converging to the identity, which implies that
for every f , ‖(Tn − I)f‖H1

H(4) → 0, with

‖Tnf − f‖H1
H(4) =

1

2π
sup

0<r<1

∫ 2π

0

‖Tnf(reiθ)− f(reiθ)‖H dθ

=
1

2π
sup

0<r<1

∫ 2π

0

‖ϕ′n(reiθ)Unf ◦ ϕn(reiθ)− f(reiθ)‖H dθ,

with Un ∈ U(H) and ϕn ∈ Aut(4).
For a fixed r and for every f , we have that gn(θ) = ‖ϕ′n(reiθ)Unf ◦ ϕn(reiθ)−

f(reiθ)‖H converges to 0 in measure. Then there exists a subsequence of {gn},
{gnk}n converges to 0 almost everywhere. For simplicity of notation, we assume
that

lim
n
‖ϕ′n(reiθ)Unf ◦ ϕn(reiθ)− f(reiθ)‖H = 0

almost everywhere. In particular, for f a constant function equal v, a unit vector
in H, we have that ‖ϕ′n(rei θ)Unv − v‖H converges to zero almost everywhere.
Each disc automorphism ϕn is of the form ϕn(z) = λn

z−zn
1−zn z , with |λn| = 1 and
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|zn| < 1. Thus ϕ′n(z) = λn
1−|zn|2
(1−zn z)2 , and

lim
n

∥∥∥∥λn 1− |zn|2

(1− zn z)2
Unv − v

∥∥∥∥
H

= 0 a.e.

implies that θ → 1−|zn|2
(1−zn reiθ)2 converges to 1 a.e. . This follows from the inequality∣∣∣∣|λn| 1− |zn|2

|1− zn z|2
‖Unv‖H − ‖v‖H

∣∣∣∣ ≤ ∥∥∥∥λn 1− |zn|2

(1− zn z)2
Unv − v

∥∥∥∥
H
.

We select a subsequence such that znk → ρ0 e
iθ0 and λnk → λ0. We observe

that ρ0 < 1 and 1−ρ20 = 1−2ρ0r cos(θ− θ0) +ρ20r
2 a.e.. Since this equality holds

for a sequence of values θ such that θ− θ0 converges to π/2, we have that ρ0 = 0.
Similar considerations applied to f(z) = zv imply

lim
n
‖ϕ′n(reiθ)ϕn(reiθ)Unv − reiθv‖H = 0, a.e..

We have the following inequality∣∣ |ϕn(reiθ)− reiθ| |ϕ′n(reiθ)| − r‖ϕ′n(reiθ)Unv − v‖H
∣∣ ≤

‖[ϕn(reiθ)− reiθ]ϕ′n(reiθ)Unv + reiθϕ′n(reiθ)Unv − v]‖H =

‖[ϕn(reiθ)ϕ′n(reiθ)Unv − v]‖H.

For almost every θ in the interval [0, 2π], we have

lim
n
ϕn(reiθ) = reiθ.

This implies that ϕn converges to the identity on 4 and λ0 = 1. We now show
that Un converges strongly to the IdH. It was shown before that

‖ϕ′n(rei θ)Unv − v‖H → 0, a.e. .

Since

‖Unv − v‖H ≤ ‖ϕ′n(rei θ)Unv − v‖H + |ϕ′n(rei θ)− 1|
we have that ‖Unv − v‖H → 0 and ϕ′n(rei θ)→ 1. This completes the proof. �

Theorem 2.5. The isometry group of H1
H(4) is path connected.

Proof. We show that U(H)×Aut(4) is path connected. Given two disc automor-

phisms ϕ0(z) = λ0
z−ρ0eiθ0

1−ρ0e−iθ0z
and ϕ1 = λ1

z−ρ1eiθ1
1−ρ1e−iθ1z

, with λi = eiαi with i = 0, 1.

Then

Ht(z) = ei(tα0+(1−t)α1)
z − (tρ0 + (1− t)ρ1)ei(tθ0+(1−t)θ1

1− (tρ0 + (1− t)ρ1)e−i(tθ0+(1−t)θ1z

defines a path of disc automorphisms such that H0 = ϕ1 and H1 = ϕ0. We show
that every unitary operator U can be connected to the Id by a path of unitary
operators. Given U , a unitary operator, by the Spectral Theorem for normal
operators, there exists of a spectral measure M(µ) relative to which U has the
representation

U =

∫ 2π

0

eiµdM(µ).
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Therefore Ht =
∫ 2π

0
eitµdM(µ) defines a path of unitary operators on H such that

H0 = Id and H1 = U. Since U(H) and Aut(4) are path connected the proof is
complete. �

We observe that G(H1
H(4)) is a Lie group and if the range space is finite

dimensional, say of dimension equal to n, the corresponding Lie algebra has
dimension n+ 1.

We now state a characterization due to Pei-Kee Lin for surjective isometries on
H∞(E), the set of all E-valued bounded analytic functions defined on the open
unit disc 4 with the sup norm. This result extends an earlier result due to M.
Cambern with E a finite-dimensional Hilbert space or finite-dimensional complex
Banach spaces, cf. [9].

Theorem 2.6. (cf. [19]) Let E be a uniformly smooth and uniformly convex
Banach space. Then T is a surjective linear isometry of H∞(E) if and only if
there exist an isometry U from E onto E and an automorphism ϕ of the unit disc
onto itself such that (Tf)(z) = U(f(ϕ(z)), for every f ∈ H∞(E) and z ∈ 4.

By similar techniques to those followed in this section we can also state the
following corollary.

Corollary 2.7. If E is a uniformly smooth and uniformly convex Banach space
then G(H∞(E)) is isomorphic to U(E)× Aut(4).

Forelli in [13] has characterized the isometries on the scalar valued Hp (1 <
p < ∞ and p 6= 2). In [20], P-K Lin generalized this result to surjective isome-
tries on Hp(E) (1 < p < ∞ and p 6= 2) with E a complex Hilbert space.
Lin’s Theorem states that given a surjective isometry T on Hp(E) there exist
a disc automorphism ϕ and a surjective isometry U on E such that T (f)(z) =
(ϕ′(z))1/pU(f(ϕ(z))), for all f ∈ Hp(E) and z ∈ 4. Since there are several
p-roots of 1, it is easy to see that the uniqueness of the representation for a sur-
jective isometry on this setting does not hold. This fact has been mentioned by
Berkson and Porta in [5] for the scalar valued Hp.

3. Algebraic and Topological Structure of the Isometry Group
of Novinger–Oberlin Spaces

The Novinger–Oberlin space, SH(4), consists of all analytic functions f defined
on the open unit disc with values in a complex separable Hilbert space H and
derivative f ′ ∈ H1

H(4). This space is endowed with the following norm: ‖f‖ =
‖f(0)‖H + ‖f ′‖H1

H
. These spaces were studied in [15] by Hornor and Jamison,

where the following characterization for the surjective isometries is given.

Theorem 3.1. (cf. [15]) Let H be a complex separable Hilbert space. Then
T : SH(4) → SH(4) is a surjective linear isometry if and only if there exist U
and V surjective linear isometries on H and ϕ and disc automorphism such that

Tf(z) = Uf(0) + V [(f ◦ ϕ)(z)− (f ◦ ϕ)(0)],

for every f ∈ SH(4) and z ∈ 4.
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Theorem 3.2. G(SH(4)) is isomorphic to U(H)× U(H)× Aut(4).

Proof. Given a surjective isometry T there exist surjective isometries UT and VT
on H and ϕT a disc automorphism such that

Tf(z) = UTf(0) + VT [(f ◦ ϕT )(z)− (f ◦ ϕT )(0)],

for every f ∈ SH(4) and z ∈ 4. Then we define Φ : G(SH(4)) → U(H) ×
U(H)×Aut(4) given by Φ(T ) = (UT , VT , ϕ

−1
T ). We show that Φ is well defined.

We assume that a surjective isometry T has two representations, so that

UTf(0)+VT [(f◦ϕT )(z)−(f◦ϕT )(0)] = U ′Tf(0)+V ′T [(f◦ψT )(z)−(f◦ψT )(0)], (3.1)

for every f ∈ SH(4) and z ∈ 4. In particular, given a unit vector v, (3.1) applied
to the constant function f0 = v yields UTv = U ′Tv, then UT = U ′T . Therefore
(3.1) simplifies to

VT [(f ◦ ϕT )(z)− (f ◦ ϕT )(0)] = V ′T [(f ◦ ψT )(z)− (f ◦ ψT )(0)].

This equation applied to the functions f1(z) = zv and f2(z) = z2v yields

(VTv)[ϕT (z)− ϕT (0)] = (V ′Tv)[ψT (z)− ψT (0)]

and
(VTv)[ϕ2

T (z)− ϕ2
T (0)] = (V ′Tv)[ψ2

T (z)− ψ2
T (0)],

respectively. Then

[ϕT (z) + ϕT (0)](VTv)[ϕT (z)− ϕT (0)] = [ϕT (z) + ϕT (0)](V ′Tv)[ψT (z)− ψT (0)]

= [ψT (z) + ψT (0)](V ′Tv)[ψT (z)− ψT (0)]

implying that [ϕT (z) + ϕT (0)](V ′Tv) = [ψT (z) + ψT (0)](V ′Tv), for every z 6= 0.
Taking the inner product with V ′Tv and using the continuity of ϕT and ψT we
have [ϕT (z) + ϕT (0)] = [ψT (z) + ψT (0)], for every z. Then for z = 0, we obtain
that ϕT (0) = ψT (0), then ϕT (z) = ψT (z), for every z ∈ 4. These considerations
imply that Φ is well defined. It is straightforward to show that Φ is one-to-one
and onto. Now we show that Φ is a group isomorphism. It is clear from Theorem
3.1 the following:

(TS)(f)(z) = UTSf(0) + VTS[f(ϕTS(z))− f(ϕTS(0))], and

(TS)(f)(z) = UT [Φ(S)(f(0))] + VT [Φ(S)(f(ϕT (z)))− Φ(S)(f(ϕT (0)))]

= UTUSf(0) + VTVS[f((ϕS ◦ ϕT )(z))− f((ϕS ◦ ϕT )(0))] .

The uniqueness of representation for the surjective isometries, shown above, im-
plies that UTS = UTUS, VTS = VTVS and ϕTS = ϕS ◦ ϕT . Since Φ(TS) =
(UTS, VTS, ϕ

−1
TS), Φ(T ) = (UT , VT , ϕ

−1
T ), Φ(S) = (US, VS, ϕ

−1
S ), then Φ(TS) =

Φ(T )Φ(S). This proves that Φ is an isomorphism. �

Corollary 3.3. If G(SH(4)) is endowed with the strong operator topology and
U(H)×U(H)×Aut(4) with the product of the strong operator topology on U(H)
and the uniform topology on Aut(4) then G(SH(4)) and U(H)×U(H)×Aut(4)
are homeomorphic.

The proof of this corollary follow the same approach as the one used for Lemma
2.4 and thus it is omitted. We also observe that G(SH(4)) is path connected.
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4. Algebraic and Topological Structure of the Isometry Group
of the little Bloch and Zygmund Spaces

The little Bloch space consists of all analytic functions f defined on 4, with
values in a Banach space E, such that

lim
|z|→ 1

(1− |z|2)‖f ′(z)‖E = 0,

where ‖ · ‖E is the norm on E. We refer the reader to the paper by Arregui and
Blasco [2] for results on vector valued Bloch spaces. We will assume that E is a
smooth strictly convex and reflexive Banach space in order to apply a previous
isometry theorem.

This space with the norm ‖f‖B = ‖f(0)‖E + supz∈4(1− |z|2)‖f ′(z)‖E is a Ba-
nach space, denoted by B∗(4, E). We recall a characterization for the surjective
isometries on this setting from [8].

Theorem 4.1. Let E be a reflexive, smooth and strictly convex complex Banach
space. Then T : B∗(4, E)→ B∗(4, E) is a surjective linear isometry if and only
if there exist surjective linear isometries U, S : E → E and a disc automorphism
σ such that for every f ∈ B∗(4, E) and z ∈ 4,

T (f)(z) = Uf(0) + S[(f ◦ σ)(x)− (f ◦ σ)(0)].

The following corollary can be shown using previous arguments and thus the
proof is omitted.

Corollary 4.2. Let E be a reflexive, smooth and strictly convex complex Banach
space. Then G(B∗(4, E)) is isomorphic to the product G(E)×G(E)×Aut(4).

We consider a vector valued version of the Zygmund space. We follow Blasco’s
definition in [6] for the vector valued Bloch space to introduce the vector valued
Zygmund spaces. We determine the surjective isometries on the little Zygmund
space and the algebraic structure of the isometry group.

The Zygmund space Z is the set of all analytic functions f : 4→ E satisfying
the boundedness condition

sup
|z|<1

(1− |z|2)‖f ′′(z)‖E <∞.

This space endowed with the norm ‖f‖Z = ‖f(0)‖E + ‖f ′(0)‖E + sup|z|<1 (1 −
|z|2)‖f ′′(z)‖E is a Banach space. We recall that the little Zygmund space is the
closed subspace of Z defined by (see [?]):

Z0 = {f ∈ Z : lim
|z|→1−

(1− |z|2)‖f ′′(z)‖E = 0}.

Furthermore, we also consider the subspace of the little Zygmund space

Z(0,1)
0 = {f ∈ Z0 : f(0) = f ′(0) = 0}.

We denote by B0(4, E) the subspace of the little Bloch space consisting of all

functions that fix zero. It is clear that Φ : Z(0,1)
0 (4, E) → B0(4, E) defined

by Φ(f)(z) =
∫ z
0
f(ξ)dξ is a surjective isometry. Therefore given a surjective
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isometry T on Z(0,1)
0 , ΦTΦ−1 is a surjective isometry on B0(4, E). Then we have

the following characterization by using the form of the isometries on B∗(4, E).

Theorem 4.3. Let E be a reflexive, smooth and strictly convex complex Banach

space then T : Z(0,1)
0 (4, E) → Z(0,1)

0 (4, E) is a surjective linear isometry if and
only if there exist a disc automorphism σ and a surjective isometry V on E such

that for every f ∈ Z(0,1)
0 (4, E) and z ∈ 4,

T f(z) =

∫ z

0

V [f ′ ◦ σ)(z)− (f ′ ◦ σ)(0)]dz.

Following methods presented before we can show that G(Z(0,1)
0 ) is isomorphic to

the direct product G(E)×Aut(4). For v a nonzero vector, we define f1(z) = z2

2
v

and f2(z) = z3

3
v. Then (Tf1)

′′(z) = σ′(z)V v, we select ϕ ∈ E∗ such that ϕ(V v) =
‖v‖E thus ϕ((Tf1)

′′(z)) 6= 0. On the other hand, (Tf2)
′′(z) = 2σ(z)(Tf1)

′′(z)
which implies that

σ(z) =
ϕ((Tf2)

′′(z))

2ϕ((Tf)′′(z))
.

We conclude that V v = (Tf1)′′(z)
σ′(z)

. The previous considerations show that a surjec-

tive isometry T determines σ and V , the symbols appearing in the representation
of T . We show that these symbols are uniquely defined. Suppose V1 and σ1 are
additional symbols. Then for every f and z, we have∫ z

0

V [f ′ ◦ σ)(z)− (f ′ ◦ σ)(0)]dz =

∫ z

0

V1[f
′ ◦ σ1)(z)− (f ′ ◦ σ1)(0)]dz.

Considering f1 and f2 as defined above we have

(Tf1)
′(z) = [σ(z)− σ(0)]V v = [σ1(z)− σ1(0)]V1v

and

(Tf2)
′′(z) = [σ(z)2 − σ(0)2]V v = [σ1(z)2 − σ1(02)]V1v.

Therefore [σ(z)2 − σ(0)2]V v = [σ(z) + σ(0)][σ1(z) − σ1(0)]V1v = [σ1(z)2 −
σ1(0

2)]V1v, and σ(z) + σ(0) = σ1(z) + σ1(0) for every z ∈ 4. This implies that
σ = σ1 and V = V1.

Then the mapping Φ(T ) = (V, σ) is an isomorphism from G(Z(0,1)
0 (4, E)) onto

G(E)× Aut(4).

We observe that Z0(4, E) is isometric isomorphic to E ⊕1 E ⊕1 Z(0,1)
0 (4, E),

with norm ‖(u, v, f)‖ = ‖u‖E + ‖v‖E + sup|z|<1 (1 − |z|2)‖f ′′(z)‖E. Given f ∈
Z0(4, E) we associate (f(0), f ′(0), f0) ∈ E ⊕1 E ⊕1 Z(0,1)

0 (4, E), with f0(z) =
f(z) − f(0) − f ′(0)z. Hence a surjective isometry T on Z0(4, E) induces a

surjective isometry on T0 on Z(0,1)
0 (4, E) and an isometry on E ⊕1 E. For f ∈

Z(0,1)
0 (4, E), we set T0(f)(z) = (Tf)(z)− (Tf)(0)− (Tf)′(0)z.
We now state a corollary describing all isometries on Z0(4, E) with the range

space satisfying an additional property of not supporting any nontrivial `1-projections,
see [7].
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Corollary 4.4. Let E be a reflexive, smooth and strictly convex complex Banach
space such that E has no `1 projections. Let T : Z0(4, E) → Z0(4, E), then T
is a surjective linear isometry if and only if there exist a disc automorphism σ,
surjective isometries Uj (j = 1, 2, 3) on E such that for every f ∈ Z0(4, E) and
z ∈ 4,

(Tf)(z) = U1f(0) + U2f
′(0)z +

∫ z

0

U3[f
′(σ(ξ))− f ′(σ(0))]dξ,

or

(Tf)(z) = U1f
′(0) + U2f(0)z +

∫ z

0

U3[f
′(σ(ξ))− f ′(σ(0))]dξ.

In the scalar case every isometry on Z0(4) is surjective, see [7], however this
is no longer the case for Z0(4, E). Simply take E = `2 and Uj (j = 1, 2, 3) to be
a shift operator.

We now state a corollary that describes the structure of G(Z(0,1)
0 (4, E)).

Corollary 4.5. Let E be a reflexive, smooth and strictly convex complex Banach

space such that E has no `1 projections. Then G(Z(0,1)
0 (4, E)) is isomorphic to

the direct product Z2 ×G(E)×G(E)×G(E)× Aut(4).

We observe that for the scalar case G(Z(0,1)
0 ) has two path connected compo-

nents.

5. Algebraic and Topological Structure of the Isometry Group
of Lp spaces

In this section we consider vector valued Lp-spaces. Following the notation
from [12], X represents a separable Banach space, (Ω,Σ, µ) is a measure space
with Ω a nonempty set and Σ the sigma-algebra of all µ-measurable subsets of Ω.
The space L∞(µ,X) is the space of all essentially bounded measurable functions
f : Ω → X endowed with the ‖ · ‖∞, and Lp(µ,X) (1 ≤ p < ∞, p 6= 2) is the
space of all p-integrable functions f : Ω → X endowed with the p-norm. We
recall two important theorems that characterize the surjective linear isometries
on these settings.

Theorem 5.1. (Greim) (cf. p. 70 in [12]) Let X be a separable nonzero Banach
space with trivial centralizer. Then each surjective isometry U : L∞(µ,X) →
L∞(µ,X) has the form

Uf(t) = V (t)(Tf)(t), for all f ∈ L∞(µ,X) and t ∈ Ω,

where T is a regular set isomorphism on Σ , and V is a strongly measurable
operator-valued function such that for almost every t ∈ Ω, V (t) is a surjective
isometry on X.

For the definition of a Banach space with trivial centralizer we refer the reader
to Behrends book [4]. We also refer the reader to the books by Fleming and
Jamison and references therein for the definitions of set isomorphism and strongly
measurable operator-valued function (cf. [12] p. 55).
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The group of all isometries on L∞(µ,X) has two natural subgroups,

G0(L
∞(µ,X)) = {U ∈ G(L∞(µ,X)) : Uf(t) = V (t)f(t)}

and

G1(L
∞(µ,X)) = {U ∈ G(L∞(µ,X)) : Uf(t) = (Tf)(t)},

where V and T are as described above.
It is straightforward to check that G0(L

∞(µ,X)) is isomorphic to L0(µ,G(X))
consisting of all strongly measurable functions V : Ω → G(X), defined up to a
set of µ measure zero. Also

G1(L
∞(µ,X)) = {U ∈ G(L∞(µ,X)) : Uf(t) = (Tf)(t)}

is isomorphic to the group of all regular set isomorphisms T on the sigma algebra;
we denote such group by Aut∗(Σ). We also denote by T the map on L∞(µ,X)
and induced by TχA = χTA for every A ∈ Σ, as explained in [12].

Proposition 5.2. Let X be a separable nonzero Banach space with trivial cen-
tralizer. Then the group of all surjective isometries on L∞(µ,X) is isomorphic
to the semi-direct product L0(µ,G(X))o Aut∗(Σ).

Proof. We show that the representation of an isometry described in Theorem
5.1 is unique. Towards this fact we assume otherwise, then there exist strongly
measurable functions and set isomorphisms such that

V0(t)(T0f)(t) = V1(t)(T1f)(t), ∀ f ∈ L∞(µ,X), and t ∈ Ω.

This last identity applied first to f = v, a vector in X and then to functions
of the form χAv with A ∈ Σ yields V0(t)v = V1(t)v for almost every t and
T0χA = χT0A = χT1A = T1χA. This implies that V0 = V1 and T0 = T1.

We observe that every isometry is the product of an isometry in G0(L
∞(µ,X))

with one in G1(L
∞(µ,X)). Furthermore, G0(L

∞(µ,X)) is a normal subgroup
of G(L∞(µ,X)). Given U ∈ G(L∞(µ,X)) and U0 ∈ G0(L

∞(µ,X)) we have
that U−1U0U(χAv)(t) = χA(t)V (t)−1V0(t)V (t)v, then extend to simple functions
which are dense in L∞(µ,X). This implies that U−1U0U ∈ G0(L

∞(µ,X)). Also
the intersection G0(L

∞(µ,X))∩G1(L
∞(µ,X)) = {I}. This completes the proof.

�

We now consider the case of isometries on Lp(X,µ) (1 ≤ p < ∞ and p 6= 2).
First we recall a characterization of the surjective isometries on this setting due
to Sourour.

Theorem 5.3. (cf. p. 69 in [12]) Let U be an operator on Lp(µ,X) with 1 ≤
p < ∞ and p 6= 2 and such that the Banach space X is separable complex and
has the property that it is not the `p direct sum of two nonzero Banach spaces.
Then U is a surjective isometry if and only if

Uf(t) = h(t)V (t)(Tf)(t), for every f ∈ Lp(µ,X) and µ− a.e. t ∈ Ω,

where T is a set isomorphism from Σ onto itself, V ∈ L0(µ, Isom(X)) and h =(
dµ◦T−1

dµ

)
.



232 F. BOTELHO, J. JAMISON

We can now write a similar result given for Lp-spaces with 1 ≤ p < ∞ and
p 6= 2. The proof is similar to the proof given for Proposition 5.2.

Proposition 5.4. Let X a separable nonzero Banach space with the property
that it is not the `p direct sum of two nonzero Banach spaces. Then the group
of all surjective isometries on Lp(µ,X) is isomorphic to the semi-direct product
L0(µ,G(X))o Aut∗(Σ).
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