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ABSTRACT. In this paper, the behavior for commutators and maximal com-
mutators of a class of bilinear singular integral operators associated with non-
smooth kernels on the products of Morrey space is studied. By some maximal
operators and commutators, we proved that the commutators and maximal
commutators of singular integral operators and CMO functions are bounded
and compact.

1. INTRODUCTION

In recent years, considerable attention has been paid to the study of multilinear
singular integral. In this article, we will address the m-linear operators 1" which
defined on the m-fold product of Schwartz spaces and taking values into the space
of tempered distributions,

T: SR x -+ x S(R") = S'(RM),

and associated with kernel K (z,41,...,¥,) in the sense that

T(flv AR fm)(l‘) = /(Rn)m K(‘Tayh s 7ym)f1(y1) T fm(ym)dyl o 'dy’rm (11)
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where K(z,y1,...,yn) is a locally integral function defined away from the diago-
nal v =y, = -+ =y, in (RV)™H 7 ¢ NJLysupp f; and fi,..., f; are bounded
functions with compact supports. The corresponding maximal singular integral
operator 1™ is defined by

T*(fr,-- s fm) () = sup [T5(fr, -+, fa) (2))],

6>0
where

Ts(frreee s fm)(2) :/ K2,y ym) [T filyddys - dym
[z —y1[2+-+|z—ym[?>6 i=1

A kernel K is called of class m — CZK (A, ) if there exist positive constants A
and 7 € (0, 1] such that K satisfies the size condition

A

for all (z,y1,...,ym) € (R")™! with x # y; for some j € {1,2,...,m}; and the
smoothness condition

Alx — 2|7
‘K(x7y17"'7y'7"'>ym>_K(xlyyla--wy'?"'aym”S m 3
! ’ (X |7 — yal )yt

/ .
whenever |z — 2| < 3 max;<j<n, [t — y;|, and also for each j,

Aly; — ;|7
im1 |z = yi )

(1.3)

|K(x,y1,...,y~,...,ym)—K(x,yl,...,y/<,...,ym)| <
’ ! >

whenever |y; — y;| < Imaxi<j<m [ — yj|. Then the operator 1" associated with
this kernel K is called the multilinear Calderon—Zygmund operator. For the
multilinear Calderén—Zygmund operator T, in [17], Grafakos and Torres obtained
the multilinear T'1 theorem. Thus they show the boundedness of T on the
products of Lebesgue spaces. Moreover, in [16], the weighted estimates with
A, weights for the operators 7" and 7™ was considered. For more works about
multilinear Calder6n-Zygmund operator, the reader can refer to [16], [17], [21],
[23] and the references therein.

In this article, we are interested in the commutators and the maximal commu-
tators of multilinear singular integral operators. For the sake of convenience, we
will only consider the bilinear setting, since the other multilinear case are quite
similar.

For b € BMO(R"), we define the following commutators

Toa(fr, f2) () = [0, Th(fr, f2)(x) = T(bfr, f2) (@) = OT (fr, f2) (),
Tb 2(f1, f2) (@) = [0, Tla(fr, f2) () = T(fr, 0f2)(x) = 0T (f1, f2) (),

Ty (f1: f2)() = sup [0, Ts]1(f1, f2) ()] = sup ((T5(bf1, f2) = bT5(f1, f2)) ()],
Tpo(f1: f2)(x) = sup |0, Ts]2(f1, f2) ()] = sup |(T5(f1,bf2) = bT5(f1, f2)) ()]

Also, for a vector functlon

b = (b1, by) € BMO(R") x BMO(R™),
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we consider the following two iterated commutators introduced in [24],

TE(flaf2)(x) = [be, [b1, T)1]2(f1, f2)(2),
Ty (f1, f2)(z) = sup |[ba, [b1, T5]1]2(f1, f2)(@)].

In the sense of (1.1), it is easy to see that

Tl () = [ [ G im) () = o)) il o)
Talfin (@) = [ K m) blom) = b)) o) fo)donce

Tt f)e) = [ [ K m)br(n) = b)) — balo Hfzyidy,

Ty1(f1, f2)(x) = sup // K(x,y1,y2)(b(y1) — bz Hfz yi)dy|,
>0 |lz—y1|2+|z—y2|2>d
Ty (f1, fo)(x) = sup // K(x,y1,92)(b(y2) — b(z Hfz yi)dy|,
>0 |lz—y1|2+|z—y2|2>d
2 2
(f17f2 ) = sup // K(z,y1,92 H )Hfz(yl)dgj‘
>0 i le—yil2>6 j=1 i=1

The commutator of multilinear Calderén—Zygmund operator has been exten-
sively studied in last decades. To know the history of this topic, the reader can
refer to [7], [23], [24], [25], [26], [28] and the references therein. Particularly, in
[24], the boundedness of iterated commutators of multilinear Calderén—Zygmund
operators on product of weighted Lebesgue spaces with multiple weights was
studied, and in [28], the weighted strong and end-point estimates of maximal
commutators of multilinear Calderén—Zygmund operators were considered.

However, for some multilinear singular integral operators including the Calderén
commutator, people found that their kernels do not satisfy (1.3) (see [12]). Here,
the Calderén commutator is defined by

i (Aj(x) — A
Con1(frar, ... an)(z) = /]R Hj_ Ef _( y))m+1 <y))f(y)dy7

where A;- = a;. For this reason, in [12], via the generalized approximation
to the identity, Duong et al. introduced a class of multilinear singular integral
operators whose kernels satisfy certain “smoothness conditions” that are weaker
than K € m — CZK (A, 7).

For p1,...,pms1 € [1,00] and p € (0,00) with % = >
weak type estimate was established in [12],

m+1 1

i1 3o the following

ICrr (f a1, - s @)ooy < ClF Nl [ [ sl o -
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If ming<j<p+1p; > 1, the strong type estimate was also established in [12]. Also,
the weighted case, including the multiple weights, of the maximal Calderén com-
mutator were considered in [11] and [15]. Moreover, there are a lot of works
related to singular integral operators with non-smooth kernels. The reader may
refer [L1], [12], [13], [15], [L&] and [19].

In this article, we are interested in the compactness of the commutator and
maximal commutator of bilinear singular integral operators with non-smooth ker-
nels and CMO functions on Morrey space, where CMO denotes the closure of C'°
in the BMO topology and C2° is the set of C* functions with compact support.
In particular, we will study the compactness on the Morrey space for the bilinear
singular integral operator T" associated with a kernel K which satisfies (1.2) in
the sense (1.1), and

(1) T is bounded from L*(R") x L*(R") to LY/2>(R");
(2) for z, 2", y1,y2 € R™ with 8|z — 2| < minj<j<s |z — 4,

cr7
(|2 — 1| + |2 — o2+’

K (2,91, 40) — K (2,1, 90)| < (1.4)

where C' is a constant and 7 is a number such that 2|z — 2’| < 7 and 47 <
miny<<s |z — y;|. It was pointed out in [19] that the kernel satisfying condition
(1.2) and (1.4) includes the non-smooth kernel introduced by Doung et al. in [11],
[12]. Hence, the study of the commutator and maximal commutator of bilinear
singular integral operators with above non-smooth kernels is significative.

Before stating our results, we briefly describe the background and our motiva-
tion. The Morrey space LP*(R") (see Definition 1.1) which was introduced by
Morrey (see [22]) in 1938, is connected to certain problems in elliptic PDE. We
note that in the linear setting, the compactness of commutator on Morrey space
has been studied in [6]. Recently, Bényi and Torres posed a concept of compact-
ness (see Definition 1.2) in the bilinear setting in [2] which was equivalent to the
concept proposed by Calderén in [4]. Bényi and Torres then extended the result
of compactness for linear singular integrals by Uchiyama [27] to the bilinear set-
ting and obtained that [b, Ty, [b, T2, [b2, [b1, T]1]2 are compact bilinear operators
from LP*(R™) x LP*(R™) to LP(R™) when b, by, b, € CMO(R™). Later, Ding et al.
considered the compactness of the commutators of bilinear Calderéon-Zygmund
operators and CMO functions on the products of LP*(R™) space (see [10]), as well
as the compactness of the maximal commutators of bilinear Calderén-Zygmund
operators and CMO functions on the products of LP(R™) space (see [9]). We note
that in [9] and [10], T" is a Calder6n-Zygmund operator. In the article, we will
consider the compactness of commutators and maximal commutators by assum-
ing that T is an operator associated with non-smooth kernel. This assumption
raises essential difficulties if we following the proofs in [9] and [10].

To formulate the main hypotheses on the commutators under consideration, we
need to define the John-Nirenberg space ([20]) of functions with Bounded Mean
Oscillation (BMO).
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Let f be a locally integrable function in R". We say that f belongs to BMO if
1
ooy = sup i [ 17(2) = fulde < oc
ek | Bl Jp

where B ranges in the class of balls of R". Hereafter, fg stands for the integral

average
i),
— f(x)|dx
5 [ 1)

of the function f over the set B.
Definition 1.1. For 1 < p < oo, n > 1 and 0 < A < n, the Morrey space
LPAR™) is defined by

1 1/17
)= {re il o (5[ jrope) <o),
yeRm r>0 \ T B(y,r)

where B(y,r) denotes the ball centered at y with radius r > 0. The spaces
LPAR™) becomes a Banach space with norm || - [, If A = 0 and X\ = n, then
LPO(R™) and LP"(R™) coincide with the space LP(R™) and L>®(R™).

We denote the closed ball of radius r centered at the origin in the normed space
XasB.x={re X |z <r}

Definition 1.2. A bilinear operator 7' : X XY +— Z is called compact if T'( By x X
By y) is precompact in Z.

Definition 1.3. A weight w belongs to the class 4,, 1 <p < oo, if

o i ) (@ o)<

A weight w belongs to the class A; if there is a constant C' such that
y)dy < C 1nf w(x).
1@l /

Definition 1.4. Let p'= (p1,p2) and 1/p = 1/p; + 1/ps with 1 < py,py < 0.

Given W = (wy, ws), set vg = H?Zl wﬁ/ 7. We say that @ satisfies the Az condition

if
1/p 2 1 1-p, 1/17]
sup<‘Q|/ ) H(@/QUJ ) < Q.

1 —p/. 1/p]- X . 1
Here, (@ fQ w; J) is understood as (infy w;)~",when p; = 1.

The following theorems are our main results:

Theorem 1.5. Let T be a bilinear operator that bounded from L'(R™) x L'(R™)
to LY>*(R") and its kernel K satisfies (1.2), (1.4). Assume b € CMO(R"),
0 < \ALA <n, pr,pe € (1,00), p € (1,00) such that 1/p = 1/py + 1/py and
A= M /p1+ Xa/pa. Then Ty, Ty, are compact from LP2M (R™) x LP2*2(R") to
LPA(R™).
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Corollary 1.6. Let T be a bilinear operator that bounded from L'(R") x L'(R™)
to LY>*(R™) and its kernel K satisfies (1.2), (1.4). Assume b € CMO(R"),
0 < MAL A2 <n, pr,pe € (1,00), p € (1,00) such that 1/p = 1/py + 1/pe and
Np =X /p1+Xa/ps. Then Ty, Tyo are compact from LPY 1 (R™) x LP2A2(R™) to
LPA(R™).

Theorem 1.7. Let T be a bilinear operator that bounded from L'(R™) x L'(R™)
to LY2°°(R") and its kernel K satisfies (1.2), (1.4). Assume b € BMO(R"),
0 < MAL A2 <n, pr,pe € (1,00), p € (1,00) such that 1/p = 1/p1 + 1/pe and
A/p:: Al/p1<+-A2/p2. Then

1752 (frs P2l 152 (frs f2)llpx < Cllblsmo@) [ fillp aull fallpa 2o -

Remark 1.8. Theorem 1.5 and Corollary 1.6 are also true for the iterated com-
mutators Tg and Ty, and their proofs are similar to those of Theorem 1.5 and
Corollary 1.6. We leave the detail to the interested reader. We will only write
out the proof of Theorem 1.5, because the proof of Corollary 1.6 is quite simi-
lar. From [3] and Lemma 2.3, we can see that Theorem 1.7 is also true for the

operators Ty 1(f1, f2) and Ty a(f1, fa).

We make some conventions. In this paper, we always denote a positive constant
by C' which is independent of the main parameters and its value may differ from
line to line. We use the symbol A < B to denote that there exists a constant
C such that A < C'B. For a measurable set E, xg denotes its characteristic
function. For a fixed p with p € [1,00), p' denotes the dual index of p. We also
denote f: (fi,---, fm) with scalar functions f;, j = 1,2,...,m. Let B(s,t)
denote the ball centered at s with radius t > 0. Given o > 0 and a ball B(s, ),
aB(s,t) denotes the ball which is centered at s with radius at. Let us define
fo as the average of f over Q and Q is a cube in R". Let M be the standard
Hardy-Littlewood maximal operator.

2. PROOF OF THEOREM 1.7

The proof of Theorem 1.7 needs some maximal functions in the following. For
0 <n < oo, M, is the maximal operator

1 1/n
My a) = 210510 = (sup o2 [ 17la)
Q9x|cgl Q
and M7 is the sharp maximal operator defined by Fefferman and Stein [14],
P 1
M f(a) = swpint o [ 17(0) = eldy ~swp o [ 17) = fold,
QI Jg QI Jo

Q>3zx ¢ Q>

and
— AH# 1
M f(x) = MP(|f]7)/0(a).
Moreover, when 0 < p,n < 00, w € A, (R™), then there exists C' > 0 such that
[ @y <c [ 0rf @)y,

for every function f for which the left-hand side is finite.
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Now let b € BMO(R"), define the commutator M, of the Hardy-Littlewood
maximal operator with b by

Muf (@) = sup oz [ [ble) = b))l

B>z

for all z € R™. For ®(t) = t(1 +log* ¢) and a ball B in R,

| fllLaog £),p = inf {)\ >0: ﬁ/Bq) (@) dr < 1}.

Define the maximal operator Mo, 1) by
ML(logL)f(l‘) = SBUP ||f||L(logL),B’
S

where the supremum is taken over all the balls containing x. By the generalized
Jensen’s inequlity, we have

Mo 1) f(2) S My f () (2.1)
for any n > 1.

Lemma 2.1. Let b € BMO(R"), then for any 0 <n < 3
M7 (Myf)(2) < blleymo@) Mrgose) f (),

for any bounded functions f with compact support.

This Lemma was proved in [1].
Furthermore, Grafakos, Liu, and Yang [15] introduced a kind of new bilinear
maximal operator which was defined as:

M) =500 322 (150 [ oiin ) (g [, st
1
Mo (f) —%1;1222 o (|_B|/B‘f2(y2)‘dy2> (|2k—B] /ZkB’fl(yl)’dyl)>

where f = (f1, f2) are locally integrable functions. And the following bounded-
ness for My and Ms o were proved in [15].

Lemma 2.2. Let 1 < py,py < 00, % = 232:1 pij, and W = (wy,w) € Az(R*™).

Then My and May are bounded from LP*(wy) x LP?(wq) to LP(vyg).

Lemma 2.3. Let b € BMO(R™). Suppose that T is as in Theorem 1.5, then for
anyz €R", § >0 and 0 <n < 1/2,

|16, T5]1 (f1, fo) ()| S Myp(f1)(@)M(fo)(x) + My(To(f1, f2)(x))
H[My(T(f1, f2)" (@) [Myy(T(fr, f2) ()]
+My(To 1 (fiX B2y f2XB@sr2)(T))

+([Mb(T(f1XB(x,am),fQXB@,al/'z))"(m))]

x[Mn<T<f1xBW2),fQXB@,auz))(x))Jl-ﬂ),
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where f1, fo are any bounded functions with compact support.

Proof. We adopt some ideas of [5] and [16]. Let 6 > 0 and function ¢ = (g1, g2)
which is chosen later. From the size condition (1.2), we deduce that

Ty(ar, 02)()] = ‘ /] K (g1, 52)1 (9192 (42)dyn s
lz—y12+|z—y2|2>6

E‘// e 2415y 25 K(z,y1,92)91(y1)g2(y2)dy1 dya

max(|z—y1|,|z—ya|)<61/2

+‘ // K(x,y1,92)91(y1)92(y2)dy1dy,
max(|z—y1|,|z—yz2()>61/2

/ / K(J% Y1, y2)91(3/1)92(y2)d37’
max(lz—y1 |,|z—ya|)>51/2

SM@@Me@ +| [ [ K

S M(g1) () M(g2)(x) +

+‘ / / K(x,y1,y2)91 (y1)92(y2)dyr dys
|z—y1|>61/2 J |z—ya|<51/2

+‘ / / K(z,y1,92)91(y1)92(y2)dy1dy,
|z—ya|>61/2 J |z—y1|<51/2

// K(if,y1792)91(y1)92(?/2)d§‘,
min(|z—y1|,|z—yz2|)>81/2

where the last inequality holds because

S M(g1)(x) M (g2) () +

' / / K (2,91, y2)91 (y1)92(y2)dy: dys
|z—y1|>61/2 J |z—ya|<1/2

< / / 91 (w)llg2(2)l
~ 2n Y1dy2
ey |561/2 Jo—yal<sirz ([T — 11| + [ — 2|)

191 (1) d 1/ |g2(y2)] d
|

omyn|<1/2 | T — Y|

N
o—yi|>s1/2 [T — ™

S M(g1) () M(ga) ().

Denote

Ty(gr, g2) () = / / K@, 11, 92)01 (5192 ()l .
min(|z—y1|,|z—y2])>61/2

Fix § > 0 and let z € B(x, %), we obtain

// K(z,y1,42)91(y1)g2(y2)dy1dys
min(|z—y1|,|z—yz2()>81/2

=T(9)(2) = T(91XBs1/2) 92X Bsi2)) (2) = T (91X Ba51/2), 2 X e(ns1/2)) (2)
_T<91XBC(1,61/2)a gQXB(a:,61/2)) (2).
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Because |z — ya| = |z —x + x — 3| > |x — y2| — |z — x|, we know that

|T(91XB(33,51/2)7 92XBC(z,51/2)) (z)|

[ )l
|z—y1]|<8/2 J |z—ya|>51/2 (‘Z - yll + ‘Z - y2|)

< | nlldn Y | el g
lz—y1|<61/2 —1

2
2k=151/2 < |p—ya|<2k§1/2 |z — o]

1
Sy RO [ — / 1g2() g
Z 51/2)| /2) | B(w,2k51/2)] B(x,2k61/2)

S M2,1(91,92)( );
similarly, we get
T (91X Be(.61/2)> P2 X Bsir2)) (2)] S Maa(g1, g2) ().
On the other hand, by taking infimum over 7 in condition (1.4), we have
Dz — 2|7
(7 =l + & = gaf )+

|K<I,y1,y2) - K(27y17y2)| S

when 8|z — 2| < min;<j<s |z — y;|. Thus,

f5(91,92)(x)—// K (2,91, 92) 91 (y1) g2 (y2)dyr dys
(Jz—y1,|z—ya])>61/2

|z — 2|7
< dy;d
//mln eyl Je—yalyzst2 (| = y1| + 2z — 12 |)2"+W|gl(y1>HgZ(y2)| e

<o // 9 @ollgall
min(jz—y1 |, Jr—ya)>51/2 ([T = y1| + |z — ya )27

S M(g1) () M (g2) ().

In summary, for z € B(xz, %), we obtain

T5(91, 92)(@)| S M(g0)(@)M(g2)(x) + ) Mai(91,95)(x)

i=1
+T(g1,92)(2) — T(91XB($,51/2)a gQXB(m,(Sl/Q)) ().
For 0 < n < % Raising the above inequality to the power 7, integrating over
1/2 e e 1. 1/2
z € B(x, &) and dividing by |B(z, %)], we get

T5(g1, g2)(x [HM 9:)( ]n+i/\/12i (91, 92) (2)]"
|/ a2, T(g1,92)(2)["dz

+—/ T JG1IXB(2.61/2)s 92X B(2.51/2 z 77dZ.
6.5 B(%W (9Xb(0.7: B Xp005) (2)
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Let g1() = (b(x) = b(-)) f(-) and g>(-) = fo(:), we have

| T5((b(x) = b) f1, f2)(2)]

S M((b(x) = b) f1)(x +ZM21 z) = b) f1, f2) ()
{ 51/2 |/ 572 x) = b)f1, f2)(z )|"dz]
[ 51/2 ‘/ a2y z) = b) fiXB@s/2) [2X B(a,s172 )(Z)|”dz}n
My(fi) +ZMaz ) = b)fi, fo) (@)

1

+ [—| / o [T(O) =4 +2) = D f2><z>|”dz] "

ey P CCRLCRTCRY

X fIXB(.51/2)s J2X B(asi/2y) (2) ’ndz

S

Hence, by Holder’s inequality and the fact that

ZMQZ — B f2)(2) S My(f) (@) M (f2) (),

we know that

6, Tsh (f1, f2) ()| S My(fi)(z)M(f2)(x) + My (Toi(f1, f2)(2))
H[My(T(f1, f2)" (@) [Myy(T(f1, f2) ()]
+My(To1 (f1XB2s1/2) f2XBast/2)) (2))

+([M(T(flxmx,m,fsz(z,51/2>>"<x>>1

x[Mn<T<f1xB<x,51/z),f2xB(m,51/2>><x>>11—").
O]

Remark 2.4. Let b € BMO(R™), T is as in Theorem 1.5. Then for any x € R", § >
0and 0 <n < 1/2, [b, Ts5]2(f1, f2)(x) has the similar estimate as [b, Ts]1(f1, f2)(2)
in Lemma 2.3.

Lemma 2.5. Let 0 < A\, A\, Ay < n, p1,p2 € (1,00), p € (1,00) such that 1/p =
1/p1+1/p2 and X\/p = A1 /p1 + Ao/p2. Suppose that T is bounded from LP'(w;) X
LP2(wsy) to LP(vg) for w = (wy,wy) € A1 (R") x A1 (R™) and vz € A1 (R™). Then
T is bounded from LP**(R"™) x LP222(R™) to LPA(R™).
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Proof. For any fixed ball B = B(s,r) we decompose fi, [ as f1 oS Fl=
fixs+ "y It X2kB\2k—1B; f2 = f3 —I—Z] 1f2 f2XB‘|‘ZJ:1 f2XQJB\2J 1. Hence,

1 :
(; / \T(f?,fsxx)ypdx)
A/p(/ T2, £9)(x )|pdx)
1 L L
< ”T“m<wl>xm<wz>w<uﬁ>m(/B 7 <fv>|”1d"3) (/B |f3<x>|”2dx>

S ||T||LPI(wl)XLPQ(wg)—)LP(yu_J)||f1||p17)\1 ||f2||p27>\2_

Let max(2L,22) < 6 < 1, then (Mxp(z))? € A;(R") (see [3]). By the fact that
Mxp(z) < 279" when z € 271 B\ 2B, we have

> (5 f“f“)'pdx) <Z ([ er et dx)l

1

<o [ f2><x>rp<MxB<x>>9dx)”

oo 1 o
ST e 2 s [ 1P O xcate) et
j=1

(Lo, rf2<x>|p2<MxB<x>>9dx) |

P2
1
< ||T||Lp1 (w1) X LP2 (w2)—LP (v Z 7“>\/P (/ |f1 |p1d$>

%9 " (/ !fz(x)\mdx) P2
2B

—-L (nf—X2)
< ||T||Lp1 w1)><Lp2(w2)—>LP ZQ P2 (n 2 ||f1||p1 >\1||f2||p2 Ao

=

< ||T||Lp1 (w1)x LP2 (wg)—LP (v ||f1||p1 A1 ||f2||p2 A2

similarly, we get

( / ‘T f17f2)< )]pdx) < HTHLPl(wl)XLPQ(wQ)_)Lp l/w)Hfll‘pl )\1Hf2Hp2 Ao

0o 00 1
ZZ ( / ’T flafZ)( )]pd:z:) < HTHLPI (w1) X LP2 (we)—LP Vw)Hflupl )‘1”f2Hp2 Ag-
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In summary, we obtain

IT(fr, f2)llpr S HT(f{’»fS)Hp,AJrZHT(ff,f%)Hp,A

+ZHT f17f2 HpA+22HT f17f2 ||p)\

=1 k=1

S ||T||Lp1 (w1) X LP2 (we)—LP (v, ||f1Hp1 >\1Hf2||172 Ao+

Remark 2.6. Lemma 2.5 is also true for the linear case.

Now, we are ready to prove Theorem 1.7.

—

Proof. We only write out the proof of Tj,(f)(z), the other can be obtained by
symmetry. From Lemma 2.3, we deduce that

—

151 (Dllpr < [1Mo(f1) (@) M (f2) (@) [lpx + 1My (T2 (f1, £2)(2)) [lpx

HIM(T(fr, £2)" (@) [M(T(frs o) (@)
+ ?ilg HMﬁ<Tb,1(f1XB(x,61/2)7 f2XB(x,61/2))<x>>Hp,>\

+ 31118 I ([Mb(T(f1XB(ac,51/2)v fQXB(x,61/2))n(‘T>)]
>

X [My(T(fiXps2) 2XBws12) (@) 7).

By Holder’s inequality, Lemma 2.1, Lemma 2.5 and (2.1), we know that, there
exists a 19 > 1 such that

[ My (f1)(2) M (f2)(2)]]p2

S My (£ @)y 1M (f2) ()], 20

S M| zor (wy— o1 (@) | fillpa o L2 llpo.ne

S Nollmvo) ([ Maoll oy (w)—2e1 @) | fill s [[ 2 ]lpa re

(
5 ||b||BMO(]R”)||f1||p1,>\1||f2||p2,>\2-
where w € A;(R™). From [3] and Lemma 2.5, we get
1My (Toa (fr, ) @)oo S 1 Toa (frs F2)(@)]p
S lbllemon) [Lfllp a1 f2llpz.x. -

By Holder’s inequality, Lemma 2.3 and Lemma 2.5, we have

IM(T (fr, f2)" @DIM(T(fr, £2) (@)
S MMT (fr, f2)" @)l (M (T (frs f2) (@) "Ilp/l —n)A
S lblsyo@n) IT(fr, f2)" (@) | My (T (fr, £2)())] 5

S olsyon) LF1 1, a1 £2ll, a2 L 3, 1215 s

5 HbHBMO(R") ||f1||p17)\1 ||f2||p2,>\2‘
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Similarly, we obtain
Sup [ My (Th1 (fiX a2y, FoXpes12) (@) a5 I0lson [ illps | follps.
>

sup || ([(Mo(T (f1Xp(a 51/2): foXB(a51/2)" (%))

6>0
X [MW(T(f1XB(x,51/2)7 f2XB(m,61/2))(x))]1_n) Hp,A
Sz HbHBMO(Rn) Hfl le,/\l Hf2”P2,>\2'

3. PROOF OF THEOREM 1.5

Lemma 3.1. Let 0 < A\, A, Ay < m, p1,pe € (1,00), p € (1,00) such that 1/p =
1/p1+1/p2 and X\/p = \1/p1+ A2/p2. Suppose that T is as in Theorem 1.5, then

for all0 <n <1/2, x € R" and all fm the product of LPi*i(R"),

T*(f)(x) < (M, +ZM2»L x) + M(f1)(@)M(f2)(x).

The proof of the Lemma 3.1 is similar to that of [16, Theorem 1] and Lemma
2.3, so we leave it to the interested reader. From Lemma 2.2, Lemma 2.5, Lemma
3.1 and [3], it is easy to find that

1T () @) llpa S I illpr i L2 llp2 e (3.1)
for A\, A1, Ao, p, p1, p2 in Lemma 3.1.

Lemma 3.2. Let 1 <p<oo, 0 <\ <n and H C LP*(R"), if
(1) sup [| f[lp.x < oo;
feH
(2) /}E}go | Fxqz>ayllpr = 0 uniformly for f € H;
3) B+ 1) = FO)llpa = 0 uniformy for f € H.
Then H is strongly precompact set in LP*(R™).

This Lemma was given in [0].
Now, we are ready to prove Theorem 1.5.

Proof. We will work with the commutator 7}, first, and the proof of commutator
Ty, can be got by symmetry. By Theorem 1.7, it sufﬁces to show the result for
b€ C*(R™). Suppose fi, fo belong to

Bi(LPM) x By(LP222) = {(f1, f2) + (| fillpaonis [ fellpane < 13-
We need to prove the following three conditions hold:
(a) Ty (By(LP2M) x By(LP>*?)) is bounded in LPA(R™);
(b) For every s € R" and r > 0, jgx;o = fB(s,r) Ty, (f1, f2) (@) X faf>ay (2) [Pdx =
0;
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(c) Given 0 < ¢ < 1/8, there exists a sufficiently small #,(ty < £?) such that
for all 0 < |t]| < to, we have

175, (fr, f2) () = Tyy (f1, f2) (- + D) llpr < CE. (3-2)

It is easy to find that the condition (a) holds because of the boundedness of T},
in Theorem 1.7. Now, we prove the condition (b) first. We pick A > 1 sufficiently
large so that |z| > A implies © & supp b. In particular, let R > 0 be large enough
such that suppb C B(0, R), A > max(2R,1) and 1 < py < min{py, p2},

|be1(f1,f2)($)|
—sup / / e K00~ D))

S HbI|Lw/ / 7101 oly2) ~dy1dys
ly1|<R JR™

(|2 —wy1| + |z — o )2

/ / |fi(z —yo)|| fo(z _y2)|dy1dy2

lz—y1|<R JR" (lya] + [ya])?™

5/ |f1(95n—/yl)|dy1/ |f2(90—y2)| _dys
ey |<r  |Y1["P0 rr (14 |yo)tn/po

1
< priv) < / Mdy> n ( / falz — )] dy2)
- w—yil<r  ya[PP re (1 + [yo|)n /70

Hence, for every s € R™ and r > 0, by Holder’s inequality and Minkowski’s
inequality

1 1/p
(T_A /B(s,r) sl f2>($)|pX{lz|>A}(fB)d:v>

< po/r i/ (/ |f1(9ff—?J1)|p1><{ac|>A}(95)oly1>p/p1
~ A B(s,r) |lz—y1|<R ‘y1|np1/po
- P 1/p
X(/ ’f?(x yQ)‘ /dy2) dfﬁ)
ko (L-+ a5

’ — p1 1/p1
< R/P: / / [f1(z = y) P Xfjal> 2y (2 )dyld:v)
(s,r) J|z—y1|<R

|y1’nl71/p0

1 o P2 1/p2
7% JB(sr) \ Jrn (1 + [yo| ) +7/70

/ 1 1/p1
< g/ / L \f1<x—y1>|p1x{|x|>A}<x>dx—dyl>

X
le—y1|<R T JB(s,r) |y |2 /o

( 1
1 1/p2 1
X — folx —y deJ:) ~dy )
([ (] IR TG
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ST L ——
~J n 1 ; 2
ly1/>A-R |y1| P1/po R (1 + ‘yZD’n-‘rn/pO

X ||f1||p17>\1 ||f2||102,>\2

< RYP (A — R)"Gi ) 0,

when A — oo.
So, it suffices to verify condition (c). Denote

K(S(xa Y1, Z/z) = K(LE, Y1, y2)X\x—y1\2+|x—y2|2>5'

To prove (3.2), we need to decompose the expression inside the LP*(R") norm as
follows

Tyr (f1, o) (@) = Ty (fr, f2) (2 + 1)

2
sl [/ K%x,yl,yz)(b(wt)—b<x>>Hfj<yj>dg\
6>0 min(|z—y: |,Jz—ys|)> 1 im1
+ sup // (K (2, y1,92) — K°(z +t,y1,90))
6>0 min(jz—y: |,Jo—ys|)> ¢

< (b(wn) — bz + ) ] fj(yj)dﬁ‘

j=1

+ sup
§>0

// (emun | ezl < 14 K(S(xvylay2)(b(yl) —b(x))Hfj(yj)dg‘

13 J
2
+sup / / Ko+t yr ) (b + 1) —b(y1>>Hfj(yj)dz7‘
6>0 min(jz—y: |,Jo—ys) < =1

=L+ L+ 13+ 1,

It is easy to see that

L < |[Vb]p]t|sup
>0

/ /mnux—yn lo—ya)>1g K(z,91,92) (yl)f2(92)dg’7
’ 3

le—y1 |2 +|z—y2]2>5

and

‘// K(z,y1,y2) f1(y1) f2(y2)dy1dys
lz—y1[24|z—y2|2>d

s Ko ) i) )i,

le—y1 |2 +]z—y2]2>5

= ’/ﬁ,m(wyl’xmkzl K(z,y1,y2) f1(y1) f2(y2)dyrdys

le—y1 [2+]|z—y2]2>5
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. AL
min(|z—yq|,|z— 92|>< (|.’L‘ - y1| + ’x - y2’)2n

le—y1 [2+|=— y2\2>5

< / / Lfilyn) [ f2(y2)] _dydys
|Z—y1|<% |z_y2|>|€i| <|x - y1| + |37 - y2’)

o FXAIIACS
|90*2,/1|>m |:L“792\<M |l‘ - y1| + |:)3 - y2|)

/ / |filz —y)[| fo(= —yz)!dyldy2
|y1\<‘t| \y2|>|t‘ |y1| + |y2|) ’

provided (§/2)Y2 > |t|/¢€. Then for every s € R™ and r > 0, by Hélder’s inequal-
ity, Minkowski’s inequality and (3.1), we have

1 1/p
o
r B(s,r)
_ D 1/p
<||(A/ (/ / (e = )llale >rdyldy2>dx)
By \ 1<l Jyy)>1d (Jya| =+ ly2])?"

T |

—1 _ p dy1dys
> t’/ / ( / |fi(z yl)|p‘f2($—y2)]pdx) . wJ1eg2
|y1|<‘? |y?|>'sﬂ r B(s,r) ([y1] + lyal)?

e[ Frllorxi [ F2llpo o

SRl bl [ [ i + 1
P ettt st (gl + Lyl

1 1
S [t ﬁdyl/ —dys + [t]
i< 9] Jyal> 14 Jya |+t
S It
We obtain

[illpn < C1t. (3.3)

Now, we estimate I, using some ideas of [9], notice that

//mln(|z y1l,lz— yQ\)>|t‘ (K<x7 y17 y2) - K(x + t? y].? y2))

le—yq|2+|z— y2|2>6
lett—y1 |2 +|a+t—y2|2>6

X (b(y1) — bz + 1)) f1(y1) f2(y2)dy1dy.

sup
6>0
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2
+sup / / e oot K (@ y1,92) (bn) = bl + ) T] fili)dg
6>0 9 2 i—1
|z—y1|°+]z—ya| >6 7
let+t—y1 |2 +|at+t—ya|2 <8
2
+%u%) //mm(z " K(z +t,91,92)(b(y1) — b(x + 1)) Hfz(yz)dgj'
> i=1

o=y 2 +|z— 1/2I2<5
let+t—y1 |2 +|a+t—y2|2>5

= L+1;+1;
In order to estimate I3, by a consequence of condition (1.4), we get

Dlx — '

(lz =] + |z = gl )

‘K<x>ylﬂy2) - K(x/ay1>y2)‘ <

when |z — 2’| < tmin{|z — y1|, |z — y2|}. Then

t]"
Bog e[| | FAUAIIACALY;
2 min(|z—y1|,|z—y2|)> M (|£C - y1| + ’x - y2’)2n+*y

5 / / ’f1 x—yl)‘|f2(2n+ yz)|dy1dy2.
> Syt (] =+ [yal) 2

Hence, for every s € R™ and r > 0, Holder’s inequality and Minkowski’s inequality
give that

1 1/p
r B(s,r)
< |t|7( / (/ / |fi(z —y1) folz _y2)|dy1dy2)pdx> r
(s:7) N\ fyn[> 2 Syyo|> 12 (Jya] + |yol)2t
1/p
S / i — )Pl fale — )P
jya > 14 |y2|>‘f‘ ™ S

2n+ dyl dy2

ol + !yQI)

1
Sl fllpan / dysdy,
P st Jgaps 1t (] + Jy2])>

1 1
< |t|V/ —dyl/ Y2
jya > 14 |y2|n /2 Jy > 12 |ya |72

S¢

Therefore,

12114 < CE.
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For 12, as min(|z — y1], |x — Yo|) > |t| e+t =y + |z 4+t — yel® < J, we have

lz—y1]? + ]z —y]? < (|l +t— y1|2 +lz+t—yl?) < ﬁ. It follows that

B oS s [ [ Sy ay,
D ol { i 1 el L 1D

s s [ f |f1($—y1)||fz(x2;yz)| sy
550 JocpPrimlr<gtsn (vl + 1))

= 1 5)2

Thus, for every s € R™ and » > 0, by Hoélder’s inequality and Minkowski’s
inequality we obtain

1 1/p
(7/ |f§|pdx)
r B(s,r)
— — P 1/p
<Sup( / (// | fi(zx y1)||f2(I2 y2)|dg> dx)
6>0 T sr 5<|y1‘2+|y2‘2 (|y1| + |y2|) n

1 1/P
f,SUP// (—/ |f1($—yl)|p|f2($—y2)|pd$)
6>0 6<|y1|2+\y2|2<( 8 B(s,r)

5
X dj
([y1] + lyal)?™

S 1l el s / /
6<\y1|2+\y2|2<

< sup / / — dydys
550 Jlya2<s Jo—yal2<iyn2 <6/ (1—e)>— 2 (1] + [y2])?"

dydys
o (gl =+ lyal)*

+ sup dyl dy2

5>0 /6<|y22<6/<1s>2 /|yl|2<<s/<15>2|y22 (lya] + lyal)?"
SA-§)"-15¢

We have

13,1 < CE.

For I3, we proceed in a similar way. It is easy to ﬁnd that min(|x —yy|, |x —y2|) >
M )+t =y + |z 4+t —y|* > 4, then we have <l|z—wyl*+ |z —1y]* <6.
Hence

S HbHLoosup// [f1(y0)[l f2(y2)] dydys
S22 oy PHa-gol2<s (17 = y1] + |7 = 12])

s [ [ e =)l =yl g g
550 J Jo/(1+6)2< |y [2-+]ys)2 <6 ([] + ly2])

1+£)2

N
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consequently, for every s € R™ and r > 0, by Holder’s inequality and Minkowski’s
inequality we get

1 1/p
(7/ |f§’|”dx)
r B(s,r)
— — p 1/p
<Sup( / (// | fi(z y1)||f2(m2 y2)|d§’) dx)
>0 (s,7) J(146)2<|y1|2+|y2|2 <8 (|y1| + |y2|) n

1 1/27
s [ | (5] - wine - vpa)
>0 6/<1+£>2<\y1|2+|y2|2<6 " JB(s,r)

LAy

e Iyzl)

1
e, Wdye
2 2<5/(14+6)2 J 5/ (1460~ a2 <l P<o—lyof2 ([U1] + [92])

e
520 Jo/ (e <ar<s Sy <ol (91| +[y2])*"
S1-(1+8™S¢
Therefore,
115 ]|pn < CE.
In summary,
[ Lo]lp < CS. (3.4)

Next, we estimate I3

13 < ||Vb||Loo/ / |fl<yl)|‘f2(y2)| dyldyg
~ -y <l So—gops (|2 = 31| + |2 = 4o )?n

1)1 f2(y2)]
+||Vb oo/ / o
Vol o=y > S |z—yo| <2 (|Jz — y1] + |7 — o] )21 Y1dY2

/ / Sl i)l - )|dy1dyz,
i< Syt (yaf =+ [ga])?=

provided (6/2)'/2 > |t|/€, then for every s € R™ and r > 0, Hélder’s inequality
and Minkowski’s inequality give that

1 1/p
(_A/ |[3|pd33)
r B(s,r)
_ _ 1/p
S ([ el Y
B(s,r) |Z/1\<‘t| \y2|>|t‘ ’y1|+|92|)

1/p d
y1dyse
file —y) [Pl o2 — y pdw)
/| / (rA/M' e =g)Pifale —well'de |- m e

S /e

A
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We get

1 Is]lpx < ClE|/. (3.5)
Finally, for the last part I;, we estimate it as I3. By replacing the region
of integration {(x,y1,y2) : min(|z — yi|, |z — ye|) < |t|/&} with a larger one
{(z,91,92)  min(|z +t —y1], |z + ¢ — ya|) < [t[/§ + [t|}. We know that
I4 S ”VbHLOO/ / |f1(y1>|’f2(y2>’ 2n71d—»
jott—y1 | < tt] Satt—ys|> 14 (lz+t =l + o+t —wel)

+ V] e / / i)l fa(yo) .
|x+t*y1|>%‘ |x+tfy2|<‘§—‘+\t| (|l +t— |+ |z 4+t —ye|)? !

/ / |f1(l’+f—yl)|‘f2($+t—y2)|dgj
yal< Dt Jpyo > 12 (Jye| + [y])?1 ’

€ €

AN

provided (6/2)Y/2 > [t|/€, then for every s € R™ and r > 0,

1 1/p
(], )
r B(s,r)

1 _ _ P 1/p
?5(—x/‘ (/‘ /‘ file 1= pllfa(r +¢ yﬁh@>(m)
T JB(sr) \ Jjysl< Dt Jiys|> 14 ([ya] =+ [a2])?

€ 3

1 1/p
5/ ) / . (_)\/ |f1(3€+t—y1)|p|f2(x+t—y2)|pd37>
lya <2t je] Jyo > N7 J B(s,r)

£ £

X dyd
(wa] + Jyal)?m 112

1 1
S e e = =t 12
e il <y [oa ]2 el >4 (Yo"

S /€4 1t

Consequently,

[ allpx < CJE/€ + [¢]. (3.6)
Then inequalities (3.3), (3.4), (3.5) and (3.6) imply (3.2), and in this way, we can
conclude that Tj; is compact. By symmetry, T}, is also compact. [
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