
Banach J. Math. Anal. 9 (2015), no. 3, 14–23
http://doi.org/10.15352/bjma/09-3-2
ISSN: 1735-8787 (electronic)
http://projecteuclid.org/bjma

ON POSITIVE DEFINITE DISTRIBUTIONS WITH COMPACT
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Abstract. We propose necessary and sufficient conditions for a distribution
(generalized function) f of several variables to be positive definite. For this
purpose, certain analytic extensions of f to tubular domains in complex space
Cn are studied. The main result is given in terms of completely monotonic
functions on convex cones in Rn.

1. Introduction

Let Rn be the real n-dimensional Euclidean space imbedded in Cn so that
Cn = Rn + iRn. For u ∈ Rn, we set |u| = |u1| + · · · + |un|. Let |x|2 denote the
standard Euclidean norm on Rn. If, in addition, the entries of u are nonnegative
integers, then we call u, throughout the following, a multi-index.

The space of test functions E(Rn) is the set of ϕ : Rn → C such that Du
xϕ is

continuous for all multi-indices u. Here Du
x = Du1

x1
· · · · ·Dun

xn
and Dxk

= ∂/∂xk.
Let D(Rn) denote the subspace of E(Rn) consisting of functions with compact
support. We assume that the topologies on E(Rn) and on D(Rn) are introduced
as usual (see, e.g., [7] or [16]). The elements of the conjugate spaces E ′(Rn)
and D′(Rn) are called distributions or generalized functions. Since D(Rn) is
continuously imbedded in E(Rn), it follows that each f ∈ D′(Rn) gives an element
of E ′(Rn) by restriction. Moreover, E ′(Rn) coincides with a subspace of compactly
supported distributions of D′(Rn).
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POSITIVE DEFINITE DISTRIBUTIONS 15

If f ∈ D′(Rn), then the action of f on ω ∈ D(Rn) is written as (f, ω). A
distribution f ∈ D′(Rn) is said to be positive definite if for all ϕ ∈ D(Rn),

(f, ϕ ∗ ϕ̃) ≥ 0, (1.1)

were ϕ̃(x) := ϕ(−x), and ∗ denotes the usual convolution operator. The Bochner-
Schwartz theorem gives a representation of a positive definite distribution in terms
of the Fourier transform. Let us recall some notion.

The Schwartz class S(Rn) can be defined as the set of ω ∈ E(Rn) satisfying

‖ω‖m := sup
x∈Rn, |u|≤m

∣∣∣(1 + |x|2)mDu
xω(x)

∣∣∣ <∞ (1.2)

for all nonnegative integers m. Semi-norms (1.2) turns S(Rn) into a Fréchet
space. The elements of S ′(Rn) are called tempered distributions. For ϕ ∈ S(Rn),
we define the Fourier transform as

ϕ̂(x) =

∫
Rn

ei(x,t)ϕ(t) dt, x ∈ Rn,

where (x, t) = x1t1 + · · · + xntn. If f ∈ S ′(Rn), then the Fourier transform F [f ]
can be defined by (

F [f ], ϕ
)

= (f, ϕ̂), ϕ ∈ S(Rn). (1.3)

The Bochner-Schwartz theorem states (see, e.g., [16, p. 125]) that f ∈ D′(Rn)
is positive definite if and only if there exists nonnegative tempered measure η ∈
S ′(Rn) such that f = F [η]. We recall that a nonnegative measure η is said to be
tempered if there exists α ≥ 0 such that∫

Rn

(
1 + |x|2

)−α
dη <∞.

Note that this theorem implies that any positive definite distribution belongs to
S ′(Rn).

There are many other than the Bochner-Schwartz theorem characterizations
of positive definite functions (see, e.g., [8, p.p. 70-83]). As far as we known, it
is perhaps surprising that there are almost no such results for distributions. We
mention only [13], where attention has been paid to positive definite distributions
of order zero on R, with applications to a Volterra equation. See also survey article
[11]. Note also that in [4] the Bochner-Schwartz theorem was generalized for the
spaces of Fourier hyperfunctions and hyperfunctions.

In this paper, we wish to explore the idea of how to describe positive definite
f ∈ S ′(Rn) by means of its analytic representations in Cn. Let us start with the
case of one variable.

For f ∈ D′(R), Tillman [15] has proved that there exists a pair of functions
f (+) and f (−), analytic in the open upper C(+) and in the open lower half-plane
C(−), respectively, such that

lim
ε→+0

∫ ∞

−∞

(
f (+)(t+ iε)− f (−)(t− iε)

)
ϕ(t) dt = (f, ϕ) (1.4)
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for all ϕ ∈ D(R). This pair
(
f (+), f (−)

)
(or sectionally analytic function on

C(+) ∪ C(−) = C \ R) is called an analytic representation of f .
If a distribution f has a compact support, then an analytic representation of

f can be obtained using an explicit construction. Indeed, if f ∈ E ′(R), then

K(f)(z) =
1

2πi

(
f(·), (· − z)−1

)
=

1

2πi

(
ft, (t− z)−1

)
(1.5)

is well defined for all z ∈ C\R. The function K(f) is called the Cauchy transform
of f . If we take

(
f (+), f (−)

)
= K(f), then we obtain an analytic representation

of f (see, e.g., [1, p. 155]). Note that analytic representations of the same
distribution differ by at most an entire function [1].

For any fixed z ∈ C\R, the Cauchy kernel k(t) = (t−z)−1 belongs to E(R) but
not to S(R). Hence, for all f ∈ S ′(R), the analytic representation (1.5), in general,
does not exists (see details in [1, p. 156]). On the other hand, if f ∈ S ′(R), then
there exists a nonnegative integer m0 such that f is continuous in the semi-norm
‖ · ‖m0 defined in (1.2), i.e., there exist A > 0 such that |(f, ϕ)| ≤ A‖ϕ‖m0 for
all ϕ ∈ S(R) (see [16, p. 74]). We call the smallest m0 that satisfies the above
inequality the S-order of f ∈ S ′(R). Let us write %S(f) for this order. Note that
%S(f) is different from the usual order %D(f) of f as distribution in D′(R). Let us

define the generalized Cauchy kernel k̃m(t) to be (t− z)−(m+1). Now, if f ∈ S ′(R)

and m is a nonnegative integer such that m ≥ %S(f), then
(
ft, k̃m(t)

)
is well

defined. We derived in [9] necessary and sufficient conditions for f ∈ S ′(R) to
be a positive definite distribution in terms of this transform. Let us recall that a
function θ : (a, b) → R, −∞ ≤ a < b ≤ ∞, is said to be completely monotonic
if it is infinitely differentiable and (−1)nθ(n)(y) ≥ 0 for each y ∈ (a, b) and all
n = 0, 1, 2, . . . . Further, θ(y) is said to be absolutely monotonic on (a, b) if a
θ(−y) is completely monotonic on (−b,−a).
Theorem 1.1. ([9], Theorem 1.3) Let f ∈ S ′(R) and let n be an integer such
that 2n ≥ %f . Suppose that a1, a2 ∈ R, a1 6= a2. Let

K̃(f, j)(z) = (−1)n i

π

(
eiaj tft, (z − t)−(2n+1)

)
,

z ∈ C \ R, j = 1, 2. Then f is positive definite if and only if:

( i) y → K̃(f, j)(iy), j = 1, 2 are completely monotonic functions for y ∈
(0,∞);

( ii) y → −K̃(f, j(iy), j = 1, 2 are absolutely monotonic functions for y ∈
(−∞, 0).

It is quite possible that similar results are also valid for f ∈ S ′(Rn). Of course,
for n > 1, it is natural to use the Cauchy kernel KΓ with respect to a cone Γ in Rn

(see its definition (1.6)). Then the Cauchy transform KΓ(f) of f is defined as the
convolution of KΓ with f . Note that the case of several variables is much more
difficult than the one-dimensional case. At first, we do not fully understand how

to define the generalized Cauchy kernel K̃Γ to get well defined transform f ∗K̃Γ on
S ′(Rn). Second, the process of taking boundary values as in (1.4) are investigated
only for some proper subclasses of S ′(Rn) (see, e.g., [3]). Finally, we note that
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the main purpose of this paper is to provide a criterion for a distribution to be
positive definite. Therefore, to simplify the technical details, we obtain here a
criterion only for compactly supported distributions.

A set Γ ⊂ Rn is said to be a cone if x ∈ Γ implies αx ∈ Γ for all α > 0. The
dual cone of Γ is defined by

Γ∗ = {t ∈ Rn : (x, t) ≥ 0 for all x ∈ Γ}.

The cone Γ∗ is always closed convex, and (Γ∗)∗ = ch Γ, where ch Γ denotes the
convex hull of Γ. Next, Γ is called salient (acute) if ch Γ does not contain any
straight line in Rn. This is equivalent to int (Γ∗) 6= ∅. A cone Γ is said to be
regular if Γ is an open convex salient cone.

Let {Λj}m
1 be a family of regular cones. We say that {Λj}m

1 covers exactly Rn

if

∪m
k=1Λj = Rn

and the Lebesgue measure of Λi ∩ Λj is equal to zero whenever i 6= j. Any
ω = (ω1, . . . , ωn) whose entries ωk are −1 or 1 defines the cone Qω = {x ∈ Rn :
xkωk > 0 for k = 1, . . . , n}. The cone Qω is called a quadrant. The collection of
all 2n regular cones {Qω}ω covers exactly Rn.

Let Γ be an open cone in Rn. Then TΓ = Rn+iΓ = {z = x+iy : x ∈ Rn, y ∈ Γ}
is called a tube domain in Cn. If Γ is regular, then the Cauchy kernel of Γ (or
with respect to Γ) is defined as

KΓ(z) =

∫
Γ∗
ei(z, t) dt, z ∈ TΓ. (1.6)

The kernel KΓ is an analytic function on TΓ [16, p. 143]. If f is a distribution on
Rn, then

KΓ(f)(z) =
1

(2π)n

(
f(·), KΓ(z − ·)

)
=

1

(2π)n

(
ft, KΓ(z − t)

)
(1.7)

is called the Cauchy transform of f . For example, in R there are only two regular
cones (−∞, 0) and (0,∞). If Γ = (0,∞), then we see that (1.7) coincides with
(1.5).

Suppose that Γ is a regular cone in Rn. The directional derivation of a function
θ : Γ → C along a = (a1, . . . , an) ∈ Γ is defined as usual: Daθ(y) = (a1Dy1 +
· · ·+ anDyn)θ(y). Then θ is called completely monotonic if

(−1)kDγ1Dγ2 . . . Dγk
θ(y) ≥ 0, k = 0, 1, . . . ,

for all y ∈ Γ and all γ1, . . . , γk ∈ Γ (see [6, p. 172]).
Now we are able to describe positive definite distributions in E ′(Rn).

Theorem 1.2. Assume that {Γk}m
k=1 is a set of regular cones such that {Γ∗k}m

1

covers exactly Rn. A distribution f ∈ E ′(Rn) is positive definite if and only if y →
KΓk

(f)(iy), y ∈ Γk, is a completely monotonic function for each k = 1, 2, . . . ,m.
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2. Preliminaries and proofs

We define the inverse Fourier transform of a bounded measure µ on Rn as

µ̌(ξ) =
1

(2π)n

∫
Rn

e−i(ξ,t) dµ(t).

In the case if µ has a density ϕ ∈ L1(Rn), then the inverse transform of ϕ is

defined similarly. In addition, the following inversion formula (̂ϕ̌) = ϕ holds for
suitable functions ϕ.

Suppose that Λ is a convex salient cone in Rn, and let S ′(Λ) be the set of all
F ∈ S ′(Rn) supported on Λ. For any fixed y ∈ Rn, the Laplace transform of
F ∈ S ′(Λ) is defined by

Ly(F )(x) = F
[
F (·)e−(y,·)

]
(x) = Fξ

[
F (ξ)e−(y,ξ)

]
(x), x ∈ Rn, (2.1)

where F : S ′(Rn) → S ′(Rn) is the Fourier transform defined in (1.3). If y ∈ int Λ∗,
then F (·)e−(y,·) belongs to S ′(Rn) (see, e.g., [16, p. 127]). Hence, Ly(F )(x) is well
defined for all x ∈ Rn. Further, Ly(F )(x) is analytic on Tint Λ∗ as a function of
z = x+ iy, and

∂|u|

∂zu1
1 . . . ∂zun

n

Ly(F )(x) = i|u|Fξ

[
(ξu1

1 · · · ξun
n )F (ξ)e−(y,ξ)

]
(x) (2.2)

for each multi-index u = (u1, . . . , un) [16, p. 128].
Let χA denote the indicator function of A ⊂ Rn. If we compare (1.6) and (2.1),

then we have that

KΓ(z) =

∫
Γ∗
ei(z,ξ) dξ =

∫
Rn

χΓ∗(ξ)e
i(x,ξ)e−(y,ξ) dξ = Fξ

[
χΓ∗(ξ)e

−(y,ξ)
]
(x)

= Ly

(
χΓ∗

)
(x)

for all z = x + iy ∈ TΓ. This together with (1.7) and (2.2) implies the following
lemma, where we collect certain facts about the Cauchy transform, which we need
in this section. For a proof of this lemma we refer to [16, p.p. 144-145].

Lemma 2.1. Let Γ be a regular cone in Rn. The Cauchy kernel KΓ(z) is an
analytic function for z ∈ TΓ = Rn + iΓ. If f ∈ E ′(Rn), then the Cauchy transform
(1.7) is well defined on TΓ. Moreover, KΓ(f) is analytic on TΓ and

∂|u|

∂zu1
1 . . . ∂zun

n

KΓ(f)(z) =
1

(2π)n

(
ft,

∂|u|

∂zu1
1 . . . ∂zun

n

KΓ(z − t)
)

(2.3)

for all multi-index u ∈ Rn.

Recall that a complex-valued function u on Rn is said to be positive definite if
n∑

j,k=1

u(xj − xk)cjck ≥ 0 (2.4)

for any finite sets x1, . . . , xn ∈ Rn and for any c1, . . . , cn ∈ C. The Bochner
theorem (see, e.g., [2, p. 58], [5, p. 293] and [12, p.p. 41-47]) states that a
continuous function u : Rn → C is positive definite if and only if it is the Fourier
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transform of a positive finite measure µ on Rn. Note that if u is continuous on
Rn, then the definition (2.4) is equivalent to∫

Rn

u(x)
(
ϕ ∗ ϕ̃

)
(x) dx ≥ 0, (2.5)

where ϕ ranges over L1(Rn) (or over all continuous functions on Rn with compact
support). As usual, we identify a locally integrable function u on Rn with a regular
distribution by the formula

(u, ϕ) =

∫
Rn

u(x)ϕ(x) dx (2.6)

for suitable test functions. Of course, for regular distributions, both definitions
(1.1) and (2.5) coincide. Note that any locally bounded measure µ on Rn also
defines in a similar way as in (2.6) an integrable distribution.

We need a few simple facts about positive definite functions. The next lemmas
are not new, but their proofs are added here for completeness.

Lemma 2.2. A distribution f ∈ S ′(Rn) is positive definite if and only if

(f, ω) ≥ 0 (2.7)

for all positive definite ω ∈ D(Rn).

Proof. Assume that both f ∈ S ′(Rn) and ω ∈ D(Rn) are positive definite.
Using the Bochner theorem in S(Rn) for ω, and the Bochner-Schwartz theorem
in S ′(Rn) for f , we have that ω̌ is a nonnegative function in S(Rn) and F [f ] is
a nonnegative tempered measure on Rn. Then (F [f ], ω̌) may be derived as the
usual integral

(F [f ], ω̌) =

∫
Rn

ω̌(x) d
(
F [f ](x)

)
.

Moreover, (F [f ], ω̌) ≥ 0. Therefore, (1.3) implies that (f, ω) = (F [f ], ω̌) ≥ 0.
Let f ∈ S ′(Rn) and let ϕ ∈ D(Rn). The Fourier transform of ϕ ∗ ϕ̃ is equal to

ϕ̂ϕ̂ = |ϕ̂|2 ≥ 0. Hence, ϕ ∗ ϕ̃ is positive definite on Rn. If f satisfies (2.7) for all
positive definite ω ∈ D(Rn), then we can take ω = ϕ ∗ ϕ̃. Thus, (1.1) holds.

Lemma 2.3. Suppose that ϕ ∈ E(Rn) is positive definite. Then there ex-
ists a sequence (ψk) of positive definite ψk ∈ D(Rn), k = 1, 2, . . . , such that
limk→∞ ψk = ϕ in the topology of E(Rn).

Proof. Take any σ1 ∈ D(Rn) such that ‖σ1‖L2(Rn) = 1. Set σ = σ1 ∗ σ̃1. Then
σ is positive definite. Hence,

|σ(x)| ≤ σ(0) = ‖σ1‖L2(Rn) = 1, x ∈ Rn. (2.8)

Now we define the function ψk(x) to be σ(x/k)ϕ for k = 1, 2, . . . . Of course,
ψk(x) ∈ D(Rn) and ψk(x) is positive definite as a product of two positive definite
functions. We recall that a sequence {θj}j ∈ E(Rn) converges in E(Rn) to θ ∈
E(Rn) if and only if for every multi-index u ∈ Rn, the sequence {Du

xθj}j converges
uniformly to Du

xθ on every compact subset of Rn. By (2.8), it is easy to see that
for any fixed multi-index u ∈ Rn, the sequence Du

x

[
σ(x/k) − 1

]
, k = 1, 2, . . . ,
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converges to the zero function as k → ∞ uniformly on compact subsets of Rn.
Finally, since

ϕ(x)− ψk(x) = ϕ(x)
[
σ(x/k)− 1

]
,

we finish the proof.
We are now in a position to prove the necessity of Theorem 1.2.
Proof of Theorem 1.2 (Necessity).
Suppose that Γ is a regular cone in Rn and let y ∈ Γ. If t ∈ Rn, then using

(2.1) and (2.2), we see that

Du
yKΓ(iy − t) =

∂|u|

∂yu1
1 . . . ∂yun

n

KΓ(iy − t) = (−1)|u|
∫

Γ∗
(ξu1

1 · · · ξun
n )e−(y, ξ)e−i(t,ξ) dξ

for each multi-index u ∈ Rn. In particular, if γ = (γ1, . . . , γn) ∈ Γ, then for the
directional derivative Dγ of KΓ, we have

DγKΓ(iy − t) = (γ,Dy)KΓ(iy − t) =
n∑

s=1

γs
∂

∂ys

KΓ(iy − t)

= −
∫

Γ∗

( n∑
s=1

γsξs

)
e−(y,ξ)e−i(t,ξ) dξ = −

∫
Γ∗

(γ, ξ)e−(y,ξ)e−i(t,ξ) dξ. (2.9)

Iterating (2.9), we obtain, for an arbitrary set γ(1), . . . , γ(k) ∈ Γ, that

Dγ(1)Dγ(2) . . . Dγ(k)KΓ(iy − t) = (−1)k

∫
Γ∗

k∏
j=1

(γ(j), ξ)e−(y,ξ)e−i(t,ξ) dξ

= (−1)k

∫
Rn

( k∏
j=1

(γ(j), ξ)e−(y,ξ)χΓ∗(ξ)

)
e−i(t,ξ) dξ. (2.10)

For fixed y ∈ Γ and for θ ∈ Γ, we define the function Eθ by

Eθ(ξ) = (θ, ξ)e−(y,ξ)χΓ∗(ξ), ξ ∈ Rn.

Since Γ is an open cone, it is easy to see that there exists δ = δ(y) > 0 such that

(y, ξ) ≥ δ|ξ|2 for all ξ ∈ Γ∗

(see, e.g., [14, p. 104]). Hence, Eθ is a nonnegative bounded and integrable
function on Rn. Note that the function

ξ →
k∏

j=1

(γ(j), ξ)e−(y,ξ)χΓ∗(ξ), ξ ∈ Rn, (2.11)

which we used in (2.10), is equal to

k∏
j=1

Eγ(j)(ξ).

Hence, the function (2.11) is also nonnegative bounded and integrable on Rn.
Thus, applying the Bochner theorem to the right side of (2.10), we see that, for
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any fixed y ∈ Γ and for any choice of γ(1), . . . , γ(k) ∈ Γ, the function

(−1)kDγ(1)Dγ(2) . . . Dγ(k)KΓ(iy − t) (2.12)

is continuous positive definite as a function of t ∈ Rn. Moreover, by Lemma 2.1,
the function KΓ(z) and its derivative (2.12) are analytic on TΓ. Hence, (2.12)
belongs to E(Rn) as a function of t.

Suppose now that f ∈ E ′(Rn) and that f is positive definite. Using Lemma
2.3, we see that, for any fixed choice of y ∈ Γ, γ(1), . . . , γ(k) ∈ Γ, there exists a
sequence (ψm) of positive definite functions ψm ∈ D(Rn), m = 1, 2, . . . , such that

lim
m→∞

ψm(t) = (−1)kDγ(1)Dγ(2) . . . Dγ(k)KΓ(iy − t)

in the topology of E(Rn). Then by Lemma 2.2, we get

(−1)k
(
ft, Dγ1Dγ2 . . . Dγk

KΓ(iy − t))
)

= lim
m→∞

(ft, ψm(t)) ≥ 0.

Combining this with (1.7) and (2.3), we see that

(−1)kDγ(1)Dγ(2) . . . Dγ(k)KΓ(f)(iy) ≥ 0.

This shows that y → KΓ(f)(iy) is a completely monotonic function on Γ. Neces-
sity of Theorem 1.2 is proved.

We will use the following lemma (see, e.g., [3, p. 211]), which gives an analytic
Cauchy representation for any distribution with compact support.

Lemma 2.4. Suppose that {Γk}m
1 is a family of regular cones such that {Γ∗k}m

1

covers exactly Rn. Let y(k) ∈ Γk, k = 1, . . . ,m. If f ∈ E ′(Rn), then

lim
max ‖y(k)‖2→0

m∑
k=1

∫
Rn

KΓk
(f)(x+ iy(k))ω(x) dx = (f, ω)

for all ω ∈ D(Rn).

Proof of Theorem 1.2. (Sufficiency). Let Λ be a regular cone in Rn. Let
g ∈ E ′(Rn) and suppose that the function y → KΛ(g)(iy) is completely monotonic
on Λ. We claim that for any fixed y ∈ Γ, the function

x→ KΛ(g)(x+ iy)

is continuous and positive definite on Rn. Since Λ is convex, it follows that Λ is
an additive semigroup. Fix a point δ ∈ Λ. Because Λ is open, it is easy to see
that

δ + Λ ⊂ Λ. (2.13)

Define the function

G(y) = KΛ(g)
(
i(δ + y)

)
. (2.14)

By (2.13), this function is well defined for all y ∈ Λ. Of course, it is completely
monotonic on Λ. Moreover, using (2.13), we see that G is continuous on Λ. Then
(see [6, p. 172]) there exists a nonnegative measure µδ,Λ on Λ∗ such that

G(y) =

∫
Λ∗
e−(y,ζ) dµδ,Λ(ζ) (2.15)
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for all y ∈ Λ. Since 0 ∈ Λ and G is continuous on Λ, then

G(0) =

∫
Λ∗
dµδ,Λ(ζ).

Hence, µγ,Λ is a finite measure. Therefore, the function G can be extended
analytically on TΛ as the Laplace transform of µγ,Λ, i.e., for z = x+ iy ∈ TΓ, we
can set

G(z) =

∫
Λ∗
ei(z,ζ) dµγ,Λ(ζ).

Note that this integral converges absolutely.

By (2.14), the function G(z) coincides with KΛ(g)
(
iδ + z

)
for z = iy, y ∈ Λ.

We will show that this is true also for all z ∈ TΛ. To this end, we use the following
identity theorem (see e.g., [10, p.16-17]): if H is an analytic function on an open
connected domain D in Cn, a ∈ D, and H(a+ x) = 0 for all x in a neighborhood
of 0 in Rn, then H ≡ 0 on D. Of course, a similar statement is valid also in
the case if we replace a real neighborhood of a by any imaginary neighborhood,
i.e., if we have H(a + iy) = 0 for all y in a neighborhood of 0 in Rn, then also
H ≡ 0 on D. Now fix any z0 = iy0 ∈ iΛ ⊂ TΛ. Then using (2.13)and (2.14), we
see that G(z) and KΛ(g)(iγ + z) coincide for all z in an imaginary neighborhood
Iz0 = {z = x + iy ∈ Cn : |y − y0| < r, x = x0} of z0 such that Iz0 ⊂ TΛ. Hence,

G(z) = KΛ(g)
(
iδ + z

)
for all z ∈ TΛ. Moreover, by (2.14) and (2.15), we have

that

KΛ(g)(iδ + z) = G(z) =

∫
Λ∗
ei(z,ζ) dµγ,Λ(ζ) =

∫
Λ∗
ei(x,ζ)e−(y,ζ) dµγ,Λ(ζ) (2.16)

for all z = x + iy ∈ TΛ. Using (2.16) and having the Bochner theorem for
continuous positive definite functions on Rn, we obtain that for any fixed y ∈ Γ,
the functions

x→ G(x+ iy) and x→ KΛ(g)(x+ i(δ + y))

are continuous and positive definite on Rn. Thus, since Λ is open and δ is an
arbitrary point of Λ, we obtain that the function x → KΛ(g)(x + iy) also is
continuous and positive definite on Rn. This proves our claim.

Let {Γk}m
k=1 be as in the Theorem 1.2 and suppose that for f ∈ E ′(Rn), the

functions y → KΓk
(f)(iy), y ∈ Γk, k = 1, 2, . . . ,m are completely monotonic. Fix

y(1) ∈ Γ1, . . . , y
(m) ∈ Γm, and define

F (x) =
m∑

k=1

KΓk
(f)(x+ iy(k)) (2.17)

for x ∈ Rn. We just proved that each x → KΓk
(f)(x + iy(k)), k = 1, . . . ,m, is a

continuous and positive definite function on Rn. Hence, the same is still true for
(2.17). If ω ∈ D(Rn), then F ·ω is integrable on Rn, and by Lemma 2.2, we have
that

m∑
k=1

∫
Rn

KΓk
(f)(x+ iy(k))ω(x) dx =

∫
Rn

F (x)ω(x) dx ≥ 0. (2.18)
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Letting now max ‖y(k)‖2 → 0. Then (2.18) this, together with Lemma 2.4, proves
that (f, ω) ≥ 0 for all ω ∈ D(Rn). Thus, f is a positive definite distribution.
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