

Banach J. Math. Anal. 9 (2015), no. 1, 102-110
http://doi.org/10.15352/bjma/09-1-8
ISSN: 1735-8787 (electronic)
http://projecteuclid.org/bjma

MORITA EQUIVALENCE OF HILBERT C^{*}-MODULES

MASSOUD AMINI ${ }^{1,2 *}$, MOHAMMAD B. ASADI 2,3, MARIA JOIŢA ${ }^{4,5}$ AND REZA REZAVAND ${ }^{3}$
Communicated by D. Bakić

Abstract. We give a direct definition of Morita equivalence for Hilbert C^{*} modules, by introducing an explicit list of axioms for an imprimitivity bimodule. We show that Hilbert C^{*}-modules with unit vectors, over Morita equivalent unital C^{*}-algebras, are Morita equivalent, and Morita equivalence is an equivalence relation in the category of left Hilbert C^{*}-modules with unit vectors.

1. Introduction

The notion of Morita equivalence of C^{*}-algebras was first introduced by Rieffel [5]. Two C^{*}-algebras A and B are Morita equivalent if there exist a full Hilbert left A and right B module such that the module actions commute with inner products. This module is called an A - B-imprimitivity bimodule. Morita equivalence preserves some properties of C^{*}-algebras but is weaker than C^{*}-isomorphism. Also two unital C^{*}-algebras are Morita equivalent if and only if they are Morita equivalent as rings [1]. Skeide introduced a notion of Morita equivalence between Hilbert C^{*}-modules in [7], where two Hilbert C^{*}-modules E and F over C^{*}-algebras A and B, respectively, are said to be Morita equivalent if there exist an A - B-imprimitivity bimodule M, such that $E \otimes M=F$. Two full Hilbert C^{*}-modules E and F are Morita equivalent in the sense of Skeide, if and only if the C^{*}-algebras $K_{A}(E)$ and $K_{B}(F)$ are isomorphic [6]. If two C^{*}-algebras A and B are Morita equivalent as Hilbert C^{*}-modules over themselves, they will

[^0]be Morita equivalent as C^{*}-algebras, but the converse is not true. In [3], Joiţa and Moslehian introduced a notion of Morita equivalence for Hilbert C^{*}-modules, based on the equivalence of the corresponding C^{*}-algebras of compact operators, which in case of full countably generated Hilbert C^{*}-modules over σ-unital C^{*} algebras coincides with Skeide's definition of stable Morita equivalence. In this paper, we introduce a direct and constructive notion of Morita equivalence for Hilbert C^{*}-modules, based on the notion of imprimitivity bimodules.

The main advantage of our definition is that we give a explicit list of axioms for the imprimitivity bimodule (like the original case of C^{*}-algebras). However there are certain drawbacks: we could show that our notion is an equivalence relation only for Hilbert C^{*}-modules with unit elements (Proposition 2.12). In this case, we show that the three notions of Morita equivalence coincide.

2. Morita Equivalence

We give an explicit list of axioms to define imprimitivity bimodules for Morita equivalent Hilbert C^{*}-modules (compare with [7] and [3]).

Definition 2.1. Let A and B be C^{*}-algebras, and E and F be left and right Hilbert C^{*}-modules over C^{*}-algebras A and B, respectively. We say that E and F are Morita equivalent, and write $E \sim_{M o r} F$, if there exist an $A-B$ imprimitivity bimodule X, such that the following holds:
(i) X is a left E-module and a right F-module such that all the compatibility conditions hold, for example

$$
(a . e) \cdot x=a .(e . x), \quad x \cdot(f . b)=(x . f) . b, \quad(a \in A, b \in B, e \in E, f \in F, x \in X)
$$

(ii) There exist bilinear maps ${ }_{E}\langle\rangle:, X \times X \rightarrow E$ and $\langle,\rangle_{F}: X \times X \rightarrow F$, linear with respect to the second variable and conjugate linear with respect to the first variable, such that

$$
{ }_{E}\langle a \cdot x, y\rangle=a_{\cdot}\langle x, y\rangle, \quad\langle x, y \cdot b\rangle_{F}=\langle x, y\rangle_{F} \cdot b, \quad(x, y \in X, a \in A, b \in B) .
$$

(iii) For each $x, y, z \in X$,

$$
{ }_{E}\langle x, y\rangle . z=x \cdot\langle y, z\rangle_{F}
$$

(iv) For each $x \in X, e \in E$ and $f \in F$,

$$
\left|\langle e . x, e . x\rangle_{F}\right| \leq\|e\|^{2}\left|\langle x, x\rangle_{F}\right|,\left.\right|_{E}\langle x . f, x . f\rangle\left|\leq\|f\|^{2}\right|_{E}\langle x, x\rangle \mid,
$$

where in the left-hand sides, the absolute values are in B and A, respectively (for instance, for $\left.a \in F,|a|=\langle a, a\rangle_{B}^{1 / 2} \in B\right)$.
(v) For $F_{0}=\langle X, X\rangle_{F}$ and $E_{0}=_{E}\langle X, X\rangle,\left\langle F_{0}, F_{0}\right\rangle_{B}$ is dense in B and $\left\langle E_{0}, E_{0}\right\rangle_{A}$ is dense in A.
(vi) For $x, y \in X$,

$$
\left|{ }_{E}\langle x, y\rangle\right|^{2} \leq\left\|_{E}\langle x, x\rangle\right\|\left\|\left._{E}\langle y, y\rangle|, \quad|\langle x, y\rangle_{F}\right|^{2} \leq\right\|\langle x, x\rangle_{F} \|\left|\langle y, y\rangle_{F}\right| .
$$

(vii) For $x, y, z, w \in X$,

$$
\left\langle_{E}\langle x, y\rangle . z, w\right\rangle_{F}=\left\langle z,_{E}\langle y, x\rangle . w\right\rangle_{F}, \quad{ }_{E}\left\langle x .\langle y, z\rangle_{F}, w\right\rangle=_{E}\left\langle x, w .\langle z, y\rangle_{F}\right\rangle .
$$

In this case, X is called an E - F-imprimitivity bimodule.

From condition (v), it follows that Morita equivalent Hilbert C^{*}-modules are full. Moreover, if E and F are Morita equivalent, then the C^{*}-algebras A and B are Morita equivalent.

Now for $x \in X$, let

$$
\|x\|_{E}:=\left\|_{E}\langle x, x\rangle\right\|_{E}^{1 / 2}, \quad\|x\|_{F}:=\left\|\langle x, x\rangle_{F}\right\|_{F}^{1 / 2}
$$

We claim that these define seminorms on X. We should only check the triangle inequality.
Lemma 2.2. For $e \in E$, we have $\|e\|_{E}=\| \| e \|_{A}$.
Proof. For each $e \in E,\|e\|_{E}^{2}=\left\|_{A}\langle e, e\rangle\right\|=\left\||e|^{2}\right\|_{A}=\||e|\|_{A}^{2}$.
Proposition 2.3. For $x, y \in X,\|x+y\|_{E} \leq\|x\|_{E}+\|y\|_{E}$.
Proof. Given $x, y \in X$, we have

$$
\begin{aligned}
\|x+y\|_{E}^{2} & =\left\|_{E}\langle x+y, x+y\rangle\right\|_{E} \\
& \leq\left\|_{E}\langle x, x\rangle\right\|_{E}+\left\|_{E}\langle y, y\rangle\right\|_{E}+\left.\| \|_{E}\langle x, y\rangle\right|^{2}\left\|_{A}^{1 / 2}+\right\|\left\|\left._{E}\langle y, x\rangle\right|^{2}\right\|_{A}^{1 / 2} .
\end{aligned}
$$

$\operatorname{By}(v i),\left.\left.\right|_{E}\langle x, y\rangle\right|^{2} \leq\left.\left\|_{E}\langle x, x\rangle\right\|\right|_{E}\langle y, y\rangle \mid$. Hence

$$
\left\|_{E}\langle x, y\rangle\right\|_{E}^{2}=\left.\left.\| \|\right|_{E}\langle x, y\rangle\right|^{2}\left\|_{A} \leq\right\|_{E}\langle x, x\rangle\left\|_{E} \cdot\right\|\left\|_{E}\langle y, y\rangle \mid\right\|_{A}=\|x\|_{E}\|y\|_{E} .
$$

Therefore, $\|x+y\|_{E}^{2} \leq\|x\|_{E}^{2}+\|y\|_{E}^{2}+2\|x\|_{E}\|y\|_{E}=\left(\|x\|_{E}+\|y\|_{E}\right)^{2}$.
We have defined equivalence of a left and a right Hilbert C^{*}-module. If we define the equivalence between two left (or two right) Hilbert C^{*}-modules, this yields an equivalence relation. If E is a right Hilbert A-module, then E is a left Hilbert A-module with the same inner product and the left module action $a . e=e . a^{*}$ and $\lambda . e=e . \bar{\lambda}, \quad(\lambda \in \mathbb{C}, e \in E, a \in A)$. We denote this module by \widetilde{E}.

Definition 2.4. Two left Hilbert C^{*}-modules E and F over C^{*}-algebras A and B are Morita equivalent if $E \sim_{M o r} \widetilde{F}$. In this case, we write $E \approx_{M o r} F$.

For C^{*}-algebras A and B, it is clear that A and B are Morita equivalent as C^{*}-algebras if and only if A and B are Morita equivalent as Hilbert C^{*}-modules over themselves, in the sense of Definition 2.1.

As discussed earlier, Morita equivalent Hilbert C^{*}-modules in the sense of Definition 2.4 are automatically full. On the other hand, in the category of full Hilbert C^{*}-modules, two Hilbert C^{*}-modules E and F for C^{*}-algebras A and B are Morita equivalent in the sense of [3] if and only if the C^{*}-algebras A and B are Morita equivalent [3, Proposition 2.8]. Therefore, the notion of Morita equivalence in the sense Definition 2.4 is stronger than the notion of Morita equivalence introduced in [3]. In terms of imprimitivity bimodules, for equivalence of E and F, the authors in [3] require the existence of an $A-B$ imprimitivity bimodule X, but we also require X to have compatible module structures over E and F and to be an $E-F$ imprimitivity bimodule.
Proposition 2.5. Let E_{1} and E_{2} be two left Hilbert C^{*}-modules over C^{*}-algebras A_{1} and A_{2}, and let F_{1} and F_{2} be right Hilbert C^{*}-modules over C^{*}-algebras B_{1} and B_{2}. If $E_{1} \sim_{M o r} F_{1}$ and $E_{2} \sim_{M o r} F_{2}$ then $E_{1} \otimes E_{2} \sim_{M o r} F_{1} \otimes F_{2}$.

Proof. Let X_{1} and X_{2} be $E_{1}-F_{1}$ and $E_{2}-F_{2}$ imprimitivity bimodules, respectively. Then $X_{1} \otimes X_{2}$ is an $A_{1} \otimes_{\min } A_{2}-B_{1} \otimes_{\min } B_{2}$ imprimitivity bimodule. Moreover, $X_{1} \otimes X_{2}$ is a left Banach $E_{1} \otimes E_{2}$-module and right Banach $F_{1} \otimes F_{2}$-module with $\left(e_{1} \otimes e_{2}\right)\left(x_{1} \otimes x_{2}\right)=e_{1} x_{1} \otimes e_{2} x_{2}$, and $\left(x_{1} \otimes x_{2}\right)\left(f_{1} \otimes f_{2}\right)=x_{1} f_{1} \otimes x_{2} f_{2}$, respectively. The compatibility conditions are easily verified.

Define $E_{E_{1} \otimes E_{2}}\left\langle x_{1} \otimes x_{2}, y_{1} \otimes y_{2}\right\rangle=E_{E_{1}}\left\langle x_{1}, y_{1}\right\rangle \otimes_{E_{2}}\left\langle x_{2}, y_{2}\right\rangle$ and $\left\langle x_{1} \otimes x_{2}, y_{1} \otimes y_{2}\right\rangle_{F_{1} \otimes F_{2}}$ $=\left\langle x_{1}, y_{1}\right\rangle_{F_{1}} \otimes\left\langle x_{2}, y_{2}\right\rangle_{F_{2}}$. Then all the axioms are satisfied.

If F_{1} and F_{2} are right Hilbert C^{*}-modules over C^{*}-algebras B_{1} and B_{2}, then the left Hilbert C^{*}-modules $\widetilde{F_{1} \otimes F_{2}}$ and $\widetilde{F_{1}} \otimes \widetilde{F_{2}}$ can be identified. Using this fact we have the following corollary.

Corollary 2.6. Let $E_{1}, E_{2} F_{1}$ and F_{2} be left Hilbert C^{*}-modules over C^{*}-algebras A_{1}, A_{2}, B_{1} and B_{2}. If $E_{1} \approx_{M o r} F_{1}$ and $E_{2} \approx_{M o r} F_{2}$ then $E_{1} \otimes E_{2} \approx_{M o r} F_{1} \otimes F_{2}$.

Definition 2.7. Let E be a left Hilbert C^{*}-module over a unital C^{*}-algebra A. An element $e \in E$ is called a unit vector if ${ }_{A}\langle e, e\rangle=1_{A}$, and similarly for right Hilbert modules.

Theorem 2.8. If unital C^{*}-algebras A and B are Morita equivalent, and E and F are left and right Hilbert C^{*}-modules on A and B, with unit vectors e_{0} and f_{0}, respectively, then $E \sim_{\text {Mor }} F$.

Proof. Suppose that X is an A - B-imprimitivity bimodule. We claim that X is an E - F-imprimitivity bimodule. For this, first, we show that X is a left E-module and a right F-module.

For $e \in E$ and $x \in X$, let $e . x={ }_{A}\left\langle e, e_{0}\right\rangle . x$. This module action has compatibility conditions, for example

$$
\text { (a.e). } x={ }_{A}\left\langle a . e, e_{0}\right\rangle . x=a_{A}\left\langle e, e_{0}\right\rangle . x=a .(e . x) .
$$

Similarly, we can define module actions for F using f_{0}. We define an E-valued inner product for X by

$$
{ }_{E}\langle x, y\rangle={ }_{A}\langle x, y\rangle . e_{0}, \quad(x, y \in X, e \in E) .
$$

We have

$$
{ }_{E}\langle x, y\rangle \cdot z=\left({ }_{A}\langle x, y\rangle \cdot e_{0}\right) \cdot z={ }_{A}\langle x, y\rangle \cdot\left(e_{0} \cdot z\right)=\left({ }_{A}\langle x, y\rangle_{A}\left\langle e_{0}, e_{0}\right\rangle\right) \cdot z={ }_{A}\langle x, y\rangle \cdot z,
$$

and

$$
x \cdot\langle y, z\rangle_{F}=x \cdot\left(f_{0} \cdot\langle y, z\rangle_{B}\right)=\left(x \cdot f_{0}\right) \cdot\langle y, z\rangle_{B}=\left(x \cdot\left\langle f_{0}, f_{0}\right\rangle_{B}\right) \cdot\langle y, z\rangle_{B}=x \cdot\langle y, z\rangle_{B}
$$

which gives (iii). For (iv),

$$
\langle e . x, e . x\rangle_{F}=f_{0} \cdot\langle e . x, e . x\rangle_{B}=f_{0} \cdot\left\langle_{A}\left\langle e, e_{0}\right\rangle \cdot x,_{A}\left\langle e, e_{0}\right\rangle . x\right\rangle_{B} .
$$

Let $b=\left\langle{ }_{A}\left\langle e, e_{0}\right\rangle \cdot x{ }_{A}\left\langle e, e_{0}\right\rangle \cdot x\right\rangle_{B}$ and $a={ }_{A}\left\langle e, e_{0}\right\rangle$. Then

$$
\begin{aligned}
\left|\langle e . x, e \cdot x\rangle_{F}\right|_{B}^{2} & =\left\langle f_{0} \cdot b, f_{0} \cdot b\right\rangle_{B}=b^{*}\left\langle f_{0}, f_{0}\right\rangle_{B} b=b^{*} b=|b|^{2} \\
& =\left|\left\langle_{A}\left\langle e, e_{0}\right\rangle \cdot x,_{A}\left\langle e, e_{0}\right\rangle \cdot x\right\rangle_{B}\right|^{2}=\left|\langle a \cdot x, a \cdot x\rangle_{B}\right|^{2} \\
& \leq\|a\|^{4}\left|\langle x, x\rangle_{B}\right|^{2}=\left\|_{A}\left\langle e, e_{0}\right\rangle\right\|^{4}\left|\langle x, x\rangle_{B}\right|^{2} \\
& =\left\|_{A}\left\langle e, e_{0}\right\rangle_{A}^{*}\left\langle e, e_{0}\right\rangle\right\|^{2}\left|\langle x, x\rangle_{B}\right|^{2} \\
& \leq\left\|_{A}\langle e, e\rangle\right\|^{2} \cdot\left\|_{A}\left\langle e_{0}, e_{0}\right\rangle\right\|^{2} \cdot\left|\langle x, x\rangle_{B}\right|^{2}=\|e\|^{4}\left|\langle x, x\rangle_{B}\right|^{2} .
\end{aligned}
$$

On the other hand,

$$
\left|\langle x, x\rangle_{F}\right|^{2}=\left\langle f_{0} \cdot\langle x, x\rangle_{B}, f_{0} \cdot\langle x, x\rangle_{B}\right\rangle_{B}=\langle x, x\rangle_{B}^{*} \cdot 1_{B} \cdot\langle x, x\rangle_{B}=\left|\langle x, x\rangle_{B}\right|^{2} .
$$

For (vi),

$$
\begin{aligned}
\left.\left.\right|_{E}\langle x, y\rangle\right|^{2} & ={ }_{A}\left\langle{ }_{E}\langle x, y\rangle,{ }_{E}\langle x, y\rangle\right\rangle={ }_{A}\left\langle e_{0 \cdot A}\langle x, y\rangle, e_{0 \cdot A}\langle x, y\rangle\right\rangle \\
& ={ }_{A}\langle x, y\rangle_{A}^{*}\left\langle e_{0}, e_{0}\right\rangle_{A}\langle x, y\rangle \leq\left\|_{A}\langle x, x\rangle\right\|_{A}\langle y, y\rangle .
\end{aligned}
$$

On the other hand, $\left\|_{E}\langle x, x\rangle\right\|=\left\|\left.\right|_{E}\langle x, x\rangle \mid\right\|_{A}$, and

$$
\left|{ }_{E}\langle x, x\rangle\right|_{A}^{2}={ }_{A}\left\langle{ }_{A}\langle x, x\rangle \cdot e_{0},{ }_{A}\langle x, x\rangle \cdot e_{0}\right\rangle={ }_{A}\langle x, x\rangle_{A}\left\langle e_{0}, e_{0}\right\rangle_{A}\langle x, x\rangle^{*}=\left.\left.\right|_{A}\langle x, x\rangle\right|^{2},
$$

and ($v i$) follows.
For (vii), we have

$$
\begin{aligned}
\left\langle_{E}\langle x, y\rangle . z, w\right\rangle_{F} & =\left\langle_{A}\langle x, y\rangle \cdot e_{0} \cdot z, w\right\rangle_{F}=\left\langle_{A}\langle x, y\rangle_{A}\left\langle e_{0}, e_{0}\right\rangle . z, w\right\rangle_{F} \\
& \left.={ }_{A}\langle x, y\rangle \cdot z, w\right\rangle_{F}=\left\langle z,{ }_{A}\langle y, x\rangle \cdot w\right\rangle_{F} .
\end{aligned}
$$

This completes the proof.
Clearly, if f_{0} is a unit vector for the right Hilbert C^{*}-module F over a unital C^{*}-algebra B, then f_{0} is a unit vector for the left Hilbert C^{*}-module \widetilde{F} over B.

Corollary 2.9. Let E and F be left Hilbert C^{*}-modules over the unital C^{*} algebras A and B, with unit vectors. Then A and B are Morita equivalent, as C^{*}-algebras if and only if E and F are Morita equivalent, as Hilbert C^{*}-modules.

Corollary 2.10. Any two left Hilbert C^{*}-modules E and F over a unital C^{*} algebra A, with unit vectors, are Morita equivalent. In particular, $E \approx_{M o r} A$, where A is considered as a left Hilbert A-module.

Corollary 2.11. Every two Hilbert spaces are Morita equivalent as Hilbert \mathbb{C} modules.

It follows from Theorem 2.8 that in the category of full Hilbert C^{*}-modules with unit vectors over unital C^{*}-algebras, the notion of Morita equivalence in the sense of Definition 2.4 coincides with Morita equivalence in the sense of [3]. Also, in the category of full countably generated Hilbert C^{*}-modules with unit vectors over unital C^{*}-algebras, these two notions coincide with the Skeide's notion of stable Morita equivalence [6].

Proposition 2.12. In the category of full left Hilbert C^{*}-modules with unit vectors over unital C^{*}-algebras, Morita equivalence is an equivalence relation.

Proof. Let E and F and G be full left Hilbert C^{*}-modules having unit vectors over the unital C^{*}-algebras A and B and C, respectively. By Corollary 2.9, $E \approx_{M o r} E$. If $E \approx_{M o r} F$, then A is Morita equivalent to B, and since the Morita equivalence of C^{*}-algebras is an equivalence relation, B is Morita equivalent to A and by Corollary 2.9, $F \approx_{M o r} E$. Transitivity follows similarly.

Example 2.13. (i) For unital C^{*}-algebras A, B, and Hilbert spaces H, K, let $E=A \otimes H$ and $F=K \otimes B$, then E and F are left and right Hilbert C^{*}-modules on A and B, respectively, with module actions
$a .\left(a^{\prime} \otimes h\right)=a a^{\prime} \otimes h, \quad\left(k \otimes b^{\prime}\right) . b=k \otimes b^{\prime} b, \quad\left(a, a^{\prime} \in A, b, b^{\prime} \in B, h \in H, k \in K\right)$.
and inner products

$$
{ }_{E}\left\langle a \otimes h, a^{\prime} \otimes h^{\prime}\right\rangle=\left\langle h, h^{\prime}\right\rangle a a^{\prime *}, \quad\left\langle k \otimes b, k^{\prime} \otimes b^{\prime}\right\rangle_{F}=\left\langle k, k^{\prime *} b^{\prime}\right.
$$

Choose a vector $h \in H$ of norm one, and let $e_{0}=1 \otimes h$. Then

$$
{ }_{E}\left\langle e_{0}, e_{0}\right\rangle={ }_{E}\langle 1 \otimes h, 1 \otimes h\rangle=\|h\|^{2} 1=1 .
$$

Similarly, we can find $f_{0} \in F$ with $\left\langle f_{0}, f_{0}\right\rangle_{F}=1$. Hence if A and B are Morita equivalent, then $A \otimes H \sim_{M o r} K \otimes B$.
(ii) For a compact topological space X and a C^{*}-algebra $A, E=C(X, A)$ is a left Hilbert $C(X)$-module with module actions

$$
(f . g)(x)=f(x) g(x) \quad(f \in C(X), g \in E)
$$

and inner product

$$
C(X)\left\langle g, g^{\prime}\right\rangle(x)=\varphi\left(g(x) g^{\prime *}\right) \quad\left(g, g^{\prime} \in E, x \in X\right)
$$

where φ is a fixed bounded positive linear functional on A. Choose $a \in A$ with $\varphi\left(a a^{*}\right)=1$. Let $g_{0} \in E$ be the constant function with value a. Then for each $x \in X, \varphi\left(g_{0}(x) g_{0}(x)^{*}\right)=1$. Hence $C(X)\left\langle g_{0}, g_{0}\right\rangle=1$. Therefore, if X and Y are homeomorphic, then for any C^{*}-algebras A and $B, C(X, A) \sim_{M o r} C(Y, B)$, as left and right Hilbert C^{*}-modules over $C(X)$ and $C(Y)$, respectively.
Proposition 2.14. If A is a C^{*}-algebra, and E, F are left and right Hilbert A modules such that there exist $e_{0} \in E, f_{0} \in F$, with $0 \not \mathcal{F}_{A}\left\langle e_{0}, e_{0}\right\rangle=\left\langle f_{0}, f_{0}\right\rangle_{A}=$ $t_{0} \in Z(A)$, and $\overline{A t_{0}}=A$, then $E \sim_{M o r} F$.

Proof. Let ${ }_{A}\left\langle e_{0}, e_{0}\right\rangle=t_{0}$. Without loss of generality, we may assume that $\left\|t_{0}\right\|=1$. We know that A is an A - A-imprimitivity bimodule, with inner products ${ }_{A}\langle a, b\rangle=a b^{*}$ and $\langle a, b\rangle_{A}=a^{*} b$. We claim that A is also an E - F-imprimitivity bimodule. Define the module actions by

$$
e . x={ }_{A}\left\langle e, e_{0}\right\rangle x, \quad x . f=x\left\langle f, f_{0}\right\rangle_{A}, \quad(x \in A, e \in E, f \in F) .
$$

and the E-valued and F-valued inner products by

$$
{ }_{E}\langle a, b\rangle={ }_{A}\langle a, b\rangle . e_{0}, \quad\langle a, b\rangle_{F}=f_{0} \cdot\langle a, b\rangle_{A} \quad(a, b \in A)
$$

For each $x, y, z \in A$, we have

$$
\begin{gathered}
{ }_{E}\langle x, y\rangle \cdot z={ }_{A}\langle x, y\rangle \cdot e_{0} \cdot z=x y^{*} \cdot e_{0} \cdot z=x y_{A}^{*}\left\langle e_{0}, e_{0}\right\rangle z=x y^{*} t_{0} z \\
x \cdot\langle y, z\rangle_{F}=x \cdot f_{0} \cdot\langle y, z\rangle_{A}=x \cdot f_{0} \cdot y^{*} z=x t_{0} y^{*} z=x y^{*} t_{0} z
\end{gathered}
$$

For (iv), let $e \in E, x \in A$ and let ${ }_{A}\left\langle e, e_{0}\right\rangle=t$. Then

$$
\begin{aligned}
\langle e . x, e . x\rangle_{F} & =f_{0} \cdot\langle e . x, e . x\rangle_{A}=f_{0} \cdot(e . x)^{*}(e . x) \\
& \left.\left.=f_{0} \cdot\left({ }_{A}\left\langle e, e_{0}\right\rangle x\right)\right)^{*}{ }_{A}\left\langle e, e_{0}\right\rangle x\right)=f_{0} \cdot\left(x^{*} t^{*} t x\right) .
\end{aligned}
$$

In particular, for $a=x^{*} t^{*} t x$,

$$
\left|\langle e . x, e . x\rangle_{F}\right|^{2}=\left\langle f_{0} \cdot a, f_{0} \cdot a\right\rangle_{A}=a^{*}\left\langle f_{0}, f_{0}\right\rangle_{A} a=a^{*} t_{0} a=x^{*} t^{*} t x t_{0} x^{*} t^{*} t x .
$$

By Cauchy-Schwartz inequality,

$$
t^{*} t={ }_{A}\left\langle e, e_{0}\right\rangle_{A}^{*}\left\langle e, e_{0}\right\rangle \leq\left\|_{A}\langle e, e\rangle\right\|_{A}\left\langle e_{0}, e_{0}\right\rangle=\|e\|^{2} t_{0} .
$$

Hence

$$
\left|\langle e . x, e . x\rangle_{F}\right|^{2} \leq x^{*}\|e\|^{2} t_{0} x t_{0} x^{*}\|e\|^{2} t_{0} x t_{0} \leq\|e\|^{4}\left\|t_{0}\right\|^{2} x^{*} x t_{0} x^{*} x .
$$

On the other hand, $\langle x, x\rangle_{F}=f_{0} \cdot\langle x, x\rangle_{A}=f_{0} \cdot x^{*} x$. Therefore,

$$
\left|\langle x, x\rangle_{F}\right|^{2}=\left\langle f_{0} \cdot x^{*} x, f_{0} \cdot x^{*} x\right\rangle_{A}=x^{*} x t_{0} x^{*} x
$$

and the result follows.
For (vi), we have

$$
\begin{aligned}
\left.\left.\right|_{E}\langle x, y\rangle\right|^{2} & =\left|{ }_{A}\langle x, y\rangle . e_{0}\right|^{2}=\left|x y^{*} \cdot e_{0}\right|^{2}={ }_{A}\left\langle x y^{*} \cdot e_{0}, x y^{*} \cdot e_{0}\right\rangle=x y^{*} t_{0} y x^{*} \\
& =\left(x t_{0}^{1 / 4} y^{*}\right)\left(y t_{0}^{1 / 4} x^{*}\right) t_{0}^{1 / 2}=\left(a y^{*}\right)\left(y a^{*}\right) t_{0}^{1 / 2} \quad\left(a:=x t_{0}^{1 / 4}\right) \\
& ={ }_{A}\langle a, y\rangle_{A}\langle a, y\rangle^{*} t_{0}^{1 / 2} \leq\left\|_{A}\langle a, a\rangle\right\|_{A}\langle y, y\rangle t_{0}^{1 / 2} \\
& =\left\|x t_{0}^{1 / 4}\right\|^{2} y y^{*} t_{0}^{1 / 2}=\left\|x t_{0}^{1 / 2} x^{*}\right\| y y^{*} t_{0}^{1 / 2} .
\end{aligned}
$$

On the other hand, ${ }_{E}\langle x, x\rangle={ }_{A}\langle x, x\rangle . e_{0}$, thus

$$
\begin{aligned}
\left\|_{E}\langle x, x\rangle\right\| & =\left\|_{A}\left\langle{ }_{A}\langle x, x\rangle \cdot e_{0},{ }_{A}\langle x, x\rangle \cdot e_{0}\right\rangle\right\|^{1 / 2} \\
& =\left\|_{A}\left\langle x x^{*} \cdot e_{0}, x x^{*} \cdot e_{0}\right\rangle\right\|^{1 / 2} \\
& =\left\|x x^{*} t_{0} x x^{*}\right\|^{1 / 2}=\left\|x t_{0}^{1 / 2} x^{*}\right\|,
\end{aligned}
$$

and

$$
\left.\right|_{E}\langle y, y\rangle\left|=\left.\right|_{A}\left\langle y y^{*} \cdot e_{0}, y y^{*} \cdot e_{0}\right\rangle\right|^{1 / 2}=\left(y y^{*} t_{0} y y^{*}\right)^{1 / 2}=y y^{*} t_{0}^{1 / 2},
$$

from which (vi) follows. For (vii),
$\left\langle_{E}\langle x, y\rangle . z, w\right\rangle_{F}=f_{0} \cdot\left\langle_{A}\langle x, y\rangle . z, w\right\rangle_{A}=f_{0} \cdot\left\langle x y^{*} t_{0} z, w\right\rangle_{A}=f_{0} \cdot z^{*} t_{0}^{*} y x^{*} w=f_{0} \cdot z^{*} y x^{*} t_{0} w$ and

$$
\left\langle z,_{E}\langle y, x\rangle \cdot w\right\rangle_{F}=f_{0} \cdot\left\langle z,_{A}\langle y, x\rangle \cdot e_{0} \cdot w\right\rangle_{A}=f_{0} \cdot\left\langle z, y x^{*} t_{0} w\right\rangle_{A}=f_{0} \cdot z^{*} y x^{*} t_{0} w .
$$

This completes the proof.
The condition $\overline{A t_{0}}=A$, in the above proposition, is necessary in order to get the condition (v) of the Definition 2.1. When this is not satisfied, one may define

$$
E_{0}=\overline{\left\{t_{0} \cdot e: e \in E\right\}}, \quad F_{0}=\overline{\left\{t_{0} \cdot f: f \in F\right\}},
$$

and observe that E_{0} and F_{0} are Hilbert $\overline{A t_{0}}$-modules, and similar to the above argument, show that $A t_{0}$ is a $E_{0}-F_{0}$-imprimitivity bimodule, therefore $E_{0} \sim_{M o r}$ F_{0}.

Definition 2.15. [2] Let A and B be C^{*}-algebras and E be a left Hilbert A module and F be a right Hilbert B-module. We say that E and F are isomorphic if there is a bijective map $\Phi: E \rightarrow F$ and a C^{*}-isomorphism $\varphi: A \rightarrow B$ such that $\left\langle\Phi\left(e_{2}\right), \Phi\left(e_{1}\right)\right\rangle_{B}=\varphi\left({ }_{A}\left\langle e_{1}, e_{2}\right\rangle\right)$ for all $e_{1}, e_{2} \in E$.

Proposition 2.16. Let A and B be σ-unital C^{*}-algebras, E a left A-Hilbert C^{*} module and F a right B-Hilbert C^{*}-module. If E and F are isomorphic and there is a strictly positive element $t_{0}={ }_{A}\left\langle e_{0}, e_{0}\right\rangle \in Z(A)$, then $E \sim_{M o r} F$.

Proof. If $t_{0}={ }_{A}\left\langle e_{0}, e_{0}\right\rangle \in Z(A)$ is a strictly positive element in A then

$$
\varphi\left(t_{0}\right)=\left\langle\Phi\left(e_{0}\right), \Phi\left(e_{0}\right)\right\rangle_{B} \in Z(B)
$$

is a strictly positive element in B.
Since A and B are isomorphic, A and B are Morita equivalent and A is an $A-B$ imprimitivity bimodule, with the bimodule structure $a . x=a x$ and $x . b=x \varphi^{-1}(b)$ and inner products ${ }_{A}\left\langle x_{1}, x_{2}\right\rangle=x_{1} x_{2}^{*}$ and $\left\langle x_{1}, x_{2}\right\rangle_{B}=\varphi\left(x_{1}^{*} x_{2}\right)$. Similar to the proof of Proposition 2.14, one can show that A is an $E-F$ imprimitivity bimodule, hence $E \sim_{M o r} F$.

The assumption on the existence of the strictly positive element t_{0} in the above proposition can not be dropped, even if A and B are commutative and unital. For example, let $X=Y \cup Z$ be a compact space, where Y and Z are disjoint, non-empty, open subsets of X, which are homeomorphic. Then $C(X)$ is a left and a right $C(X)$-module with inner products

$$
C(X)\langle f, g\rangle=f \bar{g} \chi_{Y}, \quad\langle f, g\rangle_{C(X)}=\bar{f} g \chi_{Z}, \quad(f, g \in C(X)) .
$$

In this case, $C_{(X)}\langle f, f\rangle$ is supported in Y, for any $f \in C(X)$, hence it could not be a strictly positive element of $C(X)$. Take an isomorphism $\psi: C(Y) \rightarrow C(Z)$ and identify $C(X)$ with $C(Y) \oplus C(Z)$. Let $\sigma: C(Y) \oplus C(Z) \rightarrow C(Z) \oplus C(Y)$ be the flip isomorphism. In Definition 2.15, put $\Phi:=\sigma^{-1} \circ\left(\psi \oplus \psi^{-1}\right): C(X) \rightarrow C(X)$ and $\varphi=i d$, then $C(X)$, as a left $C(X)$-module, is isomorphic to $C(X)$, as a right $C(X)$-module, but $C(X) \varkappa_{\text {Mor }} C(X)$, as no imprimitivity bimodule could satisfy condition (v) of Definition 2.4.

Acknowledgement. The first and second authors were in part supported by grants from IPM (91430215 \& 92470123) and the third author was supported in part by a grant of the Romanian National Authority for Scientific Research, CNCS-UEFISCDI, project number PN-II-ID-PCE-2012-4-0201.

References

1. W. Beer, On Morita equivalence of nuclear C^{*}-algebras, J. Pure Appl. Algebra 26 (1982), no. 3, 249-267.
2. D. Bakić and B. Guljăs, On a class of module maps of Hilbert C^{*}-modules, Math. Comm. 7 (2002), 177-192.
3. M. Joiţa and M.S. Moslehian, A Morita equivalence for Hilbert C^{*}-modules, Studia Math. 209 (2012), 11-19.
4. I. Raeburn and D. Williams, Morita Equivalence and continuous trace C^{*}-algebras, American Mathematical Society, Ptrovidence, 1998.
5. M.A. Rieffel, Induced representations of C^{*}-algebras, Advances in Math. 13 (1974), 175257.
6. M. Skeide, Classification of E_{0}-semigroups by product systems, Mem. Amer. Math. Soc. (to appear), arXiv:0901.1798v3.
7. M. Skeide, Unit vectors, Morita equivalence and endomorphisms, Publ. Res. Inst. Math. Sci. 45 (2009), 475-518.

1 Department of Mathematics, Faculty of Mathematical Sciences, Tarbiat Modares University, Tehran 14115-134, Iran.

2 School of Mathematics, Institute for Research in Fundamental Sciences (IPM), Tehran 19395-5746, Iran.

E-mail address: mamini@modares.ac.ir
${ }^{3}$ School of Mathematics, Statistics and Computer Science, College of Science, University of Tehran, Enghelab Avenue, Tehran, Iran.

E-mail address: mb.asadi@khayam.ut.ac.ir, rezavand@khayam.ut.ac.ir
${ }^{4}$ Department of Mathematics, University of Bucharest, Str. Academiei Nr. 14, 70109 Bucharest, Romainia.
${ }^{5}$ Current address: Department of Mathematics, Faculty of Applied Sciences, University Politehnica of Bucharest, Spl. Independentei nr. 313, Bucharest, 060042, Romania.

E-mail address: mjoita@fmi.unibuc.ro

[^0]: Date: Received: Mar. 13, 2014; Accepted: Mar. 29, 2014.

 * Corresponding author.

 2000 Mathematics Subject Classification. Primary 46L08; Secondary 46L05.
 Key words and phrases. Morita equivalence, Hilbert C^{*}-modules, C^{*}-algebras, unit vectors.

