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Abstract. The goal of this paper is to present characterizations for absolute
continuity of representable positive functionals on general ∗-algebras. From
the results we give a new and very different proof to our recently published
Lebesgue decomposition theorem for representable positive functionals. On
unital C∗-algebras and measure algebras of compact groups further character-
izations are included in the paper. As an application of our results, we answer
Gudder’s problem on the uniqueness of the Lebesgue decomposition in the case
of commutative ∗-algebras and measure algebras of compact groups. Another
application to faithful positive functionals defined on the latter ∗-algebras is
also included.

1. Introduction and preliminaries

Many mathematicians investigated the Lebesgue type decompositions of nonneg-
ative quadratic forms (forms, for short), positive functionals and positive opera-
tors. In a very general setting S. Hassi, Z. Sebestyén and H. de Snoo ([10]) studied
forms on complex vector spaces. The author in a recent paper ([24]) proved re-
sults for representable forms on complex algebras. For positive functionals on a
∗-algebra (which naturally induce forms) H. Kosaki ([15]), M. Henle ([11]) and S.
P. Gudder ([8]) gave noteworthy theorems on σ-finite von Neumann algebras, uni-
tal C∗-algebras and Banach ∗-algebras, respectively. The author proved strong
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connections between these theories in [23] and [24], and the latter article also
contains a very general Lebesgue decomposition theorem for representable posi-
tive functionals on arbitrary ∗-algebras (Corollary 3.2). This statement sharpens
the decomposition of Hassi, Sebestyén and de Snoo ([10, Theorems 2.11 and
3.9]) for representable positive functionals, and generalizes the similar results of
Kosaki ([15, Theorem 3.5]) and Gudder ([8, Corollary 3]), since on unital Banach
∗-algebras every positive functional is representable. In the paragraph after The-
orem 1.16 we will show that Henle’s analogous theorem ([11, Theorem 1]) is also
a consequence of our decomposition.

A common point of these settings is the two fundamental concepts of the decom-
positions, namely the singularity and the absolute continuity. For the preceding
different terms and seemingly different definitions have appeared in the above
mentioned papers. However, in Theorem 3 of [25] the author proved among oth-
ers that all of these singularity concepts are equivalent for representable positive
functionals on arbitrary ∗-algebras. Hence it is worthy to examine more closely
the absolute continuity in the case of representable positive functionals, and to
give a number of characterizations, along with corollaries and some applications.
We will introduce the definitions and our motivations after some notations.

Notations. For a complex Hilbert space H the inner product will be denoted
by (·|·), and B(H) stands for the space of bounded linear operators on H.

Let t be a form on the complex vector space E. Then the E × E → C semi-
inner product and E → R+ seminorm uniquely determined by t will be denoted
by (·|·)•t and ‖ · ‖•t , respectively. For simplicity we set t[x] := (x|x)•t (x ∈ E). For
the kernels ker ‖ ·‖•t will stand, i. e., ker ‖ ·‖•t := {x ∈ E|t[x] = 0}. If w is another
form on E, then t ≤ w means that t[x] ≤ w[x] holds for all x ∈ E.

A form t naturally induces an inner product on the quotient space E/ ker ‖ ·‖•t ,
that is,

(x+ ker ‖ · ‖•t , y + ker ‖ · ‖•t ) 7→ (x|y)•t (x, y ∈ E). (1.1)

The pair (Ht, (·|·)t) stands for the Hilbert space associated to the form t, i. e., the
completion of the pre-Hilbert space E/ ker ‖ · ‖•t equipped with the inner product
in (1.1).

If A is a ∗-algebra and f is a positive linear functional on A (i. e., f(a∗a) ≥ 0
for all a ∈ A), then the gothic letter f stands for the form generated by f , namely

f[a] := f(a∗a) (a ∈ A).

A positive functional f is said to be faithful, if for any a ∈ A the equation f[a] = 0
implies a = 0. For positive functionals f and g on A, f ≤ g denotes the natural
ordering, i. e., f ≤ g. The notations A∗ and (A∗)+ stand for the set of linear
functionals and positive linear functionals on A, respectively. If the algebra is
normed, then A′ denotes the space of continuous linear functionals on A.

A positive functional f is said to be representable, if there exists a cyclic ∗-
representation π : A → B(H) on a Hilbert space (H, (·|·)) with cyclic vector
ξ ∈ H (i. e., {π(a)ξ|a ∈ A} is dense in H) such that for any a ∈ A

f(a) = (π(a)ξ|ξ)
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holds true. By the aid of the remarkable Gelfand-Naimark-Segal (GNS) con-
struction there are equivalent conditions to this property (see [6], [17], [21]). The
usual notations (Hf , (·|·)f ), πf and ξf stand for the associated Hilbert space,
∗-representation and the distinguished cyclic vector from the GNS-construction,
respectively. A positive functional f is faithful, if for every a ∈ A the equation
f(a∗a) = 0 implies that a = 0.

The notations Asa and A+ stand for the selfadjoint and positive elements of A,
respectively. If A is unital, then the unit element of A will be denoted by 1.

For ∗-algebras, positive functionals and the GNS construction the reader is
referred to [2], [3] and [18].

Our investigations focus on positive functionals, but in the first place we recall
some fundamental definitions and theorems from the Lebesgue decomposition
theory of forms (see [10]), since these facts are essential to understand our math-
ematical motivations. These will be discussed at the end of the section, along
with our results and main ideas.

Definition 1.1 (Domination). Let t and w be forms on the complex vector space
E. We say that w dominates t (or t is dominated by w) if there exists an α ∈ R+

such that t ≤ αw.

We introduce the concept of absolute continuity for forms (see [10, Section 2.5
and Theorem 3.8]).

Theorem 1.2. Let t and w be forms on the complex vector space E. The following
statements are equivalent.

(i) For any sequence (xn)n∈N in E

(( lim
n→+∞

w[xn] = 0) ∧ ( lim
n,m→+∞

t[xn − xm] = 0)) ⇒ lim
n→+∞

t[xn] = 0

is true.
(ii) There exists an increasing sequence (tn)n∈N of forms on E and there is a

sequence (αn)n∈N in R+ such that for any n ∈ N the inequality tn ≤ αnw
holds and t = supn∈N tn.

Definition 1.3 (Absolute continuity). We say that the form t is absolutely con-
tinuous (or closable) with respect to w, if one (hence all) of the properties of the
previous theorem holds.

Remark 1.4. For (ii) of Theorem 1.2 the term t is almost dominated by w was
used in [10]. Furthermore, closability refers to that the densely defined

Jw,t : Hw → Ht; x+ ker ‖ · ‖•w 7→ x+ ker ‖ · ‖•t
linear operator is well-defined and closable ((i) of Theorem 1.2). We note that
the well-definedness of the operator Jw,t is equivalent to the inclusion

ker ‖ · ‖•w ⊆ ker ‖ · ‖•t .

The following theorem (Proposition 2.2 in [10]) presents a concept which plays
a central role in the Lebesgue decomposition of forms.
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Theorem 1.5. Let E be a complex vector space, and let t,w be forms on E.
Then the formula

(t : w)[x] := inf{t[x− z] + w[z]|z ∈ E} (x ∈ E)

defines a form on E.

Definition 1.6. The form (t : w) is the parallel sum of the forms t and w.

Remark 1.7. As Theorem 1.11 shows, the parallel sum of two forms is a very
important concept in the Lebesgue decomposition theory of forms, since the de-
composition itself is defined by means of the parallel sum. The first main theorem
of this paper, which characterizes the absolute continuity of representable posi-
tive functionals (Theorem 2.15) extremely depends on a result about this concept
(Corollary 2.13).

We recall here some properties of the parallel sum, which we will need later.

- (t : w) = (w : t);
- (t : w) ≤ t;
- If p is another form on E, then p ≤ t implies that (p : w) ≤ (t : w).

For the proofs, other properties and some historical remarks the reader is referred
to [10, Introduction and Lemma 2.3].

We introduce the concept of singularity through the next theorem ([10, Propo-
sition 2.10]).

Theorem 1.8. Let E be a complex vector space, t and w forms on E. The
following statements are equivalent.

(i) For any form p on E:

(p ≤ w ∧ p ≤ t) ⇒ p = 0.

(ii) (t : w) = 0.

Definition 1.9 (Singularity). We say that the forms t and w are singular (or
either of them is singular (with respect) to the other), if one (hence all) of the
properties of the previous theorem holds.

Remark 1.10. Let t, w and p be forms on the complex vector space E. Then one
can easily check the following properties from the definitions.

- The definition of singularity is symmetric in t and w.
- For any α1, α2 ∈ R+ the forms t and w are singular if and only if α1t and
α2w are singular, furthermore t is absolutely continuous with respect to
w if and only if α1t is absolutely continuous with respect to α2w.

- If t dominates p and t is singular with respect to w, then p and w are also
singular.

- The implications (w dominates t) ⇒ (t is absolutely continuous with re-
spect to w) ⇒ (ker ‖ · ‖•w ⊆ ker ‖ · ‖•t ) are true. The reversed implications
are not true in general (see [8] for simple examples).

- If t is absolutely continuous with respect to w (in particular, if w domi-
nates t) and they are simultaneously singular, then t = 0.
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In the following remarkable theorem we summarize the main achievements of
Hassi, Sebestyén and de Snoo (Theorems 2.11, 3.6, 3.8 and 3.9 in [10], see also
[22]).

Theorem 1.11 (Lebesgue decomposition of forms). Let t,w be forms on the
complex vector space E. Define a form treg by the equation

treg[x] := sup
n∈N

(t : (nw))[x] (x ∈ E),

and let tsing := t− treg. Then in the sum t = treg + tsing the form treg is absolutely
continuous with respect to w, and the forms tsing and w are singular. Moreover,
the form treg is the greatest among all of the forms p such that p ≤ t and p is
absolutely continuous with respect to w.

Definition 1.12. The forms treg and tsing are called the regular and singular part
of t, respectively. The sum t = treg + tsing is the Lebesgue decomposition of t with
respect to w.

We must note here that positive operators on Hilbert spaces also have a
Lebesgue type decomposition ([1], [26]).

We will need the following properties of the regular and singular parts ([10,
Theorem 3.6, Corollary 3.11, Proposition 3.13]).

Proposition 1.13. With the notations of Theorem 1.11 the following hold.

- The forms tsing and w+ treg are singular (hence tsing and treg are singular,
as well).

- t is absolutely continuous with respect to w ⇔ t = treg.
- t is singular to w ⇔ t = tsing.

Now we turn to positive functionals on ∗-algebras. The definitions of the fun-
damental concepts are formulated by means of the induced forms.

Definition 1.14. Let A be a ∗-algebra, and let f, g be positive linear functionals
on A. We say that f is

- dominated by g, if f is dominated by g;
- absolutely continuous with respect to g, if f is absolutely continuous with

respect to g;
- singular to g, if f is singular to g.

In the earlier mentioned papers ([8], [11], [15], [24]) for absolute continuity
(Theorem 1.2 (i)) the same definitions have appeared, but different terms were
used (strongly absolute continuity, almost domination, closability). The singu-
larity concepts were seemingly different, but Theorem 3 in our paper [25] shows
that all of the formulations appeared in [8], [11], [15], [24] are equivalent for rep-
resentable positive functionals. In this paper the following formulations will be
used ((iii) was called semisingularity in Gudder’s paper [8]).

Theorem 1.15. Let A be a ∗-algebra, and let f, g be representable positive func-
tionals on A, ξf and ξg are the cyclic vectors in the respective GNS constructions.
The following statements are equivalent.
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(i) f and g are singular.
(ii) There exists a sequence (an)n∈N in A such that

( lim
n→+∞

πg(an)ξg = 0) ∧ ( lim
n→+∞

πf (an)ξf = ξf ),

that is,

( lim
n→+∞

an + ker ‖ · ‖•g = 0) ∧ ( lim
n→+∞

an + ker ‖ · ‖•f = ξf ).

(iii) There exists a sequence (an)n∈N in A such that for every a ∈ A
( lim
n→+∞

g[an] = lim
n,m→+∞

f[an − am] = 0) ∧ ( lim
n→+∞

f(a∗na) = f(a)).

The following decomposition theorem is due to the author ([24, Theorem 3.1,
Corollary 3.2]). It states that if we apply Theorem 1.11 to forms derived from
representable positive functionals, then the regular and singular parts also come
from positive functionals. The proof in [24] based on another result of ours for
representable forms on complex algebras, wherein closed invariant subspaces of
representations appeared ([24, Theorem 2.6]). We note that the classical Lebesgue
decomposition related to set-measures is an immediately consequence of this the-
orem ([24, Theorem 4.2]).

Theorem 1.16 (Lebesgue decomposition of representable positive functionals).
Let A be a ∗-algebra and let f, g be representable positive functionals on A. Then
f admits a Lebesgue decomposition f = freg + fsing into a sum of representable
positive functionals such that fsing and g are singular, while freg is absolutely
continuous with respect to g. The form induced by freg is

freg[a] = sup
n∈N

(f : (ng))[a] (a ∈ A).

Moreover, the form freg is the greatest among all of the forms p such that p ≤ f
and p is absolutely continuous with respect to g.

The similar decompositions of Gudder (for positive functionals on unital Ba-
nach ∗-algebras, Corollary 3 in [8]) and Kosaki (for normal states on σ-finite von
Neumann algebras, Theorem 3.5 in [15]) follow from our result ([24, Theorem 3.7,
Corollary 3.17]). Furthermore, Henle’s theorem for positive functionals on unital
C∗-algebras ([11, Theorem 1]) is also a consequence of our statement. Indeed, if
f and g are positive functionals on the unital C∗-algebra A, then the regular part
freg in Theorem 1.16 is maximal among the absolutely continuous functionals
equal or lower than f . But Henle also proved this for his decomposition in [11,
page 90], thus Theorem 1.16 coincides with Henle’s result on unital C∗-algebras.

Natural questions arise in the context of the absolute continuity of positive
functionals. As we have seen in Theorems 1.8 and 1.11 the concept of the parallel
sum is very important, but it is not very clear whether or not the parallel sum of
two forms derived from positive functionals is induced by a positive functional.
Theorem 1.16 shows that the regular part (which is a supremum of parallel sums)
in the Lebesgue decomposition for representable positive functionals is a form of
this kind. But in Corollary 2.13 we will prove that the parallel sum of two
forms derived from a positive functional is always induced by a representable
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positive functional (the main tool in the proof is Theorem 2.4, which is classical
statement in the context of C∗-algebras). This result has two consequences.
Absolute continuity can be characterized via dominated increasing sequences of
representable positive functionals (Theorem 2.15), just like in Theorem 1.2 (i)
(in this statement only forms appeared). This is the main result in Section 2.
From this we give a new proof to our decomposition Theorem 1.16, which is
very different from the one appeared in our article ([24, Corollary 3.2]). We note
that this is a generalization of the decompositions mentioned above, and that the
classical set-measure Lebesgue decomposition is an immediately consequence of
this theorem ([24, Section 4]).

We study the case of two concrete very important ∗-algebras, namely unital
C∗-algebras and measure algebras of compact groups. Following R. van Handel’s
idea ([9]) for the preceding, we investigate the connections between the posi-
tive functionals defined on the algebra and the probability Radon measures on
the algebra’s state space. Proposition 4.1 in [9] is a remarkable characterization
of absolute continuity via unital commutative C∗-algebras, which was used for
quantum statistical investigations. However, the proof uses a nontrivial result of
Gudder ([8]), and a very deep theorem from Sakai’s work ([20, 3.1]). With the
aid of our characterization (Theorem 2.15) this can be proved easier (Theorem
3.8), moreover domination also can be characterized in a similar way (Theorem
3.7). These are the main results in Section 3. The proofs lie on an extension
theorem of Ky Fan ([5]) and on a proposition of ours (Lemma 3.3), which shows
the strong connection between the concepts (absolute continuity and singularity)
of the functional decomposition theory and the set-measure decomposition. We
note that a characterization of singularity via Choquet theory can be found in our
paper [25, Theorem 7]. For positive functionals on measure algebras of compact
groups we will prove that a weak assumption automatically implies absolute con-
tinuity (Theorem 4.3, the main result in Section 4), namely the well-definedness
of the operator in Remark 1.4. The key tool is the well-known fact that an irre-
ducible representation of the measure algebra of a compact group is always finite
dimensional (Lemma 4.1)

We mentioned that all of the Lebesgue decompositions for positive functionals
above coincide with the same settings, it is natural to ask whether or not it is
unique. In the penultimate section of the paper we discuss this question, and as
an application of our results (Lemma 3.3 and Theorem 4.3) we will prove that
the decomposition is unique on commutative ∗-algebras and measure algebras of
compact groups (Theorems 5.13 and 5.15).

From the characterization in Section 4 we prove statements on faithful repre-
sentations of the measure algebra of a compact group.

2. Characterizations of absolute continuity, general ∗-algebras

The next three sections of the paper introduce characterizations on the absolute
continuity of positive linear functionals defined on three different classes of ∗-
algebras. More precisely, the three cases are the following. The first section deals
with representable positive functionals on a general ∗-algebra, including a result
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similar to Theorem 1.2 (ii) in the context of representable positive functionals
(Theorem 2.15), furthermore we examine the parallel sum of forms derived from
this kind of functionals (Corollary 2.13). As a consequence, we gain a new proof
to our Lebesgue decomposition, Theorem 1.16 (see Corollary 2.17).

The second and the third sections focus on positive functionals on unital C∗-
algebras and measure algebras of compact groups. In the first case we characterize
domination and absolute continuity via positive functionals on unital commutative
C∗-algebras (Theorems 3.7 and 3.8). For measure algebras of compact groups we
will prove that for absolute continuity it is sufficient that the operator defined in
Remark 1.4 is well-defined (closability is a consequence, Theorem 4.3). Some of
these results are necessary in the investigations of the uniqueness of the Lebesgue
decomposition.

Before we begin to study the absolute continuity of representable positive func-
tionals, we recall some well-known facts from the theories of C∗-algebras and
representable positive functionals on ∗-algebras.

Theorem 2.1. Let A be a ∗-algebra and let f be a positive functional on A. Then
the following statements are equivalent ([17, Theorem 9.4.15] and [21, Theorem
1]).

(i) f is representable.
(ii) (ii)’ There exists an m ∈ R+ such that for any a ∈ A the inequality

|f(a)|2 ≤ mf(a∗a) holds.
(ii)” There exists a p : A → C C∗-seminorm and M ∈ R+ such that for

any a ∈ A the inequality |f(a)| ≤Mp(a) holds.
(In fact, (ii)′′ is sufficient).

Remark 2.2. For a positive functional f on the ∗-algebra A define the Hilbert
bound ([17, Definition 9.4.2]) of f by

‖f‖H := sup{|f(a)|2|a ∈ A ∧ f(a∗a) ≤ 1}.

Point (ii)′′ in the previous theorem shows that the Hilbert bound of a repre-
sentable positive functional is finite.

Theorem 2.3. Let A be a ∗-algebra and let f, g be positive functionals on A (cf.
[17, Proposition 9.4.22]).

(a) If f and g are representable, then f + g is also representable.
(b) If g is representable, f ≤ g and ‖f‖H < +∞, then f and g − f are also

representable, moreover the inequality max{‖f‖H , ‖g−f‖H} ≤ ‖g‖H holds
true.

Theorem 2.4. Let A be a C∗-algebra. Then the following statements are true.

(a) There exists an increasing net (ei)i∈I in A+ such that supi∈I ‖ei‖ ≤ 1 and
for any a ∈ A

lim
i,I
aei = a = lim

i,I
eia

holds, i. e., A admits an increasing approximate identity in the positive
elements with norm bound one ([18, Theorem 1.4.2]).
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(b) A linear functional on A is positive ⇔ f is continuous, moreover the
equation ‖f‖ = limi,I f(ei) holds for a net (ei)i∈I with the properties in
(a) ([18, Proposition 3.1.4]).

(c) If f is a positive linear functional on A, then f is representable (see [18,

Theorem 3.3.3]), hence it is selfadjoint (i. e., f(a∗) = f(a) for all a ∈ A).

Since a positive functional on a Banach ∗-algebra with a bounded approximate
identity is representable ([17, Theorem 11.3.7]), the following lemma is a special
case of [3, 2.2.10] and [4, Lemma 2].

Lemma 2.5. Let A be a Banach ∗-algebra with isometric involution, and assume
that A admits an approximate identity (ei)i∈I with norm bound 1. Let f be a pos-
itive functional on A. Then the net (πf (ei))i∈I converges to the identity operator
idHf

in the strong operator topology. In particular,

lim
i,I
πf (ei)ξf = lim

i,I
(ei + ker ‖ · ‖•f ) = ξf

holds.

The main goal is to give an equivalent condition for the absolute continuity
among representable positive functionals similar to the form case in Theorem 1.2
(ii). Our idea will be the following. As we mentioned at the Introduction and
preliminaries, a form t is absolutely continuous with respect to an other form w
if and only if t = treg holds in the Lebesgue decomposition with respect to w
by Theorem 1.11 (see Proposition 1.13). But, as Theorem 1.11 states that, the
regular part is a supremum of parallel sums strongly connected to the forms t
and w. Hence we ”only” have to show that the parallel sum of two representable
positive functionals is derived from a representable positive functional. Therein
the following concept plays a key role, which can be found in our recent paper
[24, Section 2].

Definition 2.6. Let A be a complex algebra. A form t : A→ R+ is representable
if

(∀a ∈ A) (∃λa ∈ [0,+∞[) (∀b ∈ A) : t[ab] ≤ λat[b],

that is, for any a ∈ A the left multiplication operator

La : A/ ker ‖ · ‖•t → A/ ker ‖ · ‖•t ; La(b+ ker ‖ · ‖•t ) := ab+ ker ‖ · ‖•t
is well-defined and continuous with respect to the Hilbert norm ‖ · ‖t.

If a ∈ A, then denote by πt(a) the unique continuous linear extension of La to
Ht.

Proposition 2.7. The mapping πt : A → B(Ht); a 7→ πt(a) is an algebra
representation on the Hilbert space Ht, what we call the induced representation
by t.

The next result for representable forms is also from [24, Lemma 2.4].

Lemma 2.8. Let A be a complex algebra and let t,w be representable forms on
A. Then the parallel sum (t : w) is also a representable form, moreover for any
a ∈ A the inequality

‖π(t:w)(a)‖ ≤ max{‖πt(a)‖, ‖πw(a)‖}
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holds.

As an immediately corollary we gain the following fact for the parallel sum of
two representable positive functionals.

Lemma 2.9. Let A be a ∗-algebra, let f and g be representable positive functionals
on A. Then the forms f and g are representable, moreover πf = πf and πg = πg
hold. Thus the parallel sum (f : g) is a representable form, and for any a ∈ A we
have

‖π(f:g)(a)‖ ≤ max{‖πf (a)‖, ‖πg(a)‖}. (2.1)

Proof. Since f and g are representable positive functionals, then for every a, b ∈ A
we get

(f[ab] ≤ ‖πf (a)‖2f[b]) ∧ (g[ab] ≤ ‖πg(a)‖2g[b]),

i. e. the forms f and g are representable. The equality of the morphisms follows
from the definitions, and Lemma 2.8 implies the representability of (f : g) and
the estimate (2.1). �

Thus π(f:g) is an algebra-representation of A, but its ∗-preserving and cyclicity
are far from the evidence. To see these properties we will prove two lemmas.

Our first lemma for normed ∗-algebras characterizes the three fundamental
concepts of the Lebesgue decomposition theory by means of dense ∗-subalgebras.
We also use it in the subsequent parts of the paper (Lemmas 3.3 and 4.1).

Lemma 2.10. Let A be a normed ∗-algebra with continuous involution. Let
α ∈ R+ be an arbitrary number. If B is a dense ∗-subalgebra of A, f and g are
continuous positive functionals on A, then

(a) f is absolutely continuous with respect to g ⇔ f |B is absolutely continuous
with respect to g|B.

(b) f is singular to g ⇔ f |B is singular to g|B.
(c) f ≤ αg ⇔ f |B ≤ αg|B.

Proof. (a): ⇒: It is clear from Definition 1.3.
⇐: Let (an)n∈N be a sequence in A such that

( lim
n→+∞

g[an] = 0) ∧ ( lim
n,m→+∞

f[an − am] = 0).

Since B is dense in A, there exists a sequence (bn)n∈N in B such that ‖bn−an‖ → 0.
From this we have that

g[an − bn] ≤ ‖g‖‖(an − bn)
∗(an − bn)‖ → 0

and that
f[an − bn] ≤ ‖f‖‖(an − bn)

∗(an − bn)‖ → 0, (2.2)

so
( lim
n→+∞

(g|B)[bn] = 0) ∧ ( lim
n,m→+∞

(f|B)[bn − bm] = 0)

hold true. Thus the absolute continuity of f |B implies (f|B)[bn] → 0, hence by
(2.2)

lim
n→+∞

f[an] = 0
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follows.
(b): ⇒: We will use Theorem 1.15 (iii). Let (an)n∈N be a sequence in A such

that

( lim
n→+∞

g[an] = 0 ∧ lim
n,m→+∞

f[an − am] = 0) ∧ (∀a ∈ A : lim
n→+∞

f(a∗na) = f(a))

Since B is dense in A, there exists a sequence (bn)n∈N in A with the property
‖an − bn‖ → 0. We state that

( lim
n→+∞

g[bn] = 0 ∧ lim
n,m→+∞

f[bn − bm] = 0) ∧ (∀b ∈ B : lim
n→+∞

f(b∗nb) = f(b)),

i. e., the desired result comes true.
Let n ∈ N be arbitrary. If b ∈ B, then

|f(a∗nb)− f(b∗nb)| = |f((an − bn)
∗b)| ≤ ‖f‖‖(an − bn)

∗b‖ → 0,

since f and the involution are continuous. From this it follows that f(b∗nb) → f(b).
Since g determines a semi-inner product, then for any a, b ∈ A we infer that

|
√
g(a∗a)−

√
g(b∗b)| ≤

√
g((a− b)∗(a− b)) ≤

√
‖g‖

√
‖(a− b)∗(a− b)‖

Thus, if n ∈ N, then

|
√
g(a∗nan)−

√
g(b∗nbn)| ≤

√
‖g‖

√
‖(an − bn)∗(an − bn)‖ → 0,

that is g(b∗nbn) → 0. The equality limn,m→+∞ f[bn− bm] = 0 follows from the very
same argument.
⇐: Let (bn)n∈N be a sequence in B such that

( lim
n→+∞

g[bn] = 0 ∧ lim
n,m→+∞

f[bn − bm] = 0) and

(∀b ∈ B : lim
n→+∞

f(b∗nb) = f(b)).
(2.3)

We state that

( lim
n→+∞

g[bn] = 0 ∧ lim
n,m→+∞

f[bn − bm] = 0) ∧ (∀a ∈ A : lim
n→+∞

f(b∗na) = f(a)),

i. e., the desired results come true. We only need the last statement. Let ε > 0 be
an arbitrary number. From the second property in (2.3) we conclude the existence

of a number M ≥ 0 such that for every n ∈ N
√

f[bn] ≤ M holds true. If a ∈ A,
then for ε from the density of B and from the continuity of the involution and f
we may fix an element b ∈ B such that

max{‖a− b‖,
√
‖(a− b)∗(a− b)‖} ≤ 1

3
min{ ε

M
√
‖f‖+ 1

,
ε

‖f‖+ 1
}.

From the third property in (2.3) there is an n0 ∈ N such that for every n ∈ N,
n ≥ n0 the inequality

|f(b∗nb)− f(b)| ≤ ε

3
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is true. Hence for n ∈ N, n ≥ n0 from the continuity of f and the Cauchy-Schwarz
inequality we conclude that

|f(b∗na)− f(a)| = |f(b∗na)− f(b∗nb) + f(b∗nb)− f(b) + f(b)− f(a)|

≤
√

f[bn]
√

f[a− b] +
ε

3
+ ‖f‖‖a− b‖

≤M
√
‖f‖

√
‖(a− b)∗(a− b)‖+

ε

3
+
ε

3
≤ ε,

i. e., f(b∗na) → f(a).
(c): It is obvious from the continuity. �

Our second lemma will be very important in the investigations of the parallel
sum.

Lemma 2.11. Let A be a C∗-algebra, H Hilbert space and let π : A → B(H)
be a continuous algebra-representation such that ‖π‖ ≤ 1. Assume that π is
nondegenerate, that is, the set {π(a)η|(a ∈ A) ∧ (η ∈ H)} is dense in H. Then
π preserves the involution, i. e., π is a ∗-representation of the ∗-algebra A.

Proof. First we show that for any b ∈ A and η ∈ H the linear functional

hb,η : A→ C; a 7→ (π(a)(π(b)η)|π(b)η)

is positive. By Theorem 2.4 (a) there is an increasing approximate identity in
A+ ∩ {a ∈ A|‖a‖ ≤ 1}. Moreover, by Theorem 2.4 (b) a linear functional f on
A is positive if and only if it is continuous and ‖f‖ = limi,I f(ei) holds for an
approximate identity with the properties above.

Let (ei)i∈I be an approximate identity with these properties and let b ∈ A,
η ∈ H be fixed elements. By the Cauchy-Schwarz inequality and the assumption
for π we have that for every a ∈ A

|hb,η(a)| = |(π(a)(π(b)η)|π(b)η)| ≤ ‖a‖‖π(b)η‖2,

hence hb,η is continuous and its norm is lower or equal to ‖π(b)η‖2. On the other
hand, from the continuity of π we have

‖π(b)η‖2 = (π(b)η|π(b)η)

= lim
i,I

(π(eib)η|π(b)η) = lim
i,I

(π(ei)(π(b)η)|π(b)η) = lim
i,I
hb,η(ei),

thus ‖ei‖ ≤ 1 (i ∈ I) implies that

‖hb,η‖ = ‖π(b)η‖2 = lim
i,I
hb,η(ei),

hence hb,η is a positive linear functional.
By Theorem 2.4 (c) we infer that hb,η is self-adjoint. From this we show that

π(a∗) = π(a)∗ holds for any a ∈ A:

(π(a∗)(π(b)η)|π(b)η) = hb,η(a
∗) = hb,η(a) = (π(b)η|π(a)(π(b)η))

= (π(a)∗(π(b)η)|π(b)η),

that is ((π(a∗)−π(a)∗)(π(b)η)|π(b)η) = 0 holds true for any b ∈ A and η ∈ H. But
π is a nondegenerate algebra-representation, hence for any η ∈ H the equation
((π(a∗)− π(a)∗)η|η) = 0 holds, which implies π(a∗) = π(a)∗. �
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Later on we will use often the following important construction.

Remark 2.12. Let A be a ∗-algebra and let f be a representable positive functional
on A. Then by Theorem 2.1 there exist a p : A→ R+ C∗-seminorm and M ∈ R+

such that
|f(a)| ≤Mp(a) (2.4)

holds for any a ∈ A. Denote by (B, ‖ · ‖p) the completion of the pre-C∗-algebra
A/ ker p (equipped with the factor-norm derived from p). Furthermore let

f ′0 : A/ ker p→ C; f ′0(a+ ker p) := f(a). (2.5)

By (2.4) and (2.5) this mapping is a well-defined and continuous (with respect
to ‖ · ‖p) positive linear functional on a dense subspace of B. Hence there exists
a unique f ′ : B → C (continuous and representable) positive linear functional
which extends f ′0.

Now we are in position to prove that the parallel sum of representable positive
functionals is always induced by a representable positive functional.

Corollary 2.13. Let A be a ∗-algebra and let f, g be representable positive func-
tionals on A. Then there exists a representable positive functional h on A such
that for every a ∈ A the equation h(a∗a) = (f : g)[a] holds.

Proof. (I): First assume that A to be a C∗-algebra. By Lemma 2.9 (f : g) is a
representable form on A, and for every a ∈ A we have

‖π(f:g)(a)‖ ≤ max{‖πf (a)‖, ‖πg(a)‖}.
Since the domains of πf and πg is a C∗-algebra and the ranges of both ∗-represen-
tation is included in a C∗-algebra, from a well-known Theorem ([3, Proposition on
page 9]) ‖π(f:g)‖ ≤ 1 holds. We show that the algebra-representation π(f:g) is non-
degenerate, thus the previous Lemma implies that π(f:g) is also a ∗-representation.
To see this, it is enough to prove that the set {π(f:g)(a)(b+ ker ‖ · ‖•(f:g))|a, b ∈ A}
is dense in {b+ ker ‖ · ‖•(f:g)|b ∈ A}, since it is a dense subspace of H(f:g).

Let b ∈ A arbitrary and fix an (ei)i∈I approximate identity in A by Theorem
2.4 (a). By Remark 1.7 and the C∗-algebra properties for any i ∈ I we conclude

‖π(f:g)(ei)(b+ ker ‖ · ‖•(f:g))− (b+ ker ‖ · ‖•(f:g))‖2
(f:g) = (f : g)[eib− b]

≤ f[eib− b] = f((eib− b)∗(eib− b)) ≤ ‖f‖‖eib− b‖2.

Since limi,I ‖eib− b‖2 = 0, then

lim
i,I
‖π(f:g)(ei)(b+ ker ‖ · ‖•(f:g))− (b+ ker ‖ · ‖•(f:g))‖2

(f:g) = 0,

hence π(f:g) is nondegenerate, thus π(f:g) is a ∗-representation of A.
We note here that from similar argument it follows that

lim
i,I
‖π(f:g)(b)(ei + ker ‖ · ‖•(f:g))− (b+ ker ‖ · ‖•(f:g))‖2

(f:g) = 0, (2.6)

since for i ∈ I
‖π(f:g)(b)(ei + ker ‖ · ‖•(f:g))− (b+ ker ‖ · ‖•(f:g))‖2

(f:g) = (f : g)[bei − b]

≤ f[bei − b] = ‖(bei − b) + ker ‖ · ‖•f‖2
f = f((bei − b)∗(bei − b)) ≤ ‖f‖‖bei − b‖2
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holds, thus limi,I ‖bei − b‖2 = 0 implies (2.6).
We prove the existence of a vector ξ(f:g) ∈ H(f:g) such that for every a ∈ A

(f : g)[a] = (π(f:g)(a
∗a)ξ(f:g)|ξ(f:g))(f:g)

holds true, hence by the ∗-preserving the mapping

h : A→ C; a 7→ (π(f:g)(a)ξ(f:g)|ξ(f:g))(f:g)

is a positive functional on A, moreover the parallel sum of f and g is derived
from h (and, of course, the distinguished cyclic vector for πh is ξ(f:g)).

First we show that the net (ei + ker ‖ · ‖•(f:g))i∈I is Cauchy in the Hilbert space

H(f:g), hence convergent and limi,I(ei + ker ‖ · ‖•(f:g)) =: ξ(f:g) is the desired vector.

By Lemma 2.5 (πf (ei)ξf )i∈I = (ei + ker ‖ · ‖•f )i∈I is a Cauchy net. Since for any
i, j ∈ I

‖(ei + ker ‖ · ‖•(f:g))− (ej + ker ‖ · ‖•(f:g))‖2
(f:g) = (f : g)[ei − ej] ≤ f[ei − ej]

holds, from this it follows that (ei + ker ‖ · ‖•(f:g))i∈I is also a Cauchy net, hence
convergent. Denote by ξ(f:g) the limit, moreover let

h : A→ C; a 7→ (π(f:g)(a)ξ(f:g)|ξ(f:g))(f:g).

We show that for this positive functional h(a∗a) = (f : g)[a] is true for arbitrary
a ∈ A. Indeed, the properties of π(f:g), the continuity of the operators π(f:g)(a)
and (2.6) imply

h(a∗a) = (π(f:g)(a
∗a)ξ(f:g)|ξ(f:g))(f:g) = ‖π(f:g)(a)ξ(f:g)‖2

(f:g)

= lim
i,I
‖π(f:g)(a)(ei + ker ‖ · ‖•(f:g))‖2

(f:g) = ‖a+ ker ‖ · ‖•(f:g)‖2
(f:g) = (f : g)[a].

We finished that part when A is a C∗-algebra.
(II): Let A be an arbitrary ∗-algebra, and let f, g be representable positive

functionals on A. By Theorem 2.1 there exist C∗-seminorms pf , pg : A→ R+ such
that f (resp. g) is continuous with respect to pf (resp. pg). From this it follows
that there exists an M ∈ R+ such that for the C∗-seminorm p := sup{pf , pg} and
for every a ∈ A

(|f(a)| ≤Mp(a)) ∧ (|g(a)| ≤Mp(a))

holds true. Denote by (B, ‖ · ‖p) the completion of the pre-C∗-algebra A/ ker p
(equipped with the factor-norm derived from p). Furthermore let

f ′0, g
′
0 : A/ ker p→ C; f ′0(a+ ker p) := f(a), g′0(a+ ker p) := g(a).

From Remark 2.12 these mappings are continuous positive functionals; denote by
f ′ and g′ the unique continuous positive linear extensions to B.

By (I) there exists an h′ positive linear functional on B such that for any b ∈ B
h′(b∗b) = (f′ : g′)[b] is true. We state that the mapping

h : A→ C; h(a) := h′(a+ ker p)

is a well-defined representable positive functional on A, furthermore the equation
h(a∗a) = (f : g)[a] holds for any a ∈ A.
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From the definition it is obvious that h is a well-defined positive functional.
From Theorem 2.4 (c) and (b) we conclude that h′ continuous and representable
on B, hence for every a ∈ A we infer

|h(a)| = |h′(a+ ker p)| ≤ ‖h′‖‖a+ ker p‖p = ‖h′‖p(a),

that is, h is continuous with respect to the C∗-seminorm p. Moreover, the rep-
resentability of h′ implies the existence of an mh′ ∈ R+ such that for any b ∈ B
the inequality |h′(b)|2 ≤ mh′h

′(b∗b) holds, hence for arbitrary a ∈ A we conclude

|h(a)|2 = |h′(a+ ker p)|2 ≤ mh′h
′(a∗a+ ker p) = mh′h(a

∗a),

thus by Theorem 2.1 we have that h is representable.
In the end let a ∈ A be an arbitrary element. Then

(f : g)[a]

= inf{f((a− c)∗(a− c)) + g(c∗c)|c ∈ A}
= inf{f ′((a− c)∗(a− c) + ker p) + g′(c∗c+ ker p)|c ∈ A}
= inf{f ′(((a+ ker p)− (c+ ker p))∗((a+ ker p)− (c+ ker p)))+

+ g′((c+ ker p)∗(c+ ker p))|c ∈ A}
≥ inf{f ′(((a+ ker p)− b)∗((a+ ker p)− b)) + g′(b∗b)|b ∈ B}
= (f′ : g′)[a+ ker p] = h′((a+ ker p)∗(a+ ker p)) = h(a∗a),

that is (f : g)[a] ≥ h(a∗a).
For the reversed inequality let ε > 0 be an arbitrary number. Then there exists

b ∈ B such that

h(a∗a)+
ε

2
= (f′ : g′)[a+ker p]+

ε

2
≥ f ′(((a+ker p)− b)∗((a+ker p)− b))+g′(b∗b)

holds. Since A/ ker p is dense in B, then there exists a sequence (cn)n∈N in A
such that cn + ker p→ b. The functionals f ′ and g′ are continuous, so there is an
n0 ∈ N such that

|f ′(((a+ ker p)− b)∗((a+ ker p)− b))−

− f ′(((a+ ker p)− (cn0 + ker p))∗((a+ ker p)− (cn0 + ker p)))| ≤ ε

4

and

|g′(b∗b)− g′((cn0 + ker p)∗(cn0 + ker p))| ≤ ε

4

thus

h(a∗a) + ε ≥ f ′(((a+ ker p)− (cn0 + ker p))∗((a+ ker p)− (cn0 + ker p)))+

+ g′((cn0 + ker p)∗(cn0 + ker p)) =

= f((a− cn0)
∗(a− cn0)) + g(c∗n0

cn0) ≥ (f : g)[a],

h(a∗a) ≥ (f : g)[a] follows. �

Before our characterization we recall the following construction.
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Remark 2.14. We recall that if A is a ∗-algebra and (fn)n∈N is sequence of in-
creasing representable positive functionals on A such that there is a representable
positive functional g on A with the property fn ≤ g (∀n ∈ N), then supn∈N fn is
an A→ R+ form, moreover there exists a representable positive functional f on
A such that for any a ∈ A the equality f(a∗a) = supn∈N fn[a] is true. Indeed, by
Theorem 2.3 (b) for any n,m ∈ N, n ≥ m the functional fn − fm is positive and
representable, moreover ‖fn − fm‖H ≤ ‖g‖H . Hence for arbitrary a ∈ A

|fn(a)− fm(a)|2 = |(fn − fm)(a)|2

≤ ‖fn − fm‖H(fn − fm)(a∗a) ≤ ‖g‖H(fn − fm)(a∗a),

so the convergence of (fn(a
∗a))n∈N implies that (fn(a))n∈N is Cauchy in C. Thus

the mapping A 3 a 7→ limn→+∞ fn(a) determines an f : A→ C linear functional,
which has the property f(a∗a) = supn∈N fn(a

∗a) (a ∈ A), hence f is positive.
The representability of f follows from that for every a ∈ A

|f(a)|2 = lim
n→+∞

|fn(a)|2 ≤ ‖g‖H lim
n→+∞

fn(a
∗a) = ‖g‖Hf(a∗a),

hence ‖f‖H ≤ ‖g‖H , that is, by f ≤ g and Theorem 2.3 (b) f is representable.
Denote by supn∈N fn the functional f .

The next statement is our main result in this section. By the aid of this theorem
on unital C∗-algebras and measure algebras of compact groups we give further
characterizations in the paper.

Theorem 2.15 (Characterization of absolute continuity). Let A be a ∗-algebra
and let f , g be representable positive functionals on A. The following statements
are equivalent.

(i) f is absolutely continuous with respect to g.
(ii) There exist an increasing sequence (fn)n∈N of representable positive func-

tionals on A and a sequence (αn)n∈N of nonnegative numbers such that
f = supn∈N fn and fn ≤ αng (∀n ∈ N).

(iii) If p is a C∗-seminorm on A such that f and g are continuous with re-
spect to p, the positive functional f ′ defined in Remark 2.12 is absolutely
continuous with respect to g′.

Proof. (i) ⇒ (ii): By Proposition 1.13 the equation f = freg holds in the Lebesgue
decomposition of the form f with respect to g (Theorem 1.11), hence the identity
f = supn∈N(f : (ng)) is true. On the other hand, by Corollary 2.13 for any n ∈ N
there exists a representable positive functional fn on A such that fn = (f : (ng)).
Moreover, from Remark 1.7 it follows that the inequalities fn ≤ ng and fn ≤ fn+1

are true, that is the sequences (fn)n∈N and (αn)n∈N := (n)n∈N have the desired
properties.

(ii) ⇒ (i): It is obvious from the definition.
(i) ⇔ (iii): By Lemma 2.10 (a) it is enough to prove that f is absolutely

continuous with respect to g if and only if f ′|A/ ker p is absolutely continuous with
respect to g′|A/ ker p, since A/ ker p is a dense ∗-subalgebra in B. But this is an
immediately consequence of the definitions and the following properties:

(f ′(a+ ker p) = f(a)) ∧ (g′(a+ ker p) = g(a)) (a ∈ A).
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This finishes the proof. �

Remark 2.16. Kosaki proved a similar result for normal states on σ-finite von
Neumann algebras in [15], but he substantially made use of the properties of the
states and the von Neumann algebra.

In the end of this section we present a new proof to our general Lebesgue
decomposition of representable positive functionals, Theorem 1.16 (Corollary 3.2
in [24]), as a consequence of the previous theorem. The argument here is very
different from the one introduced in [24, Theorem 3.1], since the latter is based
on a decomposition theorem of ours for representable forms on complex algebras
([24, Theorem 2.6]), wherein invariant subspaces of representations appeared as
main tools.

Corollary 2.17 (Lebesgue decomposition of representable positive functionals).
Let A be a ∗-algebra and let f, g be representable positive functionals on A. Then
f admits a Lebesgue decomposition f = freg + fsing to a sum of representable
positive functionals such that fsing and g are singular, while freg is absolutely
continuous with respect to g. The form induced by freg is

freg[a] = sup
n∈N

(f : (ng))[a] (a ∈ A).

Moreover, the form freg is the greatest among all of the forms p (in particular,
forms induced by positive functionals) such that p ≤ f and p is absolutely contin-
uous with respect to g.

Proof. According to Theorem 1.11, the Lebesgue decomposition of the form f
(derived from f) is f = freg + fsing, where freg := supn∈N(f : (ng)). By Corollary
2.13 for every n ∈ N there exists a representable positive functional fn on A
such that fn = (f : (ng)). Hence for the positive functional freg := supn∈N fn we
conclude

freg = sup
n∈N

(f : (ng)) = freg.

By Remark 1.7, (fn)n∈N is an increasing sequence, thus the property fn ≤ f
(n ∈ N) and Remark 2.14 implies that freg is representable. From this it follows
that fsing := f − freg is also a positive functional, which is representable by
Theorem 2.3 (b), and fsing = fsing holds. The singularity of the functional fsing
with respect to g and the absolute continuity of the functional freg with respect
to g, as well as the property for freg follow from Theorem 1.11. �

We must note here that the classical Lebesgue decomposition related to set-
measures is a direct consequence of this result, see Section 4 in our paper [24].

The question of the uniqueness will be discussed in the penultimate section of
the paper.

3. Characterizations of absolute continuity, unital C∗-algebras

Let A be a unital C∗-algebra, and denote by E(A) the set of the states on A,
i. e.,

E(A) := {f ∈ (A∗)+|‖f‖ = 1}.
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This is a convex subset in the vector space of continuous functionals A′ (Theorem
2.4). It is well-known that if σ(A′, A) stands for the weakest topology on A′ such
that all of the linear functionals

â : A′ → C; h 7→ h(a) (a ∈ A)

are continuous, then E(A) is a compact Hausdorff space with the restriction of
σ(A′, A) ([2], [3], [17], [18]). We call this compact and convex set the state space
of A.

In Proposition 4.1 of [9] R. van Handel proved a noteworthy theorem on abso-
lute continuity of states. He observed that this concept has a very close connection
with the absolute continuity of the probability Radon measures (Definition 3.1)
on the state space E(A). The key tool in this was the so-called Choquet theory of
compact convex sets (see [2, Chapter 4]). Following van Handel’s idea, in [25] we
gave a characterization of singularity by means of probability Radon measures
on the state space. In this section of the paper we gave a similar characteriza-
tion for domination (Theorem 3.7) and absolute continuity (Theorem 3.8) of the
states on a unital C∗-algebra (including a very different and simpler proof to van
Handel’s result by the aid of our statement Theorem 2.15). The significance of
these theorems is that the conditions formulated in them are referring to positive
functionals on unital commutative C∗-algebras.

First of all we set up notations. For the rest of the paper we use the convention
that every locally compact space is assumed to be Hausdorff. If T is a locally
compact space, then K (T ; C) (resp. K (T ; C)) denotes the space of T → C
continuous functions with compact support (resp. vanishing at infinity). The
notation C (T ; C) (resp. C (T ; R)) stands for the set of T → C (resp. T → R)
continuous functions. The T → C constant 1 function will be denoted by 1

T
.

Definition 3.1. Let T be a locally compact space. For a positive linear functional
µ : K (T ; C) → C we say that µ is a Radon measure on T . If µ is continuous
with respect to the supremum-norm ||| · |||T on K (T ; C), then we say that µ is
bounded. If T is compact, then µ is probability Radon measure, when µ(1

T
) = 1.

The set of these functionals will be denoted by M 1
+(T ).

It is obvious that when T is compact, then K (T ; C) = C (T ; C), hence it is a
C∗-algebra (with the usual operations), moreover by Theorem 2.4 (b) it follows
that every positive Radon measure is bounded, and their norms attain at 1

T
.

We will need the following remarkable Riesz representation theorem ([19]) to
make connections between absolute continuity, singularity and domination of pos-
itive Radon measures and the same concepts related to (positive) set measures.
For a locally compact space T denote by B0(T ) the σ-algebra of the Baire sets,
i. e., the σ-algebra generated by the compact Gδ-sets. If µ∗ : B0(T ) → R+ is a
Baire measure, then L 1

C(T,B0(T ), µ∗) (resp. L 2
C(T,B0(T ), µ∗)) stands for the

space of µ∗-integrable (resp. square-integrable) T → C functions, equipped with
the standard seminorm.

Theorem 3.2. Let µ be a bounded positive Radon measure on the locally compact
space T . Then there exists exactly one

µ∗ : B0(T ) → R+
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bounded Baire measure such that K (T ; C) ⊆ L 1
C(T,B0(T ), µ∗), and for any

ϕ ∈ K (T ; C)

µ̃(ϕ) =

∫
T

ϕ dµ∗,

where µ̃ denotes the unique continuous linear extension of µ to K (T ; C).

The following lemma, our first result in this context, clarifies the connection
between the fundamental concepts of the Lebesgue decomposition theories related
to positive Radon measures and Baire measures. This will be crucial in our
characterizations of domination and absolute continuity (Theorems 3.7 and 3.8),
as well as in the commutative case of the uniqueness (Theorem 5.13).

Lemma 3.3. Let T be a locally compact space, furthermore let µ∗, ν∗ be bounded
Baire measures on T and α ∈ R+. For any ϕ ∈ K (T ; C) let

µ(ϕ) :=

∫
T

ϕ dµ∗; ν(ϕ) :=

∫
T

ϕ dν∗.

Then µ and ν are bounded positive Radon measures on T .
Denote by µ̃ (resp. ν̃) the unique continuous linear extension of µ (resp. ν) to

K (T ; C). Then

(a) µ̃ is absolutely continuous with respect to ν̃ ⇔µ is absolutely continuous
with respect to ν ⇔ µ∗ is absolutely continuous with respect to ν∗.

(b) µ̃ is singular to ν̃ ⇔ µ is singular to ν ⇔ µ∗ is singular to ν∗.
(c) µ̃ ≤ αν̃ ⇔ µ ≤ αν ⇔ µ∗ ≤ αν∗.

Proof. It is clear that µ and ν are bounded positive Radon measures on T .
Since K (T ; C) is a C∗-algebra, hence the involution is continuous, further-

more every positive linear functional is continuous on it (Theorem 2.4 (b)). The
∗-subalgebra K (T ; C) is dense in K (T ; C), thus by Lemma 2.10 the first equiv-
alences of (a), (b) and (c) are true.

To prove the other implications, first we show that if S ∈ B0(T ) is an arbitrary
Baire set, then there exists a sequence (ϕn)n∈N in K (T ; C) such that for every
n ∈ N

(0 ≤ ϕn ≤ 1) ∧ ( lim
n→+∞

ϕn = χ
S
) (3.1)

hold in L 2
C(T,B0(T ), µ∗) and in L 2

C(T,B0(T ), ν∗), as well.
Let (αn)n∈N be a sequence in R+ such that limn→+∞ αn = 0. Since every Baire

measure is regular ([19]), then the boundedness of µ∗ and ν∗ implies that for a
fixed n ∈ N there exist compact subsets Kµ∗,n, Kν∗,n ∈ B0(T ) of S and open sets
Gµ∗,n, Gν∗,n ∈ B0(T ) contain S such that

(µ∗(Gµ∗,n \Kµ∗,n) ≤ αn) ∧ (ν∗(Gν∗,n \Kν∗,n) ≤ αn).

Then for the compact Baire set K := Kµ∗,n ∪Kν∗,n ⊆ S and for the open Baire
set G := Gµ∗,n ∩Gν∗,n ⊇ S we have

(µ∗(G \K) ≤ αn) ∧ (ν∗(G \K) ≤ αn).
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Since K ⊆ G, then by Urysohn’s Lemma ([19]) there exists ϕn ∈ K (T ; C) such
that

(0 ≤ ϕn ≤ 1) ∧ (K ⊆ {t ∈ T |ϕn(t) = 1} =: [ϕn = 1]) ∧ (supp(ϕn) ⊆ G).

Hence for any n ∈ N it follows that∫
T

|ϕn − χ
S
|2 dµ∗ =

∫
K

|ϕn − χ
S
|2 dµ∗ +

∫
G\K

|ϕn − χ
S
|2 dµ∗ +

∫
T\G

|ϕn − χ
S
|2 dµ∗

= 0 +

∫
G\K

|ϕn − χ
S
|2 dµ∗ + 0 ≤ µ∗(G \K) ≤ αn

and∫
T

|ϕn − χ
S
|2 dν∗ =

∫
K

|ϕn − χ
S
|2 dν∗ +

∫
G\K

|ϕn − χ
S
|2 dν∗ +

∫
T\G

|ϕn − χ
S
|2 dν∗

= 0 +

∫
G\K

|ϕn − χ
S
|2 dν∗ + 0 ≤ ν∗(G \K) ≤ αn.

Thus we showed the existence of a sequence with the properties (3.1).
Now we are ready to prove the second equivalences.
(a): ⇒: Assume that µ is absolutely continuous with respect to ν. Let S be a

Baire set such that ν∗(S) = 0; we show the equality µ∗(S) = 0. Let (ϕn)n∈N be
a sequence with the properties (3.1). From this it follows that

0 = ν∗(S) =

∫
T

|χ
S
|2 dν∗ = lim

n→+∞

∫
T

|ϕn|2 dν∗ = lim
n→+∞

ν(ϕ∗nϕn)

and

0 = lim
n,m→+∞

∫
T

|ϕn − ϕm|2 dµ∗ = lim
n,m→+∞

µ((ϕn − ϕm)∗(ϕn − ϕm)).

From the assumption we have µ(ϕ∗nϕn) → 0. But

0 = lim
n→+∞

µ(ϕ∗nϕn) = lim
n→+∞

∫
T

|ϕn|2 dµ∗ =

∫
T

|χ
S
|2 dµ∗ = µ∗(S),

i.e., µ∗ is absolutely continuous with respect to ν∗.
⇐: Assume that µ∗ is absolutely continuous with respect to ν∗. Let (ψn)n∈N

be a sequence in K (T ; C) such that

( lim
n→+∞

ν(ψ∗nψn) = 0) ∧ ( lim
n,m→+∞

µ((ψn − ψm)∗(ψn − ψm)) = 0),

that is

( lim
n→+∞

∫
T

|ψn|2 dν∗ = 0) ∧ ( lim
n,m→+∞

∫
T

|ψn − ψm|2 dµ∗ = 0),

This means that the sequence (ψn)n∈N converges to zero in L 2
C(T,B0(T ), ν∗)

meanwhile Cauchy (hence convergent) in L 2
C(T,B0(T ), µ∗). By the well-known
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theorem of Riesz on L2-convergence there exists a subsequence (ψσ(n))n∈N of
(ψn)n∈N such that ψσ(n) → 0 ν∗-almost everywhere. Where the sequence not
converges, that is a ν∗-nullset, hence by the hypothesis that is a µ∗-nullset, as
well. Thus ψσ(n) → 0 µ∗-almost everywhere comes true. As a consequence, the
convergence holds true also in L 2

C(T,B0(T ), µ∗), thus one limit of (ψn)n∈N is the
constant 0 function in L 2

C(T,B0(T ), µ∗), that is

lim
n→+∞

µ(ψ∗nψn) = lim
n→+∞

∫
T

|ψn|2 dµ∗ = 0.

(b) ⇒: Suppose that µ and ν are singular. By Theorem 1.15 (iii) there is a
sequence (ψn)n∈N in K (T ; C) such that for any ϕ ∈ K (T ; C)

lim
n→+∞

ν(ψ∗nψn) = lim
n,m→+∞

µ((ψn − ψm)∗(ψn − ψm)) = 0;

lim
n→+∞

µ(ψ∗nϕ) = µ(ϕ)
(3.2)

hold. The first property means that (ψn)n∈N tends to zero in L 2
C(T,B0(T ), ν∗)

meanwhile Cauchy in L 2
C(T,B0(T ), µ∗). Denote by ψ one of the limits in the

latter space. By Riesz’s Theorem there exists a subsequence of (ψn)n∈N such that
converges to zero ν∗-almost everywhere. From this subsequence we may choose a
subsequence such that converges to ψ µ∗-almost everywhere. For the simplicity
of the notations assume that (ψn)n∈N already has these properties (this will not
cause any problems).

Let S := {t ∈ T | limn→+∞ ψn(t) = 0}. The sets S and T \S are Baire sets, and
T = S ∪∗ (T \S). From the definition of S we have ν∗(T \S) = 0. We show that
µ∗(S) = 0, and this proves the singularity.

First we note that for any subset E ∈ B0(T ) of S µ∗(E ∩ [ψ 6= 0]) = 0 holds,
otherwise (ψn)n∈N does not converge to ψ µ∗-almost everywhere. Every Baire
measure is regular ([19]) and µ∗ is bounded, hence for ε > 0 there exist K0 ⊆ S
compact and G0 ⊇ S open Baire sets such that µ∗(G0 \K0) ≤ ε. By Urysohn’s
Lemma there exists ϕ ∈ K (T ; C) such that

0 ≤ ϕ ≤ 1, K0 ⊆ [ϕ = 1] and supp(ϕ) ⊆ G0.
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Thus these properties, the positivity of µ, the second assumption of (3.2), the
Cauchy-Schwarz-inequality and µ∗(K0 ∩ [ψ 6= 0]) = 0 imply that

µ∗(S) =

∫
T

χ
S

dµ∗ =

∫
G0

χ
S

dµ∗ =

∫
G0\K0

χ
S

dµ∗ +

∫
K0

χ
S

dµ∗ ≤ ε+

∫
K0

ϕ dµ∗

≤ ε+

∫
T

ϕ dµ∗ = ε+ µ(ϕ) = ε+ lim
n→+∞

|µ(ψ∗nϕ)| = ε+ lim
n→+∞

|
∫
T

ϕψn dµ∗|

= ε+ lim
n→+∞

|
∫
G0

ϕψn dµ∗| ≤ ε+ lim sup
n→+∞

∫
G0

|ϕψn| dµ∗

= ε+ lim sup
n→+∞

(

∫
G0\K0

|ϕψn| dµ∗ +

∫
K0

|ϕψn| dµ∗)

= ε+ lim sup
n→+∞

(

∫
T

|ϕψnχG0\K0
| dµ∗ +

∫
K0

|ϕψn| dµ∗)

≤ ε+ lim sup
n→+∞

(√√√√∫
T

|ϕψn|2 dµ∗

√√√√∫
T

|χ
G0\K0

|2 dµ∗ +

√√√√∫
K0

|ϕ|2 dµ∗

√√√√∫
K0

|ψn|2 dµ∗
)

≤ ε+
√
µ∗(G0 \K0)

√√√√∫
T

|ψ|2 dµ∗ +
√
µ∗(K0)

√√√√∫
K0

|ψ|2 dµ∗

= ε+
√
ε

√√√√∫
T

|ψ|2 dµ∗ + 0,

so from ε→ 0 we conclude µ∗(S) = 0.
⇐: Suppose that µ∗ and ν∗ are singular, i.e., there exists an S ⊆ T Baire set

with the properties µ∗(S) = 0, ν∗(T \ S) = 0 and T = S ∪∗ (T \ S). By (3.1)
there is a sequence (ϕn)n∈N in K (T ; C) such that

(0 ≤ ϕn ≤ 1) ∧ ( lim
n→+∞

ϕn = χ
T\S

)

holds true in L 2
C(T,B0(T ), µ∗) and in L 2

C(T,B0(T ), ν∗), as well. We prove that
this sequence shows the singularity of µ and ν (Theorem 1.15 (iii)):

ν(ϕ∗nϕn) =

∫
T

|ϕn|2 dν∗ →
∫
T

|χ
T\S
|2 dν∗ = ν∗(T \ S) = 0,

µ((ϕn − ϕm)∗(ϕn − ϕm)) =

∫
T

|ϕn − ϕm|2dµ∗ → 0.

What we still have to show is that for any ϕ ∈ K (T ; C)

lim
n→+∞

µ(ϕ∗nϕ) = µ(ϕ)
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is true. Indeed, by the boundedness of µ∗ we have 1
T
∈ L 2

C(T,B0(T ), µ∗), thus

lim sup
n→+∞

|µ(ϕ)− µ(ϕ∗nϕ)|2 = lim sup
n→+∞

|
∫
T

(1
T
− ϕn)ϕ dµ∗|2

≤ lim sup
n→+∞

((

∫
T

|1
T
− ϕn|2dµ∗)(

∫
T

|ϕ|2 dµ∗))

≤ µ∗(T )|||ϕ|||2T lim sup
n→+∞

∫
T

|1
T
− ϕn|2dµ∗

= µ∗(T )|||ϕ|||2T lim
n→+∞

‖1
T
− ϕn‖2

L 2
C (T,B0(T ),µ∗)

= µ∗(T )|||ϕ|||2T‖1T
− χ

T\S
‖2

L 2
C (T,B0(T ),µ∗)

= µ∗(T )|||ϕ|||2T‖χS
‖2

L 2
C (T,B0(T ),µ∗)

= µ∗(T )|||ϕ|||2Tµ∗(S) = 0.

(c): ⇒: Let S ∈ B0(T ) be an arbitrary set. By (3.1) there is a sequence
(ϕn)n∈N in K (T ; C) such that for every n ∈ N

(0 ≤ ϕn ≤ 1) ∧ ( lim
n→+∞

ϕn = χ
S
)

is true in L 2
C(T,B0(T ), µ∗) and in L 2

C(T,B0(T ), ν∗), as well. Then

µ∗(S) =

∫
T

|χ
S
|2 dµ∗ = lim

n→+∞

∫
T

|ϕn|2 dµ∗ = lim
n→+∞

µ(ϕ∗nϕn)

≤ α lim
n→+∞

ν(ϕ∗nϕn) = α lim
n→+∞

∫
T

|ϕn|2 dν∗ = α

∫
T

|χ
S
|2 dν∗ = αν∗(S),

so µ∗ ≤ αν∗.
⇐: It is well-known that for any ϕ ∈ L 2

C(T,B0(T ), µ∗) ∩L 2
C(T,B0(T ), ν∗)∫

T

|ϕ|2 dµ∗ ≤ α

∫
T

|ϕ|2 dν∗

holds. In particular, for every ϕ ∈ K (T ; C), hence

µ(ϕ∗ϕ) =

∫
T

|ϕ|2 dµ∗ ≤ α

∫
T

|ϕ|2 dν∗ = αν(ϕ∗ϕ),

that is µ ≤ αν. The proof is complete. �

To begin investigations of the state space of a unital C∗-algebra we need the
following general theorem for Hausdorff locally convex spaces, which is the base
point of the Choquet theory of compact convex sets ([2, Chapter 4]).

Theorem 3.4. Let E be a Hausdorff locally convex space. Then for every K ⊆ E
nonempty, compact convex set and for every probability Radon measure µ on
K there exists a unique x ∈ K such that for the real part uR of an arbitrary
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continuous linear functional u ∈ E ′ the equality uR(x) = µ((uR)|K) holds. We say
that x is the barycenter of µ, and we use the notation b(µ) for x.

Remark 3.5. For every element x ∈ K there exists a probability Radon measure µ
on K such that b(µ) = x. For example, let εx be the probability Radon measure
such that for any ϕ ∈ C (K; C) the equation εx(ϕ) := ϕ(x) holds.

Let A be a C∗-algebra with unit. It is obvious that â|E(A) ∈ C (E(A); C) for
any a ∈ A. Furthermore, it is well known that every continuous linear functional
on the locally convex space A′ (equipped with the σ(A′, A) topology) is of the
form â for some a ∈ A (see [2]). Hence a functional f ∈ E(A) is the barycenter
of a probability Radon measure µ on E(A) iff for every a ∈ A we have

µ((âR)|E(A)) = (âR)|E(A)(f).

On the other hand, (âR)|E(A) is just ( â+a
∗

2
)|E(A). This means that f is the barycen-

ter if and only if for any a ∈ Asa the equality µ((â)|E(A)) = f(a) holds true. In
particular, if ν ∈ C (E(A); R)∗ is an R-linear functional such that for any pos-
itive function ϕ ∈ C (E(A); R)+ the inequality ν(ϕ) ≥ 0 is true, moreover for
every a ∈ Asa the equation ν((â)|E(A)) = f(a) holds, then the unique positive
C-linear extension of ν to C (E(A); C) is a probability Radon measure on E(A)
with barycenter f .

We note that the constant 1
E(A)

function is (1̂)|E(A).

Henceforth for any probability Radon measure µ on E(A) denote by µ∗ the
associated Baire measure by Theorem 3.2. To prove our characterizations of
domination and absolute continuity we recall the following extension theorem
due to Ky Fan ([5, Lemma on page 1]).

Theorem 3.6. Let E be a real Hausdorff topological vector space, let L be a linear
subspace of E and let C be a convex subset of E such that L ∩ intC 6= ∅. Let
ω ∈ L∗ and suppose that for any x ∈ L ∩ C the inequality ω(x) ≥ 0 holds. Then
there exists an extension ω̃ ∈ E ′ of ω such that ω̃(x) ≥ 0 is true for any x ∈ C.

Similar to our result on singularity of states (Theorem 7 in [25]), the following
two theorems give equivalent conditions to domination and absolute continuity
by means of the Choquet theory of the state space. The relevance of these facts is
that the fundamental concepts of the Lebesgue decomposition theory of positive
functionals on unital C∗-algebras can be characterized via positive functionals on
unital commutative C∗-algebras.

Theorem 3.7 (Domination of states). Let A be C∗-algebra with unit and let
f, g ∈ E(A), α ∈ R+. The following statements are equivalent.

(i) f ≤ αg.
(ii) There exist probability Radon measures µf , µg on E(A), such that the bary-

centers b(µf ) = f,b(µg) = g and µf ≤ αµg.
(iii) There exist probability Radon measures µf , µg on E(A), such that the bary-

centers b(µf ) = f,b(µg) = g and µ∗f ≤ αµ∗g.

Proof. (i) ⇒ (ii): By the arguments previous to Theorem 3.6 it is enough to
prove the existence of R-linear functionals νf , νg ∈ C (E(A); R)∗ such that
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(a) for every ϕ ∈ C (E(A); R)+ the inequalities νf (ϕ) ≥ 0 and νg(ϕ) ≥ 0 hold;
(b) for every a ∈ Asa the equalities νf (â|E(A)) = f(a), νg(â|E(A)) = g(a) hold;
(c) for every ϕ ∈ C (E(A); R)+ the inequality νf (ϕ) ≤ ανg(ϕ) holds.

Let E := C (E(A); R), L := {â|E(A)|a ∈ Asa} and C := C (E(A); R)+. The
real vector space E equipped with the supremum-norm is Hausdorff and locally
convex, L is a linear subspace of E, C is a convex subset of E such that 1̂|E(A) ∈
(L ∩ intC). Let

ωf : L→ R; â|E(A) 7→ f(a).

This mapping is linear, moreover for x ∈ L ∩ C we have x = â|E(A) for some
a ∈ A+, hence the positivity of f implies ωf (x) ≥ 0. By Theorem 3.6 there exists
an ω̃f : E → R continuous linear functional which extends ωf , and for every
x ∈ C the inequality ω̃f (x) ≥ 0 holds. Let

νf := ω̃f .

From the assumption f ≤ αg we conclude that the mapping

ωαg−f : L→ R; â|E(A) 7→ (αg − f)(a)

is a linear functional such that for any x ∈ L∩C we have ωαg−f (x) ≥ 0. Theorem

3.6 implies the existence of a continuous linear functional ω̃αg−f : E → R, which

is an extension of ωαg−f , furthermore for x ∈ C we get ω̃αg−f (x) ≥ 0. Let

νg :=
1

α
(ω̃αg−f + νf ).

It is clear that νf and νg fulfill (a). The property (b) is clear to νf , and for νg it
is a simple calculation, since for a ∈ Asa

νg(â|E(A)) =
1

α
(ω̃αg−f + νf )(â|E(A)) =

1

α
((αg − f)(a) + f(a)) = g(a).

Point (c) is also an immediately consequence, since the positivity implies for any
ϕ ∈ C that

ανg(ϕ) = (ω̃αg−f + νf )(ϕ) = ω̃αg−f (ϕ) + νf (ϕ) ≥ νf (ϕ).

(ii) ⇔ (iii): By (c) of Lemma 3.3 the statement is obvious, since for any
ϕ ∈ C (E(A); C)

µf (ϕ) =

∫
E(A)

ϕ dµ∗f ; µg(ϕ) =

∫
E(A)

ϕ dµ∗g.

(iii) ⇒ (i): If µf and µg are probability Radon measures on E(A) such that the
barycenters are f and g, respectively, moreover µ∗f ≤ αµ∗g holds true, then for any

nonnegative function ϕ ∈ L 1
C(E(A),B0(E(A)), µ∗f )∩L 1

C(E(A),B0(E(A)), µ∗g) the
inequality ∫

E(A)

ϕ dµ∗f ≤ α

∫
E(A)

ϕ dµ∗g
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is true, in particular for the functions â∗a|E(A) (a ∈ A), that is:

f(a∗a) = µf (â∗a|E(A)) =

∫
E(A)

â∗a|E(A) dµ∗f

≤ α

∫
E(A)

â∗a|E(A) dµ∗g = αµg(â∗a|E(A)) = αg(a∗a),

thus f ≤ αg. �

Theorem 3.8 (Absolute continuity of states). Let A be C∗-algebra with unit,
and let f, g ∈ E(A). The following statements are equivalent.

(i) f is absolutely continuous with respect to g.
(ii) There exist probability Radon measures µf , µg on E(A) such that the bary-

centers b(µf ) = f,b(µg) = g and µf is absolutely continuous with respect
to µg.

(iii) There exist probability Radon measures µf , µg on E(A) such that the bary-
centers b(µf ) = f,b(µg) = g and µ∗f is absolutely continuous with respect
to µ∗g.

Proof. (i) ⇒ (ii): By Theorem 2.15 (ii) there exists an increasing sequence
(fn)n∈N of positive functionals on A and a sequence (αn)n∈N in R+ such that
for any n ∈ N the inequality fn ≤ αng and the equality f = supn∈N fn hold. We
may assume that αn 6= 0 for every n ∈ N.

By the arguments previous to Theorem 3.6 and by Theorem 2.15 it is enough
to prove the existence of a sequence (νfn)n∈N in C (E(A); R)∗ and an R-linear
functional νg ∈ C (E(A); R)∗ satisfying

(a) for every n ∈ N, ϕ ∈ C (E(A); R)+ and a ∈ Asa the properties νfn(ϕ) ≥ 0,
νg(ϕ) ≥ 0, νfn(â|E(A)) = fn(a) and νg(â|E(A)) = g(a) hold;

(b) for every n ∈ N νfn ≤ νfn+1 ;
(c) νf := supn∈N νfn ∈ C (E(A); R)∗, moreover for every ϕ ∈ C (E(A); R)+

νf (ϕ) ≥ 0 and for any a ∈ Asa νf (â|E(A)) = f(a) is true.
(d) There exists a sequence (α̃n)n∈N in R+ such that for any n ∈ N and for

arbitrary ϕ ∈ C (E(A); R)+ the inequality νfn(ϕ) ≤ α̃nνg(ϕ) is true.

We show the existence of (νfn)n∈N by induction. Let E := C (E(A); R), fur-
thermore L := {â|E(A)|a ∈ Asa} and C := C (E(A); R)+. The real vector space E
equipped with the supremum-norm is Hausdorff and locally convex, L is a linear
subspace of E, C is a convex subset of E such that 1̂|E(A) ∈ (L ∩ intC). Let

ωf0 : L→ R; â|E(A) 7→ f0(a).

This mapping is linear, moreover for x ∈ L∩C x = â|E(A) for some a ∈ A+, hence
the positivity of f0 implies ωf0(x) ≥ 0. By Theorem 3.6 there exists a continuous
linear functional ω̃f0 : E → R which extends ωf0 , furthermore for any x ∈ C we
have ω̃f0(x) ≥ 0. Let

νf0 := ω̃f0 ;

this function obviously fulfills the properties of (a).
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Let n ∈ N be arbitrary, and suppose that the system (νfk
)0≤k≤n satisfies for

0 ≤ k ≤ n that νfk
∈ C (E(A)); R)∗, for ϕ ∈ C (E(A); R)+ that νfk

(ϕ) ≥ 0, for
any a ∈ Asa that νfk

(â|E(A)) = fk(a) and for any k < n that νfk
≤ νfk+1

. Let

ωn+1 : L→ R; â|E(A) 7→ (fn+1 − fn)(a).

From the property for (fn)n∈N it follows that for x ∈ L ∩ C ωn+1(x) ≥ 0. Thus
applying again Theorem 3.6, we obtain the existence of a continuous linear func-
tional ω̃n+1 : E → R which extends ωn+1, moreover for arbitrary x ∈ C the
inequality ω̃n+1(x) ≥ 0 holds. Let

νfn+1 := ω̃n+1 + νfn .

For this functional we have the inequality νfn+1(ϕ) ≥ 0 for any ϕ ∈ C (E(A); R)+,
furthermore νfn ≤ νfn + ω̃n+1 = νfn+1 . If a ∈ Asa arbitrary, then

νfn+1(â|E(A)) = ω̃n+1(â|E(A)) + νfn(â|E(A)) = (fn+1 − fn)(a) + fn(a) = fn+1(a),

hence the properties of (a) and (b) are fulfilled. We proved the existence of the
sequence (νfn)n∈N.

Since for any n ∈ N the equation

‖νfn‖ = νfn(1̂|E(A)) = fn(1) ≤ f(1) = 1

is true, thus the linear functional

νf : E → R; νf := sup
n∈N

νfn

exists. If a ∈ Asa arbitrary, then the previous arguments and f = limn→+∞ fn,
f(1) = 1 imply

νf (â|E(A)) := lim
n→+∞

νfn(â|E(A)) = lim
n→+∞

fn(a) = f(a).

Moreover, by definition for any ϕ ∈ C (E(A); R)+ the inequality νf (ϕ) ≥ 0 obvi-
ously occurs. This proves (c).

For the definition of νg let n ∈ N be any number. Since αng − fn is a positive
linear functional on A, thus let us denote by νgn an arbitrary extension to E of
the mapping

L→ R; â|E(A) 7→ αng(a)− fn(a)

in virtue of Theorem 3.6. Let (δn)n∈N be a sequence in R+ such that
∑+∞

n=0 δn = 1.
Let

νg :=
+∞∑
n=0

δn(
1

αn
(νgn + νfn)),

where the sum is meant in the functional norm. We state that νg is a linear
functional on C (E(A),R) which fulfills the desired properties of (a) and (d).
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The series determining νg is absolute convergent in the functional norm, hence
convergent. Indeed, it is a sum of positive functionals, thus g(1) = 1 implies

+∞∑
n=0

‖δn(
1

αn
(νgn + νfn))‖ =

+∞∑
n=0

δn(
1

αn
(νgn + νfn)(1̂|E(A)))

=
+∞∑
n=0

δn(
1

αn
((αng − fn)(1) + fn(1))) = 1.

It is clear from the definition that νg is a positive linear functional on C (E(A),R),
moreover for a ∈ A

+∞∑
n=0

δn(
1

αn
(νgn + νfn)(â|E(A))) =

+∞∑
n=0

δn(
1

αn
((αng − fn)(a) + fn(a)))

=
+∞∑
n=0

δng(a) = g(a),

i. e., (a) holds.
For n ∈ N let α̃n := αn

δn
. We state that for any n ∈ N the inequality νfn ≤ α̃nνg

is true. Indeed, this is an easy calculation:

νfn = α̃n(
δn
αn
νfn) ≤ α̃n(δn

1

αn
(νgn + νfn)) ≤ α̃nνg.

Hence we get (d).
(ii) ⇒ (i): If µf and µg are probability Radon measures on E(A) (with barycen-

ters f and g, respectively), such that µf is absolutely continuous with respect to
µg, then Theorem 2.15 imply the existence of an increasing sequence (µn)n∈N of
positive functionals in C (E(A); C)′ and of a sequence (αn)n∈N in R+ such that
for every n ∈ N µn ≤ αnµg holds, moreover µf = supn∈N µn. We may suppose
for n ∈ N that µn 6= 0 and αn 6= 0, since µf 6= 0. Hence for n ∈ N we have

0 6= ‖µn‖ = µn(1̂|E(A)). Since for any n ∈ N µn(1̂|E(A))
−1µn is a probability

Radon measure on E(A), thus by Theorem 3.4 we conclude the existence of its
barycenter fn ∈ E(A), i. e., for a ∈ A we obtain

fn(a) = (â|E(A))(fn) = µn(1̂|E(A))
−1µn(â|E(A)).

We prove that the sequence (µn(1̂|E(A))fn)n∈N is of positive functionals in A′ such
that

(a) it is increasing;

(b) for every n ∈ N the inequality µn(1̂|E(A))fn ≤ αng holds;

(c) supn∈N µn(1̂|E(A))fn = f .

Thus by Theorem 2.15 the functional f is absolutely continuous with respect to
g.

We note that 1 = µf (1̂|E(A)) = supn∈N µn(1̂|E(A)). Let n ∈ N and a ∈ A be
fixed elements. Then
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(a) : (µn(1̂|E(A))fn)(a
∗a) = µn(1̂|E(A))((â∗a|E(A))(fn)) = µn(â∗a|E(A))

≤ µn+1(â∗a|E(A)) = µn+1(1̂|E(A))((â∗a|E(A))(fn+1))

= (µn+1(1̂|E(A))fn+1)(a
∗a).

(b) : (µn(1̂|E(A))fn)(a
∗a) = µn(1̂|E(A))((â∗a|E(A))(fn)) = µn(â∗a|E(A))

≤ αnµg(â∗a|E(A)) = αn((â∗a|E(A))(g)) = αng(a
∗a).

(c) : sup
n∈N

(µn(1̂|E(A))fn)(a
∗a) = sup

n∈N
µn(1̂|E(A))((â∗a|E(A))(fn))

= sup
n∈N

µn(â∗a|E(A)) = µf (â∗a|E(A)) = (â∗a|E(A))(f) = f(a∗a).

(ii) ⇔ (iii): By Lemma 3.3 (a) it is obvious, since for any ϕ ∈ C (E(A); C) we
have

µf (ϕ) =

∫
E(A)

ϕ dµ∗f ; µg(ϕ) =

∫
E(A)

ϕ dµ∗g.

The proof is complete. �

Remark 3.9. We note that the equivalence (i) ⇔ (ii) in the latter theorem can
be found in van Handel’s work [9, Proposition 4.1], but the proof is very different
from ours. Namely, the arguments in [9] were based on a result of Gudder [8]
and a representation theorem in [20], while we used our characterization Theorem
2.15, our statement Lemma 3.3 and Ky Fan’s result Theorem 3.6.

4. Characterizations of absolute continuity, measure algebras of
compact groups

By the aid of singularity, we characterize the absolute continuity of positive
functionals defined on the measure algebra of a compact (always Hausdorff)
group. The significance of this is that the measure algebra is a kind of Ba-
nach ∗-algebra which is neither a C∗-algebra, nor commutative in general. In
the last two sections of the paper we will apply our statements to achieve results
on the Lebesgue decomposition’s uniqueness and on faithful positive functionals
(Theorems 5.15, 6.1 and Corollary 6.2).

Now we recall some fundamental concepts and results in the context of the
measure and the Hilbert algebra of a compact group. The reader is referred to
the works [3], [6], [7], [12], [13], [14], [16], [17].

Let G be a compact group. Denote by β the normalized Haar measure (func-
tional, or integral, cf. Theorem 3.2) on G, and let CC(G; β) be the convolution
∗-algebra of the G → C continuous functions (we set ”∗β” for the convolution
and ”∗” for the involution).

- We use the notation (L1
C(G; β), ‖ · ‖β,1) for the measure algebra of G, i. e.,

the completion of the ∗-algebra CC(G; β) equipped with the norm

CC(G; β) 3 ϕ 7→ β(|ϕ|) =:

∫
G

|ϕ| dβ.
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The involution of the Banach ∗-algebra L1
C(G; β) is isometric and proper

(that is, ϕ∗ ∗βϕ 6= 0 if ϕ ∈ L1
C(G; β)\{0}). Furthermore, L1

C(G; β) admits
an approximate identity (ϕi)i∈I of continuous functions in the closed unit
ball such that for any ϕ ∈ CC(G; β) the nets (ϕi ∗β ϕ)i∈I and (ϕ ∗β ϕi)i∈I
converge uniformly to ϕ on G.

We also note that every positive functional on L1
C(G; β) is continuous

and representable ([17, Corollary 11.3.8]).
- We use the notation (L2

C(G; β), (·|·)β,2) for the Hilbert algebra of G, i. e.,
the completion of the pre-Hilbert space CC(G; β) equipped with the inner
product

CC(G; β)× CC(G; β) 3 (ϕ, ψ) 7→ β(ϕψ) =:

∫
G

ϕψ dβ =: (ϕ|ψ)β,2,

which is also a Banach ∗-algebra under the extensions of the convolu-
tion and involution (isometric and proper, as well), moreover it can be
embedded into L1

C(G; β).
Furthermore, the above mentioned approximate identity for L1

C(G; β)
is an approximate identity in L2

C(G; β), as well.
We note that the following property holds for any ϕ1, ϕ2, ϕ3 ∈ CC(G; β)

(see [17, page 1484]):

(ϕ∗1 ∗β ϕ2|ϕ3)β,2 = (ϕ2|ϕ1 ∗β ϕ3)β,2 = (ϕ2 ∗β ϕ∗3|ϕ1)β,2.

Let us fix a nonzero positive functional p on L1
C(G; β) until Lemma 4.1. The

representation πp associated to p is nondegenerate, hence by well-known results
we infer that there exists a unique continuous unitary representation Vp of G on
the Hilbert space Hp such that for every ϕ ∈ CC(G; β) and ξ, η ∈ Hp the equation

(πp(ϕ)ξ|η)p =

∫
G

ϕ(s)(Vp(s)ξ|η)p dβ(s) = β(ϕ(·)(Vp(·)ξ|η)p)

holds (cf. [17, page 1388]). In particular, we have that

p(ϕ) = (πp(ϕ)ξp|ξp)p =

∫
G

ϕ(s)(Vp(s)ξp|ξp)p dβ(s)

=

∫
G

ϕ(s)(Vp(s)ξp|ξp)p dβ(s).

(4.1)

Define

ϕp : G→ C; s 7→ (Vp(s)ξp|ξp)p. (4.2)

It is easy to check that this function is continuous, self-adjoint (and what is more,
positive-definite), moreover for any λ ∈ R+ the equation ϕλp = λϕp holds (see
[17, page 1389]).

It is also well-known that πp is topologically irreducible if and only if Vp is a
topologically irreducible representation of G ([17, page 1391, 1392]). In this case,
from Theorem 12.4.3 in [17] we conclude that Hp is finite-dimensional (hence
we can omit the word ”topologically”), moreover there is a positive constant
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λp ∈ R+ such that λpϕp is projection in the convolution ∗-algebra CC(G; β) (in

fact λp = dim(Hp)

‖ξp‖2p
, see chapter 4, page 943 in [7]).

Furthermore, for any nonzero positive functional f on L1
C(G; β) there exists a

nonzero positive functional p on L1
C(G; β) such that p ≤ f and πp is an irreducible

representation.
Now let Rϕp be the right multiplication operator on L2

C(G; β) associated to ϕp,
i.e., for ψ ∈ L2

C(G; β), Rϕp(ψ) := ψ ∗β ϕp. This operator is continuous ([13]),
moreover it is positive, since (4.1) and the self-adjointness of ϕp imply for any
ψ ∈ CC(G; β) that

0 ≤ p(ψ∗ ∗β ψ) =

∫
G

(ψ∗ ∗β ψ)ϕp dβ

= (ψ∗ ∗β ψ|ϕp)β,2 = (ψ|ψ ∗β ϕp)β,2 = (ψ ∗β ϕp|ψ)β,2 = (Rϕp(ψ)|ψ)β,2.

Furthermore, if ϕp is a projection, then Rϕp is also a projection. Indeed, it is
positive, moreover for any ψ ∈ CC(G; β)

Rϕp(Rϕp(ψ)) = (ψ ∗β ϕp) ∗β ϕp = ψ ∗β ϕp = Rϕp(ψ),

hence it is idempotent on a dense subspace.
Denote by L the left regular representation of CC(G; β) on the Hilbert algebra

L2
C(G; β), i.e., for any ψ ∈ CC(G; β) and ϕ ∈ L2

C(G; β) let Lψ(ϕ) := ψ ∗β ϕ. Let

Hϕp : = {Lψ(ϕp)|ψ ∈ CC(G; β)} = {ψ ∗β ϕp|ψ ∈ CC(G; β)} =

= {Rϕp(ψ)|ψ ∈ CC(G; β)} = ranRϕp ,

where the closures stand for the closure in L2
C(G; β). This closed linear subspace

Hϕp of L2
C(G; β) is invariant under the continuous operators Lψ, so denote by

L|Hϕp the subrepresentation of L on Hϕp .
Since CC(G; β) is dense in L1

C(G; β), the operator

U0 : Hp → Hϕp ;

ψ + ker ‖ · ‖•p 7→ ψ ∗β ϕp = Lψ(ϕp) = Rϕp(ψ) (ψ ∈ CC(G; β)) (4.3)

is densely and well-defined, moreover continuous. Indeed, the bounded operator
Rϕp is positive, thus for any ψ ∈ CC(G; β) we conclude

‖
√
Rϕp‖2‖ψ + ker ‖ · ‖•p‖2

p = ‖
√
Rϕp‖2p(ψ∗ ∗β ψ) = ‖

√
Rϕp‖2(πp(ψ

∗ ∗β ψ)ξp|ξp)p

= ‖
√
Rϕp‖2

∫
G

(ψ∗ ∗β ψ)ϕp dβ

= ‖
√
Rϕp‖2(ψ∗ ∗β ψ|ϕp)β,2

= ‖
√
Rϕp‖2(ψ|ψ ∗β ϕp)β,2 = ‖

√
Rϕp‖2(ψ ∗β ϕp|ψ)β,2

= ‖
√
Rϕp‖2(Rϕp(ψ)|ψ)β,2 = ‖

√
Rϕp‖2‖

√
Rϕp(ψ)‖2

β,2

≥ ‖Rϕp(ψ)‖2
β,2 = ‖ψ ∗β ϕp‖2

β,2,
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Hence there exists a unique Up : Hp → Hϕp continuous linear extension of U0.
We state that for every ψ ∈ CC(G; β)

Up ◦ πp(ψ) = Lψ|Hϕp
◦ Up (4.4)

holds (that is, Up intertwines the representations πp|CC(G;β) and L|Hϕp), moreover
Up(ξp) = ϕp is true. Indeed, first of all (4.4) is obvious from definition (4.3). As we
mentioned before, L1

C(G; β) admits an approximate identity (ϕi)i∈I of continuous
functions in the closed ball, which is also an approximate identity for L2

C(G; β).
Hence from Lemma 2.5 it follows that

ϕi + ker ‖ · ‖•p = πp(ϕi)ξp → ξp,

thus the continuity of Up implies that

Up(ξp) = Up(lim
i,I

(ϕi + ker ‖ · ‖•p)) = lim
i,I

(ϕi ∗β ϕp) = ϕp. (4.5)

We also note here that the arguments above immediately imply that πp|CC(G;β)

and L|Hϕp are cyclic ∗-representations of CC(G; β) with cyclic vectors ξp and ϕp,
respectively.

If ϕp is a projection, then the operator Up is unitary onto Hϕp . Indeed, let
ψ ∈ CC(G; β) be arbitrary. Then

(πp(ψ)ξp|ξp)p =

∫
G

ψϕp dβ = (ψ|ϕp)β,2 =

= (ψ|ϕp ∗β ϕp)β,2 = (ψ ∗β ϕp|ϕp)β,2 = (Lψ(ϕp)|ϕp)β,2,
(4.6)

hence from [3, Proposition 2.4.1 (ii)] we conclude by means of (4.3), (4.4) and
(4.5) that Up is unitary onto Hϕp .

Now suppose that πp is an irreducible representation of L1
C(G; β). We show

that Rϕp is a finite-rank operator (projection). We may assume that ϕp is a
projection, since there is a λp ∈ R+ such that λpϕp is a projection, moreover
Rλpϕp = λpRϕp (see the paragraph after (4.2)). But in this case the operator Up
is unitary from Hp onto Hϕp = ranRϕp , and by the irreducibility the space Hp is
finite dimensional (paragraph after (4.2)).

Now we are in position the investigate the absolute continuity of positive func-
tionals on L1

C(G; β). Our following key lemma deals with the singularity.

Lemma 4.1. Let G be a compact group and let β be the normed Haar measure on
G. Assume that p and g are nonzero singular positive functionals on L1

C(G; β).
Let ϕp and ϕg be the functions associated to p and g according to (4.2). Then the
following statements hold.

(a) There exists a sequence (ψn)n∈N in CC(G; β) such that

( lim
n→+∞

Rϕp(ψn) = ϕp) ∧ ( lim
n→+∞

Rϕg(ψn) = 0),

that is,

(Rϕp(ψn) = ψn ∗β ϕp → ϕp) ∧ (Rϕg(ψn) = ψn ∗β ϕg → 0)

holds in the Hilbert space L2
C(G; β).
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(b) If πp is an irreducible representation of L1
C(G; β), then there exists a con-

tinuous function ϕ ∈ CC(G; β) such that

(g(ϕ∗ ∗β ϕ) = 0) ∧ (p(ϕ∗ ∗β ϕ) 6= 0).

Proof. (a): Since p and g are singular, moreover CC(G; β) is dense in L1
C(G; β),

Lemma 2.10 (b) implies that p|CC(G;β) and g|CC(G;β) are singular, as well. Hence
by Theorem 1.15 (ii) there is a sequence (ψn)n∈N in CC(G; β) such that

( lim
n→+∞

πp(ψn)ξp = ξp) ∧ ( lim
n→+∞

πg(ψn)ξg = 0). (4.7)

From (4.3), (4.4) and (4.5) follow the existence of continuous operators Up : Hp →
Hϕp and Ug : Hg → Hϕg such that for any ψ ∈ CC(G; β) the equations

(Up(πp(ψ)ξp) = ψ ∗β ϕp) ∧ (Up(ξp) = ϕp); Ug(πg(ψ)ξg) = ψ ∗β ϕg
hold. Hence by (4.7) and the continuity we have

(ψn ∗β ϕp → ϕp) ∧ (ψn ∗β ϕg → 0).

(b): Let πp be an irreducible representation. By the arguments after (4.2) we
may assume that ϕp is a projection, since it is enough to prove the statement for
a constant multiple of p (Remark 1.10).

By (a) there is a sequence (ψn)n∈N in CC(G; β) such that

( lim
n→+∞

Rϕp(ψn) = ϕp) ∧ ( lim
n→+∞

Rϕg(ψn) = 0),

that is,

(Rϕp(ψn) = ψn ∗β ϕp → ϕp) ∧ (Rϕg(ψn) = ψn ∗β ϕg → 0) (4.8)

holds true in L2
C(G; β).

The set H := {ϕmg ∗βϕp|m ∈ N\{0}} is a subset of the finite dimensional space
ranRϕp (see the last argument before the Lemma’s statement), hence there exist
an m ∈ N \ {0} and a non-identically zero system (λj)1≤j≤m in C such that

m∑
j=1

λj(ϕ
j
g ∗β ϕp) = 0.

Indeed, if for some m ∈ N\{0} the equation ϕmg ∗βϕp = 0 holds, then we are done.

If there exist different l,m ∈ N\{0} numbers such that ϕmg ∗β ϕp = ϕlg ∗β ϕp, then

ϕmg ∗β ϕp − ϕlg ∗β ϕp = 0 is suitable. Thus the remained case is that H contains
infinite nonzero vectors, but since ranRϕp is finite dimensional, these vectors are
linearly dependent. So what we stated is true.

Let m0 be the minimal index between 1 and m such that λm0 6= 0. So we have
the following identity:

0 =
m∑

j=m0

λj(ϕ
j
g ∗β ϕp) = ϕm0

g ∗β (λm0ϕp +
m∑

j=m0+1

λj(ϕ
j−m0
g ∗β ϕp)),

where the sum on the right side is possibly void.
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- We show that the function in the brackets on the right are nonzero. If we
assume the contrary, that is,

λm0ϕp +
m∑

j=m0+1

λj(ϕ
j−m0
g ∗β ϕp) = 0,

then we get

λm0ϕp = −
m∑

j=m0+1

λj(ϕ
j−m0
g ∗β ϕp).

For any n ∈ N multiplying from the left by ψn we have

λm0(ψn ∗β ϕp) = −
m∑

j=m0+1

λj(ψn ∗β (ϕj−m0
g ∗β ϕp)).

Since λm0 6= 0, the property (4.8) implies that the right side of the equa-
tion tends to zero, but the left side is not, which is a contradiction.

- Let M0 be the minimal positive integer such that

ϕM0
g ∗β (λm0ϕp +

m∑
j=m0+1

λj(ϕ
j−m0
g ∗β ϕp)) = 0.

We show that M0 = 1. Indeed, if M0 ≥ 2, then the minimality of M0

forces that

ψ := ϕM0−1
g ∗β (λm0ϕp +

m∑
j=m0+1

λj(ϕ
j−m0
g ∗β ϕp)) 6= 0.

On the other hand, the selfadjointness of ϕg and 2M0 − 2 ≥M0 imply

ψ∗ ∗β ψ =
((
λm0ϕp +

m∑
j=m0+1

λj(ϕ
j−m0
g ∗β ϕp)

)∗ ∗β ϕM0−1
g

)
∗β

∗β (ϕM0−1
g ∗β (λm0ϕp +

m∑
j=m0+1

λj(ϕ
j−m0
g ∗β ϕp)))

=
(
λm0ϕp +

m∑
j=m0+1

λj(ϕ
j−m0
g ∗β ϕp)

)∗ ∗β ϕ2M0−2
g ∗β

∗β (λm0ϕp +
m∑

j=m0+1

λj(ϕ
j−m0
g ∗β ϕp)) = 0,

which is impossible, since the involution of L1
C(G; β) is proper.

Thus we have the following:

(∗) λm0ϕp +
∑m

j=m0+1 λj(ϕ
j−m0
g ∗β ϕp) 6= 0,

(∗∗) ϕg ∗β (λm0ϕp +
∑m

j=m0+1 λj(ϕ
j−m0
g ∗β ϕp)) = 0.
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We state that the element

ϕ :=
(
λm0ϕp +

m∑
j=m0+1

λj(ϕ
j−m0
g ∗β ϕp)

)∗
= λm0ϕp +

m∑
j=m0+1

λj(ϕp ∗β ϕj−m0
g )

of the convolution ∗-algebra CC(G; β) fulfills the properties

(I) : g(ϕ∗ ∗β ϕ) = 0,
(II) : p(ϕ∗ ∗β ϕ) > 0.

(I): Since ϕ∗ is the function in (∗) (ϕ∗ 6= 0) and (∗∗) (ϕg ∗β ϕ∗ = 0), hence the
self-adjointness of ϕg and (∗∗) imply

g(ϕ∗ ∗β ϕ) =

∫
G

(ϕ∗ ∗β ϕ)ϕg dβ = (ϕ∗ ∗β ϕ|ϕg)β,2 = (ϕ∗|ϕg ∗β ϕ∗)β,2 = 0.

(II): Since ϕp is a projection, from (4.6) we obtain that

p(ϕ∗ ∗β ϕ) = (πp(ϕ
∗ ∗β ϕ)ξp|ξp)p = (L(ϕ∗∗βϕ)(ϕp)|ϕp)β,2 = ‖ϕ ∗β ϕp‖2

β,2.

Since ‖ · ‖β,2 is a norm, we only have to show that ϕ ∗β ϕp is nonzero. But from
(∗), (∗∗), λm0 6= 0 and the argument below this is an immediately consequence,
since the involution of L2(G; β) is proper:

0 6= ϕ ∗β ϕ∗ =
(
λm0ϕp +

m∑
j=m0+1

λj(ϕ
j−m0
g ∗β ϕp)

)∗
∗β ϕ∗

=
(
λm0ϕp +

m∑
j=m0+1

λj(ϕp ∗β ϕj−m0
g )

)
∗β ϕ∗

= λm0(ϕp ∗β ϕ∗) + (
m∑

j=m0+1

λj(ϕp ∗β ϕj−m0
g )) ∗β ϕ∗

= λm0(ϕp ∗β ϕ∗) + (
m∑

j=m0+1

λj(ϕp ∗β ϕj−m0
g ∗β ϕ∗))

= λm0(ϕp ∗β ϕ∗) + 0 = λm0(ϕ ∗β ϕp)∗.
The proof is complete. �

Corollary 4.2. Let G be a compact group and β the normed Haar measure on
G. Let f and g be positive functionals on L1

C(G, β). If f and g are singular, then
there exists ϕ ∈ CC(G; β) such that

(g(ϕ∗ ∗β ϕ) = 0) ∧ (f(ϕ∗ ∗β ϕ) 6= 0).

Proof. As we mentioned in the second paragraph after (4.2), there exists a nonzero
positive functional p on L1

C(G, β) such that πp is an irreducible ∗-representation
and p ≤ f . Since f and g are singular, then p and g are singular, as well (Remark
1.10). Thus by (b) of Lemma 4.1 there exists ϕ ∈ CC(G; β) such that

(g(ϕ∗ ∗β ϕ) = 0) ∧ (p(ϕ∗ ∗β ϕ) 6= 0).

From this and from p ≤ f it follows that f(ϕ∗ ∗β ϕ) 6= 0. �
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We present our result on characterization of the absolute continuity of positive
functionals on measure algebras of compact groups. This will be also useful during
the investigations on the uniqueness of the Lebesgue decomposition (Theorem
5.15), as well as in the proof of results on faithful positive functionals (Section
6).

Theorem 4.3 (Characterization of absolute continuity). Let G be a compact
group and β the normed Haar measure on G. Let f and g be positive functionals
on L1

C(G, β). The following statements are equivalent.

(i) f is absolutely continuous with respect to g.
(ii) ker ‖ · ‖•g ⊆ ker ‖ · ‖•f .

Proof. (i) ⇒ (ii): It is obvious by Remark 1.10.
(ii) ⇒ (i): Assume that ker ‖ · ‖•g ⊆ ker ‖ · ‖•f holds. Let f = freg + fsing be

the Lebesgue decomposition of f with respect to g by Corollary 2.17. If f is not
absolutely continuous with respect to g, then fsing 6= 0 is true by Proposition 1.13.
Since g and fsing are singular, Corollary 4.2 implies the existence of a continuous
function ϕ ∈ CC(G; β) such that

(g(ϕ∗ ∗β ϕ) = 0) ∧ (fsing(ϕ
∗ ∗β ϕ) 6= 0).

From fsing ≤ f we have that f(ϕ∗ ∗β ϕ) 6= 0, but this contradicts (ii). The proof
is complete. �

One of the definitions of absolute continuity exactly means that the densely
defined operator

Jg,f : Hg → Hf ; a+ ker ‖ · ‖•g 7→ a+ ker ‖ · ‖•f
is well-defined and closable (Remark 1.4). The previous theorem shows the strong
fact that the well-definedness automatically implies the closability. This will be
the key in the last two sections.

5. Uniqueness of the Lebesgue decomposition on commutative
∗-algebras and measure algebras of compact groups

Hassi, Sebestyén and de Snoo in [10] answered the question of uniqueness about
their Lebesgue decomposition related to forms (Theorem 1.11 in this paper).
Namely, if t and w are forms on the complex vector space E and t = treg + tsing
is the Lebesgue decomposition of t with respect to w by Theorem 1.11, then are
there a different form decomposition t = tr + ts where tr is absolutely continuous
with respect to w and ts is singular to w? The answer is the next remarkable
characterization ([10, Section 4]).

Proposition 5.1 (Uniqueness of the Lebesgue decomposition for forms). The
Lebesgue decomposition of the form t with respect to w is unique if and only if w
dominates treg.

From this result it follows that on finite dimensional complex vector spaces
the Lebesgue decomposition of forms is unique. Indeed, let dim(E) < +∞. The
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absolute continuity of treg with respect to w is equivalent to that the densely
defined mapping

Jw,treg : Hw → Htreg ; x+ ker ‖ · ‖•w 7→ x+ ker ‖ · ‖•treg

is well-defined and closable (Remark 1.4). But the spaces are finite dimensional,
hence the linear operator above is everywhere defined, thus it is continuous. So
for any x ∈ E we get

treg[x] = ‖x+ ker ‖ · ‖•treg
‖2

treg
= ‖Jw,treg(x+ ker ‖ · ‖•w)‖2

treg
≤

≤ ‖Jw,treg‖2‖x+ ker ‖ · ‖•w‖2
w = ‖Jw,treg‖2w[x],

that is, w dominates treg.
On the other hand, if dim(E) = +∞, then there exist forms t and w on E such

that t is absolutely continuous with respect to w (hence t = treg in the Lebesgue
decomposition with respect to w), but w not dominates t, thus this Lebesgue
decomposition is not unique (Proposition 5.1). Indeed, let (ei)i∈I be an algebraic
basis in E. Choose a countably infinite subsystem (ej)j∈J , and let σ : N → J be
a bijection. Let t and w be the forms associated to the E × E → C semi-inner
products determined by the following properties:

(ei|ek)t :=

{
1, if i = k and i ∈ ranσ.
0 otherwise.

(ei|ek)w :=

{
1
2n , if i = k and i ∈ ranσ, σ−1(i) = n.
0 otherwise.

Furthermore, for a fixed n ∈ N let pn be the form associated to the semi-inner
product with the following property:

(ei|ek)pn :=

{
1, if i = k and i = σ(n).
0 otherwise.

Define the form tn with the formula tn :=
∑n

m=0 pm. It is easy to check that w not
dominates t, moreover (tn)n∈N is increasing, tn ≤ 2nw (n ∈ N) and t = supn∈N tn,
hence t is absolutely continuous with respect to w (Theorem 1.2). Thus on
an infinite dimensional complex vector space the Lebesgue decomposition is not
unique for arbitrary forms.

The case of positive functionals is more complicated. As we mentioned af-
ter Theorem 1.16, all of the Lebesgue decompositions of (representable) positive
functionals (Corollary 3 in [8]; Theorem 3.5 in [15]; Theorem 1 in [11]; Theo-
rem 1.16 (and Corollary 2.17) in this paper) are coincide with the same settings.
Hence the question of the uniqueness is the following: if f and g are arbitrary
representable positive functionals on the ∗-algebra A and f = freg + fsing is the
Lebesgue decomposition of f with respect to g by Corollary 2.17, then are there
a different representable positive functional decomposition f = fr + fs where fr
is absolutely continuous with respect to g and fs is singular to g? What we can
definitely observe is that the inequalities fr ≤ freg and fs ≥ fsing are true by the
extremal property of the regular part (Corollary 2.17).

Since Corollary 2.17 is based on Theorem 1.11, the finite dimensional case is
clear, because the argument after Proposition 5.1 implies that the decomposition
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is unique. On the other hand, on infinite dimensional ∗-algebras we cannot use
Proposition 5.1, since in its proof ([10, Section 4]) the form which shows the non-
uniqueness is not a positive functional induced form in general. In particular,
Example 5.14 points out that the functional decomposition can be unique, while
the form decomposition can not.

From the papers above we can conclude the following. Gudder in [8, paragraph
after Corollary 3] noted that he could not prove the uniqueness. Henle in [11,
Theorem 2] stated that his decomposition is unique. However, this statement
is false in general. Namely, since on σ-finite von Neumann algebras for normal
states Henle’s decomposition is just the same as Kosaki’s decomposition, and
Kosaki’s example ([15, 10.6]) shows the non-uniqueness of his decomposition,
Henle’s result on the uniqueness cannot be true in general.

Hence from the facts above we conclude that the Lebesgue decomposition of
representable positive functionals is not unique in full generality. But then the
question arises: what are the classes of ∗-algebras, whereon the Lebesgue de-
composition of representable positive functionals is unique? Finite dimensional
∗-algebras are of this kind (argument after Proposition 5.1). Our purpose in this
part of the paper is to show that commutative ∗-algebras and measure algebras
of compact groups also have this property. We will use our results from Sections
3 and 4.

Our next lemma characterizes the uniqueness on general ∗-algebras.

Lemma 5.2 (Uniqueness of the Lebesgue decomposition for positive functionals).
Let A be a ∗-algebra. The following statements are equivalent.

(i) For every f and g representable positive functionals on A the Lebesgue
decomposition of f with respect to g is unique.

(ii) For every f , p and g representable positive functionals on A, if f is ab-
solutely continuous with respect to g and g is singular to p, then f and p
are also singular.

(iii) For every f , p and g representable positive functionals on A, if f is ab-
solutely continuous with respect to g, p ≤ f and g is singular to p, then
p = 0.

(iv) For every f , t and g representable positive functionals on A, if f is abso-
lutely continuous with respect to g and t ≤ f , then t is absolutely contin-
uous with respect to g.

(v) For every f , t and g representable positive functionals on A, if f is ab-
solutely continuous with respect to g and t is absolutely continuous with
respect to f , then t is absolutely continuous with respect to g.

Proof. (i) ⇒ (ii): Let f, p and g be representable positive functionals on A, and
suppose that f is absolutely continuous with respect to g and g is singular to p.
Let r := f + p; the functional r is positive and representable, since it is a sum
of this kind of functionals (Theorem 2.3 (a)). The assumption implies that the
Lebesgue decomposition of r with respect to g is unique, hence the regular part
of r is just f = rreg, meanwhile the singular part is p = rsing. On the other hand,
by Proposition 1.13 these functionals are singular to each other, that is f and p
are singular.
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(ii) ⇒ (iii): If f, p and g are representable positive functionals on A, p ≤ f , f
is absolutely continuous with respect to g and p is singular to g, then by (ii) it
follows that p is singular to f . By Remark 1.10 p = 0 follows.

(iii) ⇒ (iv): Assume that t, f and g are representable positive functionals on A
such that t ≤ f and f is absolutely continuous with respect to g. From Corollary
2.17 we have that t is a sum of representable positive functionals: t = treg + tsing,
where treg is absolutely continuous with respect to g, tsing and g are singular.
From tsing ≤ t ≤ f it follows that tsing ≤ f , thus by (iii) tsing = 0, that is
t = treg, hence t is absolutely continuous with respect to g by Proposition 1.13.

(iv) ⇒ (i): Let f and g be representable positive functionals on A. Assume
that f can be written in a sum f = freg + fsing = fr + fs, where freg + fsing
is the decomposition with respect to g by Corollary 2.17, meanwhile fr and fs
are representable positive functionals on A such that fr is absolutely continuous,
fs is singular with respect to g. By Corollary 2.17 fr ≤ freg holds, so for the
representable positive functional freg−fr (Theorem 2.3) the inequality freg−fr ≤
freg is true, hence (iv) implies that freg−fr is absolutely continuous with respect
to g. On the other hand, freg − fr = fs − fsing holds, and by fs − fsing ≤ fs the
right side of the equality is singular to g (Remark 1.10). But also from Remark
1.10 this occurs only when freg − fr = fs − fsing = 0.

(v) ⇒ (iv): It is obvious, since t ≤ f implies that t is absolutely continuous
with respect to f (Remark 1.10).

(ii)+ (iv) ⇒ (v): Assume that t, f and g are representable positive functionals
on A such that t is absolutely continuous with respect to f and f is absolutely
continuous with respect to g. Let t = treg + tsing be the Lebesgue decomposition
of t with respect to g by Corollary 2.17. Since tsing and g are singular, hence
by (ii) tsing and f are also singular. On the other hand, due to tsing ≤ t, (iv)
implies that tsing is absolutely continuous with respect to f . From Remark 1.10
this comes true if tsing = 0, i.e., t = treg, hence by Proposition 1.13 the proof is
complete. �

Remark 5.3. In [11, Lemma (a), section 4] Henle stated that (ii) is always occurs
for positive functionals on unital C∗-algebras. However, Kosaki’s Lemma 10.5 in
[15] shows that (iv) fails in generality on σ-finite von Neumann algebras. Since
(ii) and (iv) are equivalent, thus the argument on the uniqueness in [11] is false.

5.1. G∗-algebras. Before we turn to the uniqueness on commutative ∗-algebras,
we examine the Lebesgue decomposition on a special class of ∗-algebras, namely
on G∗-algebras. Every Banach ∗-algebra (complete normed algebra with an in-
volution) is in this class, hence it is worth to study this case. Following Palmer
([17, Section 10.1]), we introduce some definitions and theorems.

Definition 5.4. We say that the pair (B, j) is an enveloping C∗-algebra of the
∗-algebra A, if B is a C∗-algebra, j : A → B is a ∗-algebra morphism, and for
every C∗-algebra C and for every π : A → C ∗-algebra morphism there exists a
π̃ : B → C ∗-algebra morphism such that π = π̃ ◦ j.
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Proposition 5.5. If A is a ∗-algebra and (B1, j1), (B2, j2) are enveloping C∗-
algebras of A, then there exists a unique ∗-algebra morphism π : B1 → B2 such
that π ◦ j1 = j2.

From this proposition it follows that if (B, j) is an enveloping C∗-algebra of
the ∗-algebra A, then ran j is a dense ∗-subalgebra of B.

We introduce the concept of G∗-algebras by the aid of the next theorem.

Theorem 5.6. Let A be a ∗-algebra. The following are equivalent.

(i) There exists enveloping C∗-algebra of A.
(ii) There exists greatest C∗-seminorm on A.
(iii) There exists r : {a∗a|a ∈ A} → R+ such that

(iii)’ for any a ∈ A lim infn→+∞ r((a
∗a)2n

)2−n
is finite;

(iii)” for any representable positive functional f on A and for any b ∈ A
there exists B ∈ R+ such that for every a ∈ A f(b∗a∗ab) ≤ Br(a∗a)
holds.

Definition 5.7. The ∗-algebra A is a G∗-algebra if one (hence all) of the prop-
erties is fulfilled by A.

Corollary 5.8. Every Banach ∗-algebra is a G∗-algebra.

Proof. It is well known that if r stands for the spectral radius of a Banach ∗-
algebra A, then A has the properties in (iii) of Theorem 5.6. �

For commutative Banach ∗-algebras the following theorem is also known ([17,
Proposition 10.1.14]).

Theorem 5.9. If A is commutative Banach ∗-algebra and Xsa(A) stands for
the locally compact space of the nonzero selfadjoint characters (equipped with the
Gelfand topology), then the pair (K (Xsa(A); C),̂ ) is an enveloping C∗-algebra
of A, where ̂ : A → K (Xsa(A); C) is the selfadjoint Gelfand homomorphism of
A.

The following theorem shows the connection between representable positive
functionals on a G∗-algebra and positive functionals on one of its enveloping C∗-
algebra ([17, Theorem 10.1.12]).

Theorem 5.10. Let A be a G∗-algebra and let (B, j) be an enveloping C∗-algebra
of A. Denote by (B∗)+ the set of positive functionals on B, and let J : (B∗)+ →
A∗; F 7→ F ◦ j. Then:

(a) The mapping J is a bijection between (B∗)+ and the representable positive
functionals on A (we say that J is the canonical bijection).

(b) For the Hilbert bound (see Remark 2.2) of J(F ) we have ‖J(F )‖H = ‖F‖.
The following result characterizes the concepts of the Lebesgue decomposition

on G∗-algebras via enveloping C∗-algebras.

Theorem 5.11 (Lebesgue decomposition of positive functionals on G*-algebras).
Let A be a G∗-algebra and let (B, j) be an enveloping C∗-algebra of A. Let J :
(B∗)+ → A∗; F 7→ F ◦ j be the canonical bijection (Theorem 5.10). Let f and g
be representable positive functionals on A. Then the following statements hold.
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(a) f is absolutely continuous with respect to g ⇔ J−1(f) is absolutely con-
tinuous with respect to J−1(g).

(b) f is singular to g ⇔ J−1(f) is singular to J−1(g).
(c) If the Lebesgue decomposition (Corollary 2.17) of f (resp. J−1(f)) is

f = freg + fsing (resp. J−1(f) = Freg + Fsing) with respect to g (resp.
J−1(g)), then:
(c’) J−1(freg) = Freg, J(Freg) = freg;
(c”) J−1(fsing) = Fsing, J(Fsing) = fsing.

Proof. By Lemma 2.10 it is enough to investigate the absolute continuity and the
singularity of J−1(f) and J−1(g) on the dense ∗-subalgebra ran j.

(a) and (b): Since for a ∈ A
(J−1(f))(j(a)) = ((J−1(f)) ◦ j)(a) = (J(J−1(f)))(a) = f(a),

(J−1(g))(j(a)) = ((J−1(g)) ◦ j)(a) = (J(J−1(g)))(a) = g(a),

hold, thus by the definitions the statement is clear.
(c): The mapping J is order-preserving, since for positive functionals F and G

on B such that F ≤ G we infer 0 ≤ J(G − F ) = (G − F ) ◦ j = G ◦ j − F ◦ j =
J(G)− J(F ).

It is enough to show that the equation J−1(freg) = Freg is true, the other
equation J−1(fsing) = Fsing follows from the definition of singularity and the
order-preserving.

The positive functional freg is the greatest among the representable positive
functionals p on A such that p ≤ f hold and p is absolutely continuous with
respect to g (Corollary 2.17). Since J is an order-preserving bijection, the positive
functional J−1(freg) is the greatest among the positive functionals on B what are
lower or equal than J−1(f) and absolutely continuous with respect to J−1(g).
Hence from the decomposition J−1(freg) = Freg follows. �

This means that the Lebesgue decomposition theory of representable positive
functionals on G∗-algebras ”coincides” with the Lebesgue decomposition theory
of positive functionals on C∗-algebras.

From the following theorem we are able to show the existence of a noncom-
mutative, infinite dimensional C∗-algebra whereon the Lebesgue decomposition
is unique (Corollary 5.16).

Theorem 5.12. Let A be a G∗-algebra and let (B, j) be an enveloping C∗-algebra
of A. The following statements are equivalent.

(i) The Lebesgue decomposition on A is unique.
(ii) The Lebesgue decomposition on B is unique.

Proof. Let J : (B∗)+ → A∗; F 7→ F ◦ j be the canonical bijection. We will use
(v) of Lemma 5.2.

If f, g and t are arbitrary representable positive functionals on A such that t
is absolutely continuous with respect to f and f is absolutely continuous with
respect to g, then by Theorem 5.11 these properties hold iff J−1(t) is absolutely
continuous with respect to J−1(f) and J−1(f) is absolutely continuous with re-
spect J−1(g), as well. The statement ”t is absolutely continuous with respect to



242 ZS. SZŰCS

g” (which guarantees the uniqueness on A) is true if and only if J−1(t) is ab-
solutely continuous with respect to J−1(g) (which guarantees the uniqueness on
B). �

5.2. Commutative ∗-algebras. We have seen for a locally compact space T
that the absolute continuity and the singularity of positive functionals defined on
K (T ; C) are in strong connection with the absolute continuity and the singular-
ity of the bounded Baire measures on T (Riesz representation theorem 3.2 and
Lemma 3.3). Since the Lebesgue decomposition for set measures is unique, one
may expect that the Lebesgue decomposition on K (T ; C) is also unique. Our
result shows this in a more general setting.

Theorem 5.13. Let A be a commutative ∗-algebra. Then for every representable
positive functionals f and g on A the Lebesgue decomposition of f with respect to
g is unique.

Proof. First assume that A is a Banach ∗-algebra. Since every Banach ∗-algebra is
a G∗-algebra, by Theorem 5.12 the Lebesgue decomposition on A is unique if and
only if the Lebesgue decomposition on any enveloping C∗-algebra of A is unique.
By Theorem 5.9 the pair (K (Xsa(A); C),̂ ) is an enveloping C∗-algebra of A,
hence we have to prove that if T is a locally compact space, then the Lebesgue
decomposition on K (T,C) is unique. We will use Lemma 5.2 (v).

Let µ̃, ϑ̃ and ν̃ be positive functionals on K (T,C) such that ϑ̃ is absolutely
continuous with respect to µ̃, and the latter is absolutely continuous with respect
to ν̃. Then by Theorem 3.2 there exist µ∗, ϑ∗, ν∗ : B0(T ) → R+ bounded Baire
measures such that the inclusion

K (T ; C) ⊆ L 1
C(T,B0(T ), µ∗) ∩L 1

C(T,B0(T ), ϑ∗) ∩L 1
C(T,B0(T ), ν∗)

holds, and for any ϕ ∈ K (T ; C) the equations

(µ̃(ϕ) =

∫
T

ϕ dµ∗) ∧ (ϑ̃(ϕ) =

∫
T

ϕ dϑ∗) ∧ (ν̃(ϕ) =

∫
T

ϕ dν∗)

are true. From the assumptions for the positive functionals and Lemma 3.3 we
conclude that ϑ∗ is absolutely continuous with respect to µ∗ and µ∗ is absolutely
continuous with respect to ν∗. Since absolute continuity between set measures is
a transitive property, thus we infer that ϑ∗ is absolutely continuous with respect

to ν∗. Thus, applying once again Lemma 3.3 it follows that ϑ̃ is absolutely
continuous with respect to ν̃, that is the Lebesgue decomposition on K (T ; C) is
unique, hence on any commutative Banach ∗-algebra, as well.

Now let A be an arbitrary commutative ∗-algebra, and suppose that f, t and
g are representable positive functionals on A such that t is absolutely contin-
uous with respect to f and f is absolutely continuous with respect to g. By
Lemma 5.2 (v) we have to show that t is absolutely continuous with respect to g.
Theorem 2.1 implies the following: there exist C∗-seminorms pf , pt, pg : A → C
and nonnegative numbers Mf ,Mt,Mg ∈ R+ such that for every a ∈ A the in-
equalities |f(a)| ≤ Mfpf (a), |t(a)| ≤ Mtpt(a), |g(a)| ≤ Mgpg(a) hold. Thus
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for the C∗-seminorm p := sup{pf , pg, pt} and the nonnegative number M :=
sup{Mf ,Mt,Mg} we conclude for any a ∈ A

(|f(a)| ≤Mp(a)) ∧ (|t(a)| ≤Mp(a)) ∧ (|g(a)| ≤Mp(a)).

Let us denote by (B, ‖·‖p) the completion of the pre-C*-algebraA/ ker p (equipped
with the factor-norm derived from p). According to Remark 2.12, let f ′, t′ and g′

be the corresponding B → C positive functionals to f, t and g, respectively, that
is for a ∈ A

(f ′(a+ ker p) := f(a)) ∧ (t′(a+ ker p) := t(a)) ∧ (g′(a+ ker p) := g(a)).

Theorem 2.15 shows that t is absolutely continuous with respect to g iff t′ is
absolutely continuous with respect to g′. On the one hand B is a commutative C∗-
algebra, hence the first part of the proof implies that the Lebesgue decompostion
on B is unique. Thus Lemma 5.2 shows that t′ is absolutely continuous with
respect to g′, hence (also from Lemma 5.2) we get the uniqueness on A. �

The next example shows that the Lebesgue decomposition can be unique in
the context of positive functionals, while it is not unique in the context of forms.

Example 5.14. If A := C ([0, 1]; C) is the unital C∗-algebra of the [0, 1] → C
continuous functions and µ[0,1] is the positive functional on A generated by the
Lebesgue measure µ∗[0,1] (on the Baire sets), then for the function

ϕ 1
2

: [0, 1] → C; ϕ 1
2
(x) :=

{
0, if x = 0.
1√
x
, if x ∈]0, 1].

we have ϕ 1
2
∈ L 1

C([0, 1],B0([0, 1]), µ∗[0,1]), hence the mapping

ν : A→ C; a 7→
∫

[0,1]

aϕ 1
2

dµ∗[0,1]

is a positive functional on A. The Baire measure ν∗ : B0([0, 1]) → R (Theorem
3.2) is absolutely continuous with respect to µ∗[0,1], since it is given by the Radon–
Nikodym derivative. Thus Lemma 3.3 implies that ν is absolutely continuous
with respect to µ[0,1], that is, the Lebesgue decomposition of ν with respect to
µ[0,1] is ν = νreg by Proposition 1.13. From the previous theorem it follows that
this decomposition is unique in the context of positive functionals. On the other
hand, it is obvious that µ[0,1] not dominates ν, hence by Proposition 5.1 we obtain
that the decomposition is not unique in the context of forms.

5.3. Measure algebras of compact groups. The uniqueness on measure al-
gebras of compact groups is an immediately consequence of our result, Theorem
4.3.

Theorem 5.15. The Lebesgue decomposition of positive functionals defined on
the measure algebra of a compact group is unique.

Proof. Let G be a compact group and let β be the normed Haar measure on
G. By Lemma 5.2 (v) we have to show that if f, t, g are positive functionals on
L1

C(G, β) such that f is absolutely continuous with respect to g, t is absolutely
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continuous with respect to f , then t is absolutely continuous with respect to g.
From Theorem 4.3 it follows that the assumptions is equivalent to the inclusions
ker ‖ · ‖•g ⊆ ker ‖ · ‖•f and ker ‖ · ‖•f ⊆ ker ‖ · ‖•t . Thus ker ‖ · ‖•g ⊆ ker ‖ · ‖•t is true,
but then Theorem 4.3 yields that t is absolutely continuous with respect to g. �

Since every Banach ∗-algebra is a G∗-algebra (Corollary 5.8), thus we have the
following

Corollary 5.16. If A stands for the measure algebra of a compact group, then the
Lebesgue decomposition of positive functionals on any enveloping C∗-algebra of A
is unique. In particular, if the group is noncommutative and infinite, then any
enveloping C∗-algebra of A is a noncommutative, infinite dimensional C∗-algebra
such that the Lebesgue decomposition of the positive functionals on it is unique.

Proof. By the previous Theorem and Theorem 5.12 it is clear. �

We note that a common point in the proved cases of the uniqueness is that the
topologically irreducible ∗-representations of the above-mentioned ∗-algebras are
finite dimensional.

6. An application to faithful positive functionals on measure
algebras of compact groups

In the end of the paper we introduce a characterization of faithful positive
functionals defined on measure algebras of compact groups, by the aid of our
result Theorem 4.3. As a consequence, we immediately gain a classical result
on irreducible subrepresentations of measure algebras of compact groups with
countable basis.

Theorem 6.1. Let G be a compact group and β the normed Haar measure on
G. Let g be a positive functional on L1

C(G, β). The following statements are
equivalent.

(i) g is faithful, that is, g(a∗ ∗β a) = 0 implies a = 0 for any a ∈ L1
C(G, β).

(ii) Every positive functional f on L1
C(G, β) is absolutely continuous with re-

spect to g.
(iii) If p is nonzero positive functional on L1

C(G, β) such that πp is irreducible,
then there exists a number λp ∈ R+ such that λpp ≤ g.

Proof. (i) ⇒ (ii): If g is faithful, that is, ker ‖ · ‖•g = {0}, then for any positive

functional f on L1
C(G, β) the inclusion ker ‖·‖•g ⊆ ker ‖·‖•f is true, hence Theorem

4.3 implies that f is absolutely continuous with respect to g.
(ii) ⇒ (iii): Let p be nonzero positive functional on L1

C(G, β) such that πp
is irreducible. Theorem 9.6.4 in [17] shows that this property is equivalent to
that p is pure (see also the Introduction in our paper [25]). Then our result,
Theorem 4 in [25] implies that g can be written in a form g = λpp + q with a
number λp ∈ R+ and with a positive functional q where p and q are singular. If
the equation λp = 0 holds, then we have g = q, hence g and p are singular. But
by Remark 1.10 this is absurd, since p is nonzero and it is absolutely continuous
with respect to g from the assumptions.
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(iii) ⇒ (i): Assume indirectly that g is not faithful. Hence there is a nonzero
element a ∈ L1

C(G, β) such that g(a∗ ∗β a) = 0. Since the involution of L1
C(G, β)

is proper, then by the well known Gelfand–Raikov theorem there is a positive
functional p on L1

C(G, β) such that πp is irreducible and p(a∗ ∗β a) 6= 0. But this
contradicts (iii). �

It is well known that if a compact group has countable basis, then L1
C(G, β) is

separable. Hence similar arguments of 3.7 in [18] show that there exists a faithful
positive functional on L1

C(G, β) in this case. Our last result in the paper is a
classical statement with a new proof.

Corollary 6.2. Let G be a compact group with countable basis and β the normed
Haar measure on G. Let g be a faithful positive functional on L1

C(G, β). Then
for any irreducible representation π of L1

C(G, β) on a Hilbert space H there exists
a subrepresentation of πg which is unitarily equivalent with π. That is, there is
a πg-invariant closed linear subspace Hπ of Hg and an unitary operator V of H
onto Hπ such that for any a ∈ L1

C(G, β) the equation

V ◦ π(a) = πg(a)|Hπ ◦ V
is true.

Proof. Let ξ ∈ H be any nonzero (hence cylic) vector. Let p : L1
C(G, β) → C be

the positive functional
a 7→ (π(a)ξ|ξ).

Hence the GNS construction implies that for any a ∈ L1
C(G, β)

(π(a)ξ|ξ) = (πp(a)ξp|ξp)p. (6.1)

Then by Proposition 2.4.1 in [3] there exists a unique unitary operator U of H
onto Hp such that U(ξ) = ξp and for any a ∈ L1

C(G, β)

U ◦ π(a) = πp(a) ◦ U
holds, that is, π and πp are unitarily equivalent. Thus πp is irreducible (hence
cyclic), as well. Our Theorem 6.1 shows the existence of a positive number
λp ∈ R+ such that λpp ≤ g. Since every positive functional on L1

C(G, β) is
representable, thus from Remark 2.2 it follows that ‖λpp‖H < +∞. Thus by
Theorem 9.4.20 in [17] there exists an operator Qp ∈ B(Hg) such that 0 ≤ Qp ≤
idHg , and for any a ∈ L1

C(G, β)

λpp(a) = ((πg(a) ◦Qp)ξg|Qp(ξg)); πg(a) ◦Qp = Qp ◦ πg(a). (6.2)

This and (6.1) imply for the vector ξπ := 1√
λp
Qp(ξg) that for every a ∈ L1

C(G, β)

(π(a)ξ|ξ) = (πg(a)ξπ|ξπ)p. (6.3)

Denote by Hπ the closed linear subspace {πg(a)ξπ|a ∈ A} in Hg. It is a πg-
invariant subspace, hence the mapping

πg|Hπ : L1
C(G, β) → B(Hπ) a 7→ πg(a)|Hπ

is a subrepresentation of πg. We state that it is unitarily equivalent with π. To
see this, we note first that the cyclicity of ξg implies the existence of a sequence
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(an)n∈N in L1
C(G, β) such that π(an)ξg → ξg. Hence the continuity of the operator

Qp and (6.2) conclude that

πg(an)ξπ = πg(an)(
1√
λp
Qp(ξg)) =

1√
λp
Qp(πg(an)ξg) →

1√
λp
Qp(ξg) = ξπ,

which means that ξπ ∈ Hπ, so it is a cyclic vector for the subrepresentation
πg|Hπ. Thus using (6.3) and Proposition 2.4.1 in [3] there exists a unique unitary
operator V of H onto Hπ such that V (ξ) = ξπ and for any a ∈ L1

C(G, β)

V ◦ π(a) = ((πg|Hπ)(a)) ◦ V
holds, that is, π and πp are unitarily equivalent. �
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1/C, 1117 Budapest, Hungary.

E-mail address: szzsolti@cs.elte.hu


	1. Introduction and preliminaries
	Notations

	2. Characterizations of absolute continuity, general *-algebras
	3. Characterizations of absolute continuity, unital C*-algebras
	4. Characterizations of absolute continuity, measure algebras of compact groups
	5. Uniqueness of the Lebesgue decomposition on commutative *-algebras and measure algebras of compact groups
	5.1. G*-algebras
	5.2. Commutative *-algebras
	5.3. Measure algebras of compact groups

	6. An application to faithful positive functionals on measure algebras of compact groups
	References

