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Abstract. We give a direct definition of Morita equivalence for Hilbert C∗-
modules, by introducing an explicit list of axioms for an imprimitivity bi-
module. We show that Hilbert C∗-modules with unit vectors, over Morita
equivalent unital C∗-algebras, are Morita equivalent, and Morita equivalence
is an equivalence relation in the category of left Hilbert C∗-modules with unit
vectors.

1. Introduction

The notion of Morita equivalence of C∗-algebras was first introduced by Rieffel
[5]. Two C∗-algebras A and B are Morita equivalent if there exist a full Hilbert
left A and right B module such that the module actions commute with inner prod-
ucts. This module is called an A-B-imprimitivity bimodule. Morita equivalence
preserves some properties of C∗-algebras but is weaker than C∗-isomorphism.
Also two unital C∗-algebras are Morita equivalent if and only if they are Morita
equivalent as rings [1]. Skeide introduced a notion of Morita equivalence be-
tween Hilbert C∗-modules in [7], where two Hilbert C∗-modules E and F over
C∗-algebras A and B, respectively, are said to be Morita equivalent if there exist
an A-B-imprimitivity bimodule M , such that E ⊗ M = F . Two full Hilbert
C∗-modules E and F are Morita equivalent in the sense of Skeide, if and only
if the C∗-algebras KA(E) and KB(F ) are isomorphic [6]. If two C∗-algebras A
and B are Morita equivalent as Hilbert C∗-modules over themselves, they will
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be Morita equivalent as C∗-algebras, but the converse is not true. In [3], Joiţa
and Moslehian introduced a notion of Morita equivalence for Hilbert C∗-modules,
based on the equivalence of the corresponding C∗-algebras of compact operators,
which in case of full countably generated Hilbert C∗-modules over σ-unital C∗-
algebras coincides with Skeide’s definition of stable Morita equivalence. In this
paper, we introduce a direct and constructive notion of Morita equivalence for
Hilbert C∗-modules, based on the notion of imprimitivity bimodules.

The main advantage of our definition is that we give a explicit list of axioms for
the imprimitivity bimodule (like the original case of C∗-algebras). However there
are certain drawbacks: we could show that our notion is an equivalence relation
only for Hilbert C∗-modules with unit elements (Proposition 2.12). In this case,
we show that the three notions of Morita equivalence coincide.

2. Morita Equivalence

We give an explicit list of axioms to define imprimitivity bimodules for Morita
equivalent Hilbert C∗-modules (compare with [7] and [3]).

Definition 2.1. Let A and B be C∗-algebras, and E and F be left and right
Hilbert C∗-modules over C∗-algebras A and B, respectively. We say that E and
F are Morita equivalent, and write E ∼Mor F , if there exist an A-B imprimitivity
bimodule X, such that the following holds:

(i) X is a left E-module and a right F -module such that all the compatibility
conditions hold, for example

(a.e).x = a.(e.x), x.(f.b) = (x.f).b, (a ∈ A, b ∈ B, e ∈ E, f ∈ F, x ∈ X).

(ii) There exist bilinear maps E〈, 〉 : X×X → E and 〈, 〉F : X×X → F , linear
with respect to the second variable and conjugate linear with respect to the first
variable, such that

E〈a.x, y〉 = a.E〈x, y〉, 〈x, y.b〉F = 〈x, y〉F .b, (x, y ∈ X, a ∈ A, b ∈ B).

(iii) For each x, y, z ∈ X,

E〈x, y〉.z = x.〈y, z〉F
(iv) For each x ∈ X, e ∈ E and f ∈ F ,

|〈e.x, e.x〉F | ≤ ‖e‖2|〈x, x〉F |, |E〈x.f, x.f〉| ≤ ‖f‖2|E〈x, x〉|,
where in the left-hand sides, the absolute values are in B and A, respectively (for

instance, for a ∈ F , |a| = 〈a, a〉1/2
B ∈ B).

(v) For F0 = 〈X,X〉F and E0 =E 〈X,X〉, 〈F0, F0〉B is dense in B and 〈E0, E0〉A
is dense in A.

(vi) For x, y ∈ X,

|E〈x, y〉|2 ≤ ‖E〈x, x〉‖|E〈y, y〉|, |〈x, y〉F |2 ≤ ‖〈x, x〉F‖|〈y, y〉F |.
(vii) For x, y, z, w ∈ X,

〈E〈x, y〉.z, w〉F = 〈z,E 〈y, x〉.w〉F , E〈x.〈y, z〉F , w〉 =E 〈x,w.〈z, y〉F 〉.
In this case, X is called an E-F -imprimitivity bimodule.
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From condition (v), it follows that Morita equivalent Hilbert C∗-modules are
full. Moreover, if E and F are Morita equivalent, then the C∗-algebras A and B
are Morita equivalent.

Now for x ∈ X, let

‖x‖E := ‖E〈x, x〉‖1/2
E , ‖x‖F := ‖〈x, x〉F‖1/2

F .

We claim that these define seminorms on X. We should only check the triangle
inequality.

Lemma 2.2. For e ∈ E, we have ‖e‖E = ‖|e|‖A.

Proof. For each e ∈ E, ‖e‖2
E = ‖A〈e, e〉‖ = ‖|e|2‖A = ‖|e|‖2

A. �

Proposition 2.3. For x, y ∈ X, ‖x+ y‖E ≤ ‖x‖E + ‖y‖E.

Proof. Given x, y ∈ X, we have

‖x+ y‖2
E = ‖E〈x+ y, x+ y〉‖E

≤ ‖E〈x, x〉‖E + ‖E〈y, y〉‖E + ‖|E〈x, y〉|2‖1/2
A + ‖|E〈y, x〉|2‖1/2

A .

By (vi), |E〈x, y〉|2 ≤ ‖E〈x, x〉‖|E〈y, y〉|. Hence

‖E〈x, y〉‖2
E = ‖|E〈x, y〉|2‖A ≤ ‖E〈x, x〉‖E.‖|E〈y, y〉|‖A = ‖x‖E‖y‖E.

Therefore, ‖x+ y‖2
E ≤ ‖x‖2

E + ‖y‖2
E + 2‖x‖E‖y‖E = (‖x‖E + ‖y‖E)2. �

We have defined equivalence of a left and a right Hilbert C∗-module. If we
define the equivalence between two left (or two right) Hilbert C∗-modules, this
yields an equivalence relation. If E is a right Hilbert A-module, then E is a
left Hilbert A-module with the same inner product and the left module action

a.e = e.a∗ and λ.e = e.λ, (λ ∈ C, e ∈ E, a ∈ A). We denote this module by Ẽ.

Definition 2.4. Two left Hilbert C∗-modules E and F over C∗-algebras A and

B are Morita equivalent if E ∼Mor F̃ . In this case, we write E ≈Mor F .

For C∗-algebras A and B, it is clear that A and B are Morita equivalent as
C∗-algebras if and only if A and B are Morita equivalent as Hilbert C∗-modules
over themselves, in the sense of Definition 2.1.

As discussed earlier, Morita equivalent Hilbert C∗-modules in the sense of Def-
inition 2.4 are automatically full. On the other hand, in the category of full
Hilbert C∗-modules, two Hilbert C∗-modules E and F for C∗-algebras A and B
are Morita equivalent in the sense of [3] if and only if the C∗-algebras A and B are
Morita equivalent [3, Proposition 2.8]. Therefore, the notion of Morita equiva-
lence in the sense Definition 2.4 is stronger than the notion of Morita equivalence
introduced in [3]. In terms of imprimitivity bimodules, for equivalence of E and
F , the authors in [3] require the existence of an A-B imprimitivity bimodule X,
but we also require X to have compatible module structures over E and F and
to be an E-F imprimitivity bimodule.

Proposition 2.5. Let E1 and E2 be two left Hilbert C∗-modules over C∗-algebras
A1 and A2, and let F1 and F2 be right Hilbert C∗-modules over C∗-algebras B1

and B2. If E1 ∼Mor F1 and E2 ∼Mor F2 then E1 ⊗ E2 ∼Mor F1 ⊗ F2.
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Proof. Let X1 and X2 be E1-F1 and E2-F2 imprimitivity bimodules, respectively.
Then X1 ⊗ X2 is an A1 ⊗min A2-B1 ⊗min B2 imprimitivity bimodule. Moreover,
X1 ⊗ X2 is a left Banach E1 ⊗ E2-module and right Banach F1 ⊗ F2-module
with (e1 ⊗ e2) (x1 ⊗ x2) = e1x1 ⊗ e2x2, and (x1 ⊗ x2) (f1 ⊗ f2) = x1f1 ⊗ x2f2,
respectively. The compatibility conditions are easily verified.

Define E1⊗E2 〈x1 ⊗ x2, y1 ⊗ y2〉 = E1 〈x1, y1〉⊗E2〈x2, y2〉 and 〈x1 ⊗ x2, y1 ⊗ y2〉F1⊗F2

= 〈x1, y1〉F1
⊗ 〈x2, y2〉F2

. Then all the axioms are satisfied. �

If F1 and F2 are right Hilbert C∗-modules over C∗-algebras B1 and B2, then

the left Hilbert C∗-modules F̃1 ⊗ F2 and F̃1 ⊗ F̃2 can be identified. Using this
fact we have the following corollary.

Corollary 2.6. Let E1, E2 F1 and F2 be left Hilbert C∗-modules over C∗-algebras
A1, A2, B1 and B2. If E1 ≈Mor F1 and E2 ≈Mor F2 then E1 ⊗ E2 ≈Mor F1 ⊗ F2.

Definition 2.7. Let E be a left Hilbert C∗-module over a unital C∗-algebra A.
An element e ∈ E is called a unit vector if A〈e, e〉 = 1A, and similarly for right
Hilbert modules.

Theorem 2.8. If unital C∗-algebras A and B are Morita equivalent, and E and
F are left and right Hilbert C∗-modules on A and B, with unit vectors e0 and f0,
respectively, then E ∼Mor F .

Proof. Suppose that X is an A-B-imprimitivity bimodule. We claim that X is an
E-F -imprimitivity bimodule. For this, first, we show that X is a left E-module
and a right F -module.

For e ∈ E and x ∈ X, let e.x =A 〈e, e0〉.x. This module action has compatibil-
ity conditions, for example

(a.e).x =A 〈a.e, e0〉.x = aA〈e, e0〉.x = a.(e.x).

Similarly, we can define module actions for F using f0. We define an E-valued
inner product for X by

E〈x, y〉 =A 〈x, y〉.e0, (x, y ∈ X, e ∈ E).

We have

E〈x, y〉.z = (A〈x, y〉.e0).z =A 〈x, y〉.(e0.z) = (A〈x, y〉A〈e0, e0〉).z =A 〈x, y〉.z,

and

x.〈y, z〉F = x.(f0.〈y, z〉B) = (x.f0).〈y, z〉B = (x.〈f0, f0〉B).〈y, z〉B = x.〈y, z〉B,

which gives (iii). For (iv),

〈e.x, e.x〉F = f0.〈e.x, e.x〉B = f0.〈A〈e, e0〉.x,A 〈e, e0〉.x〉B.
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Let b = 〈A〈e, e0〉.x,A 〈e, e0〉.x〉B and a =A 〈e, e0〉. Then

|〈e.x, e.x〉F |2B = 〈f0.b, f0.b〉B = b∗〈f0, f0〉Bb = b∗b = |b|2

= |〈A〈e, e0〉.x,A 〈e, e0〉.x〉B|2 = |〈a.x, a.x〉B|2

≤ ‖a‖4|〈x, x〉B|2 = ‖A〈e, e0〉‖4|〈x, x〉B|2

= ‖A〈e, e0〉∗A〈e, e0〉‖2|〈x, x〉B|2

≤ ‖A〈e, e〉‖2.‖A〈e0, e0〉‖2.|〈x, x〉B|2 = ‖e‖4|〈x, x〉B|2.
On the other hand,

|〈x, x〉F |2 = 〈f0.〈x, x〉B, f0.〈x, x〉B〉B = 〈x, x〉∗B.1B.〈x, x〉B = |〈x, x〉B|2.
For (vi),

|E〈x, y〉|2 =A 〈E〈x, y〉,E 〈x, y〉〉 =A 〈e0.A〈x, y〉, e0.A〈x, y〉〉
=A 〈x, y〉∗A〈e0, e0〉A〈x, y〉 ≤ ‖A〈x, x〉‖A〈y, y〉.

On the other hand, ‖E〈x, x〉‖ = ‖|E〈x, x〉|‖A, and

|E〈x, x〉|2A =A 〈A〈x, x〉.e0,A 〈x, x〉.e0〉 =A 〈x, x〉A〈e0, e0〉A〈x, x〉∗ = |A〈x, x〉|2,
and (vi) follows.

For (vii), we have

〈E〈x, y〉.z, w〉F = 〈A〈x, y〉.e0.z, w〉F = 〈A〈x, y〉A〈e0, e0〉.z, w〉F
= 〈A〈x, y〉.z, w〉F = 〈z,A 〈y, x〉.w〉F .

This completes the proof. �

Clearly, if f0 is a unit vector for the right Hilbert C∗-module F over a unital

C∗-algebra B, then f0 is a unit vector for the left Hilbert C∗-module F̃ over B.

Corollary 2.9. Let E and F be left Hilbert C∗-modules over the unital C∗-
algebras A and B, with unit vectors. Then A and B are Morita equivalent, as
C∗-algebras if and only if E and F are Morita equivalent, as Hilbert C∗-modules.

Corollary 2.10. Any two left Hilbert C∗-modules E and F over a unital C∗-
algebra A, with unit vectors, are Morita equivalent. In particular, E ≈Mor A,
where A is considered as a left Hilbert A-module.

Corollary 2.11. Every two Hilbert spaces are Morita equivalent as Hilbert C-
modules.

It follows from Theorem 2.8 that in the category of full Hilbert C∗-modules
with unit vectors over unital C∗-algebras, the notion of Morita equivalence in the
sense of Definition 2.4 coincides with Morita equivalence in the sense of [3]. Also,
in the category of full countably generated Hilbert C∗-modules with unit vectors
over unital C∗-algebras, these two notions coincide with the Skeide’s notion of
stable Morita equivalence [6].

Proposition 2.12. In the category of full left Hilbert C∗-modules with unit vec-
tors over unital C∗-algebras, Morita equivalence is an equivalence relation.
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Proof. Let E and F and G be full left Hilbert C∗ -modules having unit vectors
over the unital C∗-algebras A and B and C, respectively. By Corollary 2.9,
E ≈Mor E. If E ≈Mor F, then A is Morita equivalent to B, and since the Morita
equivalence of C∗-algebras is an equivalence relation, B is Morita equivalent to
A and by Corollary 2.9, F ≈Mor E. Transitivity follows similarly. �

Example 2.13. (i) For unital C∗-algebras A,B, and Hilbert spaces H,K, let
E = A⊗H and F = K⊗B, then E and F are left and right Hilbert C∗-modules
on A and B, respectively, with module actions

a.(a′ ⊗ h) = aa′ ⊗ h, (k ⊗ b′).b = k ⊗ b′b, (a, a′ ∈ A, b, b′ ∈ B, h ∈ H, k ∈ K).

and inner products

E〈a⊗ h, a′ ⊗ h′〉 = 〈h, h′〉aa′∗, 〈k ⊗ b, k′ ⊗ b′〉F = 〈k, k′∗b′.
Choose a vector h ∈ H of norm one, and let e0 = 1⊗ h. Then

E〈e0, e0〉 =E 〈1⊗ h, 1⊗ h〉 = ‖h‖21 = 1.

Similarly, we can find f0 ∈ F with 〈f0, f0〉F = 1. Hence if A and B are Morita
equivalent, then A⊗H ∼Mor K ⊗B.

(ii) For a compact topological space X and a C∗-algebra A, E = C(X,A) is a
left Hilbert C(X)-module with module actions

(f.g)(x) = f(x)g(x) (f ∈ C(X), g ∈ E)

and inner product

C(X)〈g, g′〉(x) = ϕ(g(x)g′∗) (g, g′ ∈ E, x ∈ X),

where ϕ is a fixed bounded positive linear functional on A. Choose a ∈ A with
ϕ(aa∗) = 1. Let g0 ∈ E be the constant function with value a. Then for each
x ∈ X, ϕ(g0(x)g0(x)

∗) = 1. Hence C(X)〈g0, g0〉 = 1. Therefore, if X and Y are
homeomorphic, then for any C∗-algebras A and B, C(X,A) ∼Mor C(Y,B), as
left and right Hilbert C∗-modules over C(X) and C(Y ), respectively.

Proposition 2.14. If A is a C∗-algebra, and E,F are left and right Hilbert A-
modules such that there exist e0 ∈ E, f0 ∈ F , with 0 6=A 〈e0, e0〉 = 〈f0, f0〉A =
t0 ∈ Z(A), and At0 = A, then E ∼Mor F .

Proof. Let A〈e0, e0〉 = t0. Without loss of generality, we may assume that
‖t0‖ = 1. We know that A is an A-A-imprimitivity bimodule, with inner products

A〈a, b〉 = ab∗ and 〈a, b〉A = a∗b. We claim that A is also an E-F -imprimitivity
bimodule. Define the module actions by

e.x =A 〈e, e0〉x, x.f = x〈f, f0〉A, (x ∈ A, e ∈ E, f ∈ F ).

and the E-valued and F -valued inner products by

E〈a, b〉 =A 〈a, b〉.e0, 〈a, b〉F = f0.〈a, b〉A (a, b ∈ A).

For each x, y, z ∈ A, we have

E〈x, y〉.z =A 〈x, y〉.e0.z = xy∗.e0.z = xy∗A〈e0, e0〉z = xy∗t0z,

x.〈y, z〉F = x.f0.〈y, z〉A = x.f0.y
∗z = xt0y

∗z = xy∗t0z.
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For (iv), let e ∈ E, x ∈ A and let A〈e, e0〉 = t. Then

〈e.x, e.x〉F = f0.〈e.x, e.x〉A = f0.(e.x)
∗(e.x)

= f0.(A〈e, e0〉x))∗(A〈e, e0〉x) = f0.(x
∗t∗tx).

In particular, for a = x∗t∗tx,

|〈e.x, e.x〉F |2 = 〈f0.a, f0.a〉A = a∗〈f0, f0〉Aa = a∗t0a = x∗t∗txt0x
∗t∗tx.

By Cauchy-Schwartz inequality,

t∗t =A 〈e, e0〉∗A〈e, e0〉 ≤ ‖A〈e, e〉‖A〈e0, e0〉 = ‖e‖2t0.

Hence

|〈e.x, e.x〉F |2 ≤ x∗‖e‖2t0xt0x
∗‖e‖2t0xt0 ≤ ‖e‖4‖t0‖2x∗xt0x

∗x.

On the other hand, 〈x, x〉F = f0.〈x, x〉A = f0.x
∗x. Therefore,

|〈x, x〉F |2 = 〈f0.x
∗x, f0.x

∗x〉A = x∗xt0x
∗x

and the result follows.
For (vi), we have

|E〈x, y〉|2 = |A〈x, y〉.e0|2 = |xy∗.e0|2 =A 〈xy∗.e0, xy∗.e0〉 = xy∗t0yx
∗

= (xt
1/4
0 y∗)(yt

1/4
0 x∗)t

1/2
0 = (ay∗)(ya∗)t

1/2
0 (a := xt

1/4
0 )

=A 〈a, y〉A〈a, y〉∗t1/2
0 ≤ ‖A〈a, a〉‖A〈y, y〉t1/2

0

= ‖xt1/4
0 ‖2yy∗t

1/2
0 = ‖xt1/2

0 x∗‖yy∗t1/2
0 .

On the other hand, E〈x, x〉 =A 〈x, x〉.e0, thus

‖E〈x, x〉‖ = ‖A〈A〈x, x〉.e0,A 〈x, x〉.e0〉‖1/2

= ‖A〈xx∗.e0, xx∗.e0〉‖1/2

= ‖xx∗t0xx∗‖1/2 = ‖xt1/2
0 x∗‖,

and
|E〈y, y〉| = |A〈yy∗.e0, yy∗.e0〉|1/2 = (yy∗t0yy

∗)1/2 = yy∗t
1/2
0 ,

from which (vi) follows. For (vii),

〈E〈x, y〉.z, w〉F = f0.〈A〈x, y〉.z, w〉A = f0.〈xy∗t0z, w〉A = f0.z
∗t∗0yx

∗w = f0.z
∗yx∗t0w

and

〈z,E 〈y, x〉.w〉F = f0.〈z,A 〈y, x〉.e0.w〉A = f0.〈z, yx∗t0w〉A = f0.z
∗yx∗t0w.

This completes the proof. �

The condition At0 = A, in the above proposition, is necessary in order to get
the condition (v) of the Definition 2.1. When this is not satisfied, one may define

E0 = {t0.e : e ∈ E}, F0 = {t0.f : f ∈ F},
and observe that E0 and F0 are Hilbert At0-modules, and similar to the above
argument, show that At0 is a E0-F0-imprimitivity bimodule, therefore E0 ∼Mor

F0.
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Definition 2.15. [2] Let A and B be C∗-algebras and E be a left Hilbert A-
module and F be a right Hilbert B-module. We say that E and F are isomorphic
if there is a bijective map Φ : E → F and a C∗-isomorphism ϕ : A → B such
that 〈Φ (e2) ,Φ (e1)〉B = ϕ (A 〈e1, e2〉) for all e1, e2 ∈ E.

Proposition 2.16. Let A and B be σ-unital C∗-algebras, E a left A-Hilbert C∗-
module and F a right B-Hilbert C∗-module. If E and F are isomorphic and there
is a strictly positive element t0 =A 〈e0, e0〉 ∈ Z(A), then E ∼Mor F .

Proof. If t0 =A 〈e0, e0〉 ∈ Z(A) is a strictly positive element in A then

ϕ (t0) = 〈Φ (e0) ,Φ (e0)〉B ∈ Z(B)

is a strictly positive element in B.
Since A and B are isomorphic, A and B are Morita equivalent and A is an A-B-

imprimitivity bimodule, with the bimodule structure a.x = ax and x.b = xϕ−1 (b)
and inner products A〈x1, x2〉 = x1x

∗
2 and 〈x1, x2〉B = ϕ (x∗1x2). Similar to the

proof of Proposition 2.14, one can show that A is an E-F imprimitivity bimodule,
hence E ∼Mor F . �

The assumption on the existence of the strictly positive element t0 in the above
proposition can not be dropped, even if A and B are commutative and unital.
For example, let X = Y ∪ Z be a compact space, where Y and Z are disjoint,
non-empty, open subsets of X, which are homeomorphic. Then C(X) is a left
and a right C(X)-module with inner products

C(X)〈f, g〉 = fḡχY , 〈f, g〉C(X) = f̄gχZ , (f, g ∈ C(X)).

In this case, C(X)〈f, f〉 is supported in Y , for any f ∈ C(X), hence it could not be
a strictly positive element of C(X). Take an isomorphism ψ : C(Y ) → C(Z) and
identify C(X) with C(Y )⊕ C(Z). Let σ : C(Y )⊕ C(Z) → C(Z)⊕ C(Y ) be the
flip isomorphism. In Definition 2.15, put Φ := σ−1 ◦ (ψ ⊕ ψ−1) : C(X) → C(X)
and ϕ = id, then C(X), as a left C(X)-module, is isomorphic to C(X), as a right
C(X)-module, but C(X) �Mor C(X), as no imprimitivity bimodule could satisfy
condition (v) of Definition 2.4.
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