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Abstract. We establish some identities or inequalities for the Hausdorff mea-
sure of noncompactness for operators L ∈ B(X, Y ) when X = `p (1 ≤ p < ∞)
and Y = c; X = `p (1 < p < ∞) and Y = `∞; X = bv0 and Y = c;
X = c0(∆), c(∆), `∞(∆) and Y = `∞. These identities and estimates are used
to establish necessary and sufficient conditions for the operators to be com-
pact. Furthermore, we apply a result by Sargent to establish necessary and
sufficient conditions for operators in B(bv0, `∞) and B(`1, Y ) to be compact,
where Y = w∞, v∞, [c]∞.

1. Introduction

There are two important and useful methods for the characterizations of com-
pact linear operators between BK spaces, namely the application of the Hausdorff
measure of noncompactness and a result by Sargent [16].

The first method is based on the fundamental result by Goldenštein, Gohberg
and Markus, for instance in [18, Theorem 4.2], and has been used in several recent
papers, for instance in [3, 4, 8, 9, 12, 13, 14, 15]. It can, however, only be applied
when the final space has a Schauder basis. In such cases, many authors modified
the proof of [10, Theorem 2.15] to obtain sufficient conditions for the compactness
of operators which are not necessary, in general.
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One prominent case where the first method fails is the characterization of
compact linear operators from `1, the space of absolutely convergent series, into
`∞, the space of bounded sequences. The characterization of those compact
operators was given in [16, Theorem 5]. To the best of the authors’ knowledge
this result or a modified version have only been used in a few papers, for instance
in [11, Theorem 4.8 (vi), (b)], [9, Proposition 2.5] and [3, Lemma 3.13, Corollary
3.14 7.].

We are going to both use the first method and apply [16, Theorem 5] or some
modification to establish new characterizations of compact linear operators. To
be able to give a more detailed survey, we need a few useful and customary
notations.

A recent characterization of compact operators on `∞ can be found in [1,
Lemma 4.1(a)].

Let ω be the set of all complex sequences x = (xk)
∞
k=1. By `∞, c, c0 and φ, we

denote the sets of all bounded, convergent, null and finite sequences, respectively;
we also write `p = {x ∈ ω :

∑∞
k=1 |xk|p < ∞} for 1 ≤ p < ∞, and bs and cs for

the sets of all bounded and convergent series.
We write B(X,Y ) for the set of all bounded linear operators between the

normed spaces X and Y ; the operator norm of L ∈ B(X, Y ) is

‖L‖ = sup
‖x‖=1

‖L(x)‖.

Applying the first method, we establish identities or estimates for operators
L ∈ B(X, Y ) when X = `p (1 ≤ p < ∞) and Y = c; X = `p (1 < p < ∞) and
Y = `∞; X = bv0, the intersection of c0 and the space of all difference sequences in
`1 and Y = c; and X = c0(∆), c(∆), `∞(∆), the spaces of all difference sequences
in c0, c and `∞ and Y = `∞. These identities and estimates are used to establish
necessary and sufficient conditions for the operators to be compact.

The second method is applied to establish necessary and sufficient conditions
for operators in B(bv0, `∞) and B(`1, Y ) where Y = w∞, v∞, [c]∞ to be compact,
where w∞, v∞ and [c]∞ are the sets of all strongly C1 bounded sequences, of all
difference sequences in w∞, and of all strongly bounded sequences, respectively.

We also give simple proofs for the characterizations of the classes of matrix
transformations from X into Y , when X = c0(∆), c(∆), `∞(∆) and Y = `∞; and
X = `1 and Y = w∞, v∞, [c]∞.

2. Notations and Known Results

We list the most important notations and known results which will be used
throughout the paper.

Let e and e(n) (n = 1, 2, . . . ) be the sequences with ek = 1 for all k, and e
(n)
n = 1

and e
(n)
k = 0 (k 6= n).

Let X be any subset of ω and z ∈ ω be given. Then we write z−1 ∗X = {a ∈
ω : a · z = (akzk)

∞
k=1 ∈ X} and Xβ =

⋂
x∈X x−1 ∗ cs for the β–dual of X, that is,

a ∈ Xβ if and only if
∑∞

k=1 akxk converges for all x ∈ X.
A BK space is a Banach sequence space X with continuous coordinates Pn

(n = 1, 2, . . . ) where Pn(x) = xn for each sequence x = (xk)
∞
k=1 ∈ X; a BK space
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X ⊃ φ is said to have AK if x[m] =
∑m

k=1 xke
(k) → x (m →∞) for every sequence

x = (xk)
∞
k=1 ∈ X; x[m] is called the m–section of the sequence x.

Let (X, ‖ · ‖) be a normed space, and SX = {x ∈ X : ‖x‖ = 1} and BX = {x ∈
X : ‖x‖ ≤ 1} denote the unit sphere and closed unit ball in X. If (X, ‖ · ‖) is
a normed sequence space, then we write ‖a‖∗X = supx∈BX

|
∑∞

k=1 akxk| for a ∈ ω
provided the expression on the right–hand side exists and is finite which is the
case whenever X is a BK space and a ∈ Xβ [19, Theorem 7.2.9].

Let A = (ank)
∞
n,k=1 be an infinite matrix of complex numbers, X and Y be

subsets of ω and x ∈ ω. We write An = (ank)
∞
k=1 and Ak = (ank)

∞
n=1 for the se-

quences in the nth row and kth column of A, Anx =
∑∞

k=1 ankxk, Ax = (Anx)∞n=1

(provided all the series Anx converge), and XA = {x ∈ ω : Ax ∈ X} for the
matrix domain of A in X. Also (X, Y ) is the class of all matrices A such that
X ⊂ YA; so A ∈ (X, Y ) if and only if An ∈ Xβ for all n and Ax ∈ Y for all
x ∈ X.

Let T = (tnk)
∞
n,k=1 be a triangle, that is, tnn 6= 0 for all n and tnk = 0 for

k > n, and X be a normed sequence space with ‖ · ‖. Then ‖ · ‖XT
is defined by

‖x‖XT
= ‖Tx‖ for all x ∈ XT ; it is clear that ‖ · ‖XT

is a norm on XT . Moreover,
if X is a BK space with ‖ · ‖ then so is XT with ‖ · ‖XT

by [18, Theorem 4.3.12].
If z is a sequence with zk 6= 0 for all k, and T is the diagonal matrix with z on
the diagonal, then z−1 ∗X = XT becomes a BK space with ‖x‖z−1∗X = ‖z · x‖
for all x ∈ X, whenever X is a BK space.

The following well–known result gives the relation between B(X, Y ) and (X, Y )
for BK spaces X and Y , and will frequently be used throughout.

Proposition 2.1. ([19, Theorem 4.2.8], [5, Theorem 1.9]) Let X and Y be BK
spaces.
(a) Then we have (X, Y ) ⊂ B(X, Y ), that is, every matrix A ∈ (X, Y ) defines an
operator LA ∈ B(X, Y ), where LA(x) = Ax for all x ∈ X.
(b) If X has AK then we have B(X, Y ) ⊂ (X, Y ), that is, every operator L ∈
B(X,Y ) is given by a matrix A ∈ (X, Y ), where Ax = L(x) for all x ∈ X.

We recall that a linear operator L between infinite dimensional Banach spaces
X and Y is said to be compact if its domain is all of X and, for every bounded
sequence (xn) is X, the sequence (L(xn)) has a convergent subsequence in Y .

Let (X, d) be a complete metric space and MX denote the class of all bounded
subsets of X. We write Br(x0) = {x ∈ X : d(x, x0) < r} for the open ball of
radius r > 0 and center in x0 ∈ X. The function χ : MX → [0,∞) with

χ(Q) = inf

{
ε > 0 : Q ⊂

n⋃
k=1

Brk
(xk), xk ∈ X, rk < ε (k = 1, 2, . . . , n; n ∈ IN)

}
is called the Hausdorff measure or ball measure of noncompactness ([18, Defini-
tion 2.1]). It has the following known properties for all Q,Q1, Q2 ∈ MX ([18,
Proposition 2.3 (d), (f), (i)])

Q1 ⊂ Q2 implies χ(Q1) ≤ χ(Q2) (monotonicity); (2.1)

χ(Q) = 0 for every compact set Q ; (2.2)
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if X is a Banach space, then χ also satisfies

χ(Q1 + Q2) ≤ χ(Q1) + χ(Q2) (algebraic semi–additivity). (2.3)

Let X and Y be Banach spaces and χ1 and χ2 be Hausdorff measures of non-
compactness on X and Y . Then an operator L : X → Y is called (χ1, χ2)–
bounded if L(Q) ∈ MY for all Q ∈ MX , and if there exists a constant C > 0
such that

χ2(L(Q)) ≤ C · χ1(Q) for all Q ∈MX . (2.4)

If an operator L is (χ1, χ2)–bounded then the number

‖L‖(χ1,χ2) = inf{C > 0 : (2.4) holds} (2.5)

is called the (χ1, χ2)–measure of noncompactness of L.
We write ‖L‖χ = ‖L‖(χ1,χ2), for short, and call ‖L‖χ the Hausdorff measure of
noncompactness of the operator L ([10, Definition 2.24]).

It is known that if X and Y are infinite dimensional Banach spaces and L ∈
B(X,Y ), then

‖L‖χ = χ(L(BX)) = χ(L(SX)) ([10, Theorem 2.25]) (2.6)

and

L is compact if and only if ‖L‖χ = 0 ([10, Corollary 2.26 (2.58)]). (2.7)

3. Main Results

Throughout, let q denote the conjugate number of p for 1 ≤ p ≤ ∞, that is,
q = ∞ for p = 1, q = p/(p − 1) for 1 < p < ∞ and q = 1 for p = ∞. We write
‖ · ‖p for the BK norms on `p (1 ≤ p ≤ ∞), that is,

‖x‖p =

(
∞∑

k=1

|xk|p
)1/p

for 1 < p < ∞ and ‖x‖∞ = sup
k
|xk| for p = ∞.

If A = (ank)
∞
n,k=1 is any infinite matrix, we write A<r> and A>r< for the

matrices with the first r rows and the first r columns replaced by zero sequences,
respectively.

Proposition 3.1. Let 1 ≤ p < ∞ and Y = c or Y = `∞.
If L ∈ B(`p, Y ), then L is given by an infinite matrix A ∈ (`p, Y ) as in Proposition
2.1 (b).
(a) If Y = c, then the Hausdorff measure of noncompactness of L satisfies the
inequalities.

1

2
· lim

r→∞

(
sup

n
‖B<r>

n ‖q

)
≤ ‖L‖χ ≤ lim

r→∞

(
sup

n
‖B<r>

n ‖q

)
, (3.1)

where B is the matrix with the rows Bn = An − (αk)
∞
k=1 for n = 1, 2, . . . and

αk = limn→∞ ank for k = 1, 2, . . . .
(b) If Y = `∞, then the Hausdorff measure of noncompactness of L satisfies the
inequality

0 ≤ ‖L‖χ ≤ lim
r→∞

(
sup

n
‖A<r>

n ‖q

)
. (3.2)
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Proof. Since `p is a BK space with AK for each p with 1 ≤ p < ∞, the first part
is clear.

(a) If follows by [2, Theorem 3.4] and the the fact that `∗p and `q are norm
isomorphic that

1

2
· lim sup

r→∞

(
sup

n
‖B<r>

n ‖q

)
≤ ‖L‖χ ≤ lim sup

r→∞

(
sup

n
‖B<r>

n ‖q

)
.

Since obviously ‖B<r>
n ‖q ≥ ‖B<r+1>

n ‖q ≥ 0 (r = 1, 2, . . . ) for each n ∈ IN, the
limits exist in the last two inequalities. Hence we have established the inequalities
in (3.1).

(b) Let Pr : `∞ → `∞ for r ∈ IN be defined by Pr(x) = x(r) for all x ∈ `∞ and
Rr = I − Pr, where I is the identity on `∞. We also write B = B`p , for short.
Then it follows by (2.6), the monotonicity (2.1), algebraic semi–additivity (2.3)
of χ and (2.2), and by [10, Theorem 1.23 (b)] and the fact that `∗p and `q are
norm isomorphic

0 ≤ ‖L‖χ = χ(L(B)) ≤ χ(Pr(L(B))) + χ(Rr(L(B))) = χ(Rr(L(B))

≤ sup
x∈B

‖Rr(L(x))‖ = ‖Rr ◦ L‖ = ‖LA<r+1>‖ = sup
n
‖A<r+1>

n ‖`∗p

= sup
n
‖A<r+1>

n ‖q for all r ∈ IN.

This yields the inequalities in (3.2). �

Applying (2.7) and Proposition 3.1, we obtain

Corollary 3.2. Let 1 ≤ p < ∞. We use the notations of Proposition 3.1.
(a) If L ∈ B(`p, c), then L is compact if and only if

lim
r→∞

(
sup

n
‖B<r>

n ‖q

)
= 0.

(b) If L ∈ B(`p, `∞) and

lim
r→∞

(
sup

n
‖A<r>

n ‖q

)
= 0, (3.3)

then L is compact.

We note that the condition in (3.3) is only sufficient, but not necessary, in
general, for an operator L ∈ B(`p, `∞) to be compact. To see this, let L : `p → `∞
be defined by L(x) = x1 · e for all x ∈ `p, hence L is compact. Also L is given by
the matrix A with the rows An = e(1) for n = 1, 2, . . . , but the limit in (3.3) is
equal to 1, since supn ‖A<r>

n ‖q = 1 for all r ∈ IN.
If 1 < p < ∞ the result of Corollary (3.2) (b) can be improved by applying

[19, Theorem 8.3.9] and using the transpose AT of the matrix A that represents
the operator L ∈ B(`p, `∞).

Proposition 3.3. Let 1 < p < ∞. If L ∈ B(`p, `∞), then L is compact if and
only if

lim
r→∞

(
sup

n
‖A>r<

n ‖q

)
= 0. (3.4)
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Proof. Let L ∈ B(`p, `∞) and L be given by the matrix A ∈ (`p, `∞). We apply [19,
Theorem 8.3.9] with X = `p and Z = `1, BK spaces with AK, Y = Zβ = `∞ and
Xβ = `q to obtain A ∈ (`p, `∞) if and only if C = AT ∈ (`1, `q); also ‖L‖ = ‖LC‖
by [16, Lemma 2]. Now A ∈ (`p, `∞) implies ‖L‖ = supn ‖An‖`∗p = supn ‖An‖q as
before in the proof of Proposition 3.1 (b). It follows by (2.6), [10, Theorem 2.15
] and since obviously C<r> = (A>r<)T that

‖LC‖χ = χ(LC(B`1)) = lim
r→∞

(
sup

x∈B`1

‖Rr(LC(x))‖q

)
= lim

r→∞
‖Rr ◦ LC‖

= lim
r→∞

‖LC<r>‖ = lim
r→∞

∥∥L(C<r>)T

∥∥ = lim
r→∞

‖LA>r<‖

= lim
r→∞

(
sup

n
‖A>r<

n ‖q

)
.

Since LA is compact if and only if LC is compact by [16, Theorem 3], (3.4) now
follows from (2.7). �

We note that the statement of Proposition 3.3 is known and can be found, for
instance, in [16, (b), p. 85].

The use of the transpose of the matrix A fails in the case of p = 1, since `β
1 = `∞

and `β
∞ = `1. In this case, the characterization of compact operators is given in

[16, Theorem 5]. Since we are going to use this result, we state it here for the
reader’s convenience in a slightly modified version.

Lemma 3.4. ([16, Theorem 5]) If L ∈ B(`1, `∞), then L is compact if and only
if

lim
m→∞

sup
1≤n≤m

|an,k1 − an,k2 | = sup
n
|an,k1 − an,k2|

uniformly in k1 and k2 (1 ≤ k1, k2 < ∞). (3.5)

Now we consider the space bv0 = {x ∈ ω :
∑∞

k=1 |xk − xk−1| < ∞} ∩ c0, where
x0 = 0; we use the convention that any term with an index less than or equal to
0 is equal to zero.

Theorem 3.5. (a) If L ∈ B(bv0, c), then L is given by an infinite matrix A as in
Proposition 2.1 (b), and the Hausdorff measure of noncompactness of L satisfies
the inequality

1

2
· lim

r→∞

(
sup

n
‖C<r>

n ‖∞
)
≤ ‖L‖χ ≤ lim

r→∞

(
sup

n
‖C<r>

n ‖∞
)

, (3.6)

where C = (cnk)
∞
n,k=1 is the matrix with cnk =

∑k
j=1 anj − γk for n, k = 1, 2, . . .

and γk = limn→∞
∑k

j=1 anj for k = 1, 2, . . . .

(b) If L ∈ B(bv0, c), then L is compact if and only if

lim
r→∞

(
sup

n
‖C<r>

n ‖∞
)

= 0. (3.7)

(c) If L ∈ B(bv0, `∞), then L is compact if and only if
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lim
m→∞

sup
1≤n≤m

∣∣∣∣∣
k1∑

j=1

anj −
k2∑

j=1

anj

∣∣∣∣∣ = sup
n

∣∣∣∣∣
k1∑

j=1

anj −
k2∑

j=1

anj

∣∣∣∣∣
uniformly in k1 and k2 (1 ≤ k1, k2 < ∞). (3.8)

Proof. (a) Since bv0 is a BK space with AK with respect to the norm defined
by ‖x‖ =

∑∞
k=1 |xk − xk+1| (x ∈ bv0) by [19, Theorem 7.3.5 (i)], it follows from

Proposition 2.1 (b) that L ∈ B(bv0, c) is given by a matrix A. By [19, Example
8.4.2A], we have A ∈ (bv0, c) if and only if

sup
n,k

∣∣∣∣∣
k∑

j=1

anj

∣∣∣∣∣ < ∞ and αk = lim
n→∞

ank exists for each k.

We define the matrix C̃ = (c̃nk)
∞
n,k=1 by c̃nk =

∑k
j=1 anj for n, k = 1, 2, . . . .

Obviously the limits αk exist if and only if the limits γk = limn→∞ c̃nk exist for
each k. Thus we obtain by [19, Example 8.4.1A] that A ∈ (bv0, c) if and only if
C̃ ∈ (`1, c). Furthermore, Abel’s summation by parts yields for each m ∈ IN

m∑
k=1

ankxk =
m−1∑
k=1

c̃nk(xk − xk+1) + c̃nmxm for each fixed n ∈ IN and each x ∈ bv0.

Since C̃n ∈ `∞ for each n ∈ IN and x ∈ bv0 ⊂ c0, we obtain Anx = C̃nx for all
n ∈ IN and all x ∈ bv0, where y = (xk − xk+1)

∞
k=1, hence

LA(x) = LC̃(y) for all x ∈ bv0, where y = (xk − xk+1)
∞
k=1. (3.9)

Also by [18, 7.3.4], bv0 and `1 are equivalent, and also x ∈ Sbv0 if and only if
y ∈ S`1 , since ‖x‖ = ‖y‖1. Thus we obtain from (2.6) and (3.9)

‖L‖χ = ‖LA‖χ = χ (LA(Sbv0)) = χ (LC̃(S`1)) = ‖LC̃‖χ.

Finally, (3.1) with C in place of B and p = 1, that is, q = ∞, yields (3.6).
(b) The statement is an immediate consequence of (3.6) and (2.7).
(c) As in the proof of Part (a), we obtain A ∈ (bv0, `∞) if and only if C̃ ∈ (`1, `∞)

and LC̃ is compact by Lemma 3.4 if and only if (3.5) holds with c̃n,k1 and c̃n,k2 in
place of an,k1 and an,k2 , which is (3.8). �

Remark 3.6. Similarly as in the proof of Proposition 3.3, we may apply [19,
Theorem 8.3.9] with X = bv0 and Z = `1, BK spaces with AK, Y = Zβ = `∞
and Xβ = bs (by [19, Theorem 7.3.5 (ii)]) to obtain A ∈ (bv0, `∞) if and only if
C = AT ∈ (`1, bs). Since `1 and bs are BK spaces, we have by [10, Theorem 3.8
(a)] that C ∈ (`1, bs) if and only if D ∈ (`1, `∞), where D is the matrix with the
rows Dn =

∑n
j=1 Cj for n = 1, 2, . . . . So LD is compact by Lemma 3.4 if and only

if (3.5) holds with dn,k1 and dn,k2 in place of an,k1 and an,k2 , that is,

lim
m→∞

sup
1≤n≤m

∣∣∣∣∣
n∑

j=1

ak1j −
n∑

j=1

ak2j

∣∣∣∣∣ = sup
n

∣∣∣∣∣
n∑

j=1

ak1j −
n∑

j=1

ak2j

∣∣∣∣∣
uniformly in k1 and k2 (1 ≤ k1, k2 < ∞).
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Next we consider some spaces of difference sequences. Let ∆ = (δnk)
∞
n,k=1 be

the matrix of the first order difference, that is, δnn = 1, δn,n−1 = −1 and δnk = 0
otherwise. Its inverse is the matrix Σ = (σnk)

∞
n,k=1 with σnk = 1 for 1 ≤ k ≤ n

and σnk = 0 for k > n (n = 1, 2, . . . ). If X is any of the spaces c0, c or `∞, then
we write X(∆) = X∆. We need the following results.

Proposition 3.7. Let R denote the transpose of the matrix Σ and n = (n)∞n=1.
Then we have
(a) a ∈ (c0(∆))β if and only if

Ra ∈ `1 and Ra ∈ n−1 ∗ `∞; (3.10)

(b) a ∈ (`∞(∆))β if and only if

Ra ∈ `1 and Ra ∈ n−1 ∗ c0; (3.11)

furthermore (c(∆))β = (`∞(∆))β.
(c) If a ∈ (X(∆))β, then we have

∞∑
k=1

akxk =
∞∑

k=1

(Rka)(∆kx) for all x ∈ X. (3.12)

Proof. (a), (b) If X = c0 or X = `∞, we apply [11, Theorem 3.2 and Remark 3.3
(a)] with T = ∆ and S = Σ to obtain a ∈ (X(∆))β if and only if Ra ∈ Xβ = `1,
which is the first condition in (3.10) and (3.11), and W ∈ (X, c0), where W is
the matrix with the rows Wm = Rma · e[m] for m = 1, 2, . . . . Now we have by [19,
Example 8.4.5A] W ∈ (c0, c0) if and only if

sup
m

∞∑
k=1

|wmk| = sup
m

(m|Rma|) < ∞,

which is the second condition in (3.10), and

lim
m→∞

wmk = lim
m→∞

Rma = 0,

which is redundant. Furthermore, we have by [17, (21.1)] W ∈ (`∞, c0) if and
only if limm→∞

∑∞
k=1 |wmk| = limm→∞m|Rma| = 0, which is the second condition

in (3.11). Thus we have shown (a) and (b) for c0 and `∞.
The sufficiency of the conditions in (3.11) for a ∈ (c(∆))β follows from the fact
that c(∆) ⊂ `∞(∆) implies (`∞(∆))β ⊂ (c(∆))β.
Conversely, we assume a ∈ (c(∆))β. Since (c(∆))β ⊂ (c0(∆))β, the first condition
in (3.11) holds by (a). Also n ∈ c(∆) implies the convergence of the series∑∞

n=1 kak. This implies the second condition in (3.11) by [10, Corollary 3.16].
(c) The statement for X = c0 or X = `∞ follows from [11, Theorem 3.2 (3.4)

and Remark 3.3 (a)], and also for X = c, since (c(∆))β = (`∞(∆))β, as we have
just shown. �

Proposition 3.8. We have
(a) A ∈ (c0(∆), `∞) if and only if

sup
n
‖Ân‖1 < ∞, where Ân = RAn =

(
∞∑

j=k

anj

)∞
k=1

(3.13)
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and

sup
m
|mRmAn| < ∞ for each n; (3.14)

(b) A ∈ (`∞(∆), `∞) if and only if (3.13) holds and

lim
m→∞

mRmAn = 0 for each n; (3.15)

furthermore (c(∆), `∞) = (`∞(∆), `∞).
(c) If A ∈ (X(∆), `∞), then we have

Ax = Â(∆x) for all x ∈ X(∆) (3.16)

and

‖LA‖ = ‖LÂ‖ (3.17)

where Â ∈ (X, `∞).

Proof. All the statements for X = c0 or X = `∞ are an immediate consequence
of [11, Theorem 3.4, Remark 3.5 (a), Theorem 3.6] and the fact that (`∞, `∞) =
(c0, `∞).
The inclusion (`∞(∆), `∞) ⊂ (c(∆), `∞) is clear.
Conversely we assume A ∈ (c(∆), `∞). This clearly implies A ∈ (c0(∆), `∞) and
so the condition in (3.13) holds. Also A ∈ (c(∆), `∞) implies An ∈ (c(∆))β for
all n, and since (c(∆))β = (`∞(∆))β by Proposition 3.7 (b), the condition in
(3.15) follows from the second condition in (3.11). Now the conditions in (3.13)
and (3.15) imply A ∈ (`∞(∆), `∞), and so we have also shown (c(∆), `∞) ⊂
(`∞(∆), `∞).
The identity in (3.17) is a consequence of that in (3.16) and the fact that the BK
norms of the spaces c0(∆), c(∆) are the same; (3.17) for c0(∆) follows from [10,
Theorem 3.6]; for `∞(∆) from [10, Remark 3.5] (which gives (3.16) for `∞(∆))
and the definition of the norms of the operators LA and LÂ. Finally, clearly (3.12)
implies (3.16) for c(∆) and (3.17) follows from the definition of the norms of the
operators LA and LÂ. Indeed, we have the relations

‖LA‖ = sup
z∈Bc(∆)

‖LAz‖`∞ = sup
z∈Bc(∆)

‖LÂ(∆z)‖`∞ =

= sup
∆z∈Bc

‖LÂ(∆z)‖`∞ = sup
y∈Bc

‖LÂy‖`∞ = ‖LÂ‖ (3.18)

and the proof is completed. �

Theorem 3.9. Let X denote any of the spaces c0, c and `∞. If A ∈ (X(∆), `∞)
then LA is compact if and only if

lim
r→∞

(
sup

n

∥∥∥Â>r<
n

∥∥∥
1

)
= lim

r→∞

(
sup

n

∞∑
k=r

∣∣∣∣∣
∞∑

j=k

anj

∣∣∣∣∣
)

= 0. (3.19)

Proof. Let A ∈ (X(∆), `∞). Then we have Â ∈ (X, `∞) and Ax = Â(∆x) for
all x ∈ X(∆) by Proposition 3.8 (c) and (3.16). Since (X, `∞) = (c0, `∞) by [19,

Example 8.4.5A], we obtain Â ∈ (X, `∞) if and only if B̂ = ÂT ∈ (`1, `1) by [19,
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Theorem 8.3.9], and by [10, Theorem 2.28], LB̂ ∈ B(`1, `1) is compact if and only
if

lim
r→∞

(
sup

k

∞∑
n=r

|b̂nk|

)
= lim

r→∞

(
sup

k

∞∑
n=r

|âkn|

)

= lim
r→∞

(
sup

k

∥∥∥Â>r<
k

∥∥∥
1

)
= lim

r→∞

(
sup

n

∥∥∥Â>r<
n

∥∥∥
1

)
= lim

r→∞

(
sup

n

∞∑
k=r

∣∣∣∣∣
∞∑

j=k

anj

∣∣∣∣∣
)

= 0.

Finally, since LÂ is compact if and only if LB̂ is compact by [16, Theorem 3]
and LA is compact if and only if LÂ is compact by (3.16) , we have proved the
statement of the theorem. �

Finally, we consider the spaces w∞ and [c]∞ related to the concepts of strong
C1 boundedness and strong boundedness, studied by Maddox [7] and Kuttner
and Thorpe [6], respectively, where

w∞ =

{
x ∈ ω : sup

n

(
1

n

n∑
k=1

|xk|

)
< ∞

}
and [c]∞ = n−1 ∗ (w∞)∆.

It is well known that w∞ is a BK space with the norm ‖ · ‖w∞ defined by

‖x‖w∞ = sup
ν

1

2ν

2ν+1−1∑
k=2ν

|xk| for all x ∈ w∞.

We also consider the space v∞ = (w∞)∆. For ν = 0, 1, . . . , we write
∑

ν and
maxν for the sum and maximum taken over all indices k with 2ν ≤ k ≤ 2ν+1− 1,
and

W = {a ∈ ω : ‖a‖W =
∞∑

ν=0

2νmaxν |ak| < ∞}.

Theorem 3.10. Writing
∑

µ for the sum taken over all indices n with 2µ ≤ n ≤
2µ+1 − 1, we have
(a) A ∈ (`1, w∞) if and only if

sup
µ,k

(
1

2µ

∑
µ|ank|

)
< ∞; (3.20)

(b) A ∈ (`1, v∞) if and only if

sup
µ,k

(
1

2µ

∑
µ|ank − an−1,k|

)
< ∞; (3.21)

(c) A ∈ (`1, [c]∞) if and only if

sup
µ,k

(
1

2µ

∑
µ|nank − (n− 1)an−1,k|

)
< ∞. (3.22)
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Proof. (a) We apply [19, Theorem 8.3.9] with X = `1 and Z = W , a BK space
with AK with respect to ‖ · ‖W by [4, Proposition 2.4 (b)], and Y = Zβ = w∞ by
[3, Proposition 1.2 (c)] to obtain A ∈ (`1, w∞) if and only if B = AT ∈ (W , `∞).
Since, by [4, Proposition 2.4 (c)],

‖a‖∗W = ‖a‖w∞ = sup
ν

(
1

2ν

∑
ν |ak|

)
on Wβ

we obtain by [10, Theorem 1.23 (b)] B ∈ (W , `∞) if and only if

sup
n
‖Bn‖∗W = sup

n,ν

(
1

2ν

∑
ν |bnk|

)
= sup

n,ν

(
1

2ν

∑
ν |akn|

)
= sup

µ,k

(
1

2µ

∑
µ|ank|

)
< ∞.

(b) We have by [10, Theorem 3.8 (a)] A ∈ (`1, v∞) if and only if C = (cnk)
∞
n,k=1 =

∆ ·A ∈ (`1, w∞). Since cnk = ank − an−1,k for all n and k, (3.21) is an immediate
consequence of (3.20).

(c) We have by [10, Theorem 3.8 (a)] A ∈ (`1, [c]∞) if and only in D(n) · A ∈
(`1, v∞) where D(n) is the diagonal matrix with the sequence n on its diagonal.
Now (3.22) is an immediate consequence of (3.21). �

Finally we give the characterizations for compact operators L ∈ B(`1, Y ), where
Y is any of the spaces w∞, v∞ or [c]∞.

Theorem 3.11. Writing
∑

µ1
and

∑
µ2

for the sums taken over all indices n

with 2µ1 ≤ n ≤ 2µ1+1 − 1 and 2µ2 ≤ n ≤ 2µ2+1 − 1, we have:
(a) If L ∈ B(`1, w∞), then L is compact if and only if

lim
j→∞

(
sup

1≤k≤j

∣∣∣∣ 1

2µ1

∑
µ1

ank −
1

2µ2

∑
µ2

ank

∣∣∣∣) = sup
k

∣∣∣∣ 1

2µ1

∑
µ1

ank −
1

2µ2

∑
µ2

ank

∣∣∣∣
uniformly in µ1 and µ2 (0 ≤ µ1, µ2 < ∞). (3.23)

(b) If L ∈ B(`1, v∞), then L is compact if and only if

lim
j→∞

(
sup

1≤k≤j

∣∣∣∣ 1

2µ1
(a2µ1+1−1,k − a2µ1−1,k)−

1

2µ2
(a2µ2+1−1,k − a2µ2−1,k)

∣∣∣∣) =

sup
k

∣∣∣∣ 1

2µ1
(a2µ1+1−1,k − a2µ1−1,k)−

1

2µ2
(a2µ2+1−1,k − a2µ2−1,k)

∣∣∣∣
uniformly in µ1 and µ2 (0 ≤ µ1, µ2 < ∞). (3.24)

(c) If L ∈ B(`1, [c]∞), then L is compact if and only if

lim
j→∞

(
sup

1≤k≤j

∣∣∣∣ 1

2µ1

(
(2µ1+1 − 1)a2µ1+1−1,k − (2µ1 − 1)a2µ1−1,k

)
−

− 1

2µ2

(
(2µ2+1 − 1)a2µ2+1−1,k − (2µ2 − 1)a2µ2−1,k

)∣∣∣∣) =

sup
k

∣∣∣∣ 1

2µ1

(
(2µ1+1 − 1)a2µ1+1−1,k − (2µ1 − 1)a2µ1−1,k

)
−

− 1

2µ2

(
(2µ2+1 − 1)a2µ2+1−1,k − (2µ2 − 1)a2µ2−1,k

)∣∣∣∣
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uniformly in µ1 and µ2 (0 ≤ µ1, µ2 < ∞). (3.25)

Proof. (a) This is the case p = 1 in [3, Corollary 3.14 7.(7.1)+].
(b) By Theorem 3.10 (a) and (b), we have A ∈ (`1, v∞) if and only if C =

∆ · A ∈ (`1, w∞) and so the condition in (3.24) is an immediate consequence of
that in (3.23).

(c) By Theorem 3.10 (b) and (c), we have A ∈ (`1, [c]∞) if and only if D(n)·A ∈
(`1, v∞) and so the condition in (3.25) is an immediate consequence of that in
(3.24). �
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and matrices on the spaces c and c0, Int. J. Math. Math. Sci. (2006), Issue 1, Article ID
46930, 5 pages.
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