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SKEW SYMMETRIC WEIGHTED SHIFTS
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Abstract. An operator T on a complex Hilbert space H is called skew sym-
metric if T can be represented as a skew symmetric matrix relative to some
orthonormal basis for H. We first give a canonical decomposition for general
skew symmetric operators. Based on this decomposition, we provide a classi-
fication of skew symmetric weighted shifts.

1. Introduction and preliminaries

Throughout this paper, we let C, Z and N denote the set of complex numbers,
the set of integers and the set of positive integers respectively. H will always
denote a complex separable Hilbert space. We let B(H) denote the algebra of all
bounded linear operators on H.

Definition 1.1. A map C onH is called an antiunitary operator if C is conjugate-
linear, invertible and 〈Cx,Cy〉 = 〈y, x〉 for all x, y ∈ H. If, in addition, C−1 = C,
then C is called a conjugation. An operator T in B(H) is called a skew symmetric
operator (SSO, for short) if CTC = −T ∗ for some conjugation C on H.

We remark that the terminology stems from the fact that T is skew symmetric
if and only if T can be represented as a skew symmetric matrix (that is, A = −At)
with respect to some orthonormal basis [10, Lem. 1].

The motivation for the study of SSOs stems from the emerging theory of com-
plex symmetric operators on Hilbert space (see [9, 10, 11, 12, 13] for references).
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Definition 1.2. An operator T in B(H) is called a complex symmetric operator
(CSO, for short) if there is a conjugation C on H so that CTC = T ∗.

Also one can check that T is complex symmetric if and only if T has a symmetric
matrix representation with respect to some orthonormal basis. The earliest study
of CSOs dates back to the middle of the 20th century [15, 16]. Later, many
papers were devoted to the study of CSOs (see [27] and references therein). At
the present time, Garcia and Putinar [10, 11] has proved many interesting results.
The study of CSOs has many motivations in function theory, matrix analysis and
other areas; in particular, CSOs are closely related to the study of truncated
Toeplitz operators, which was initiated in Sarason’s seminal paper [22] and has
led to rapid progress in related areas [3, 13, 14, 23, 24].

The following lemma contains some elementary facts about SSOs.

Lemma 1.3 ([20], Lem. 1.4). Let C be a conjugation on H. Denote SC(H) =
{X ∈ B(H) : CXC = −X∗}. Then

(i) if A, B ∈ B(H), CAC = A∗ and CBC = B∗, then [A, B] := AB − BA ∈
SC(H);

(ii) if T ∈ SC(H), then CT 2nC = (T 2n)∗ for all n ∈ N;
(iii) the class SC(H) is norm-closed and forms a Lie algebra under the com-

mutator bracket [·, ·];
(iv) if T ∈ SC(H), then σ(T ) = −σ(T ).

By Lemma 1.3 (i), one can use CSOs to construct SSOs. In particular, if
T ∈ B(H) is complex symmetric, then T ∗T − TT ∗ is always skew symmetric.
By [10, Prop. 3], all truncated Toeplitz operators are complex symmetric with
respect to the same conjugation. Then it follows from Lemma 1.3 (i) that any
commutator of two truncated Toeplitz operators is skew symmetric. These are
important examples of skew symmetric operators.

As already mentioned in the foregoing part, the primary motivation for the
study of SSOs lies in its connections to CSOs. From Lemma 1.3 (i) and (ii), one
may see this point. It is often difficult to determine whether a given operator is
complex symmetric. By Lemma 1.3 (i), if T is complex symmetric, then T ∗T −
TT ∗ is skew symmetric. In view of the description of skew symmetric normal
operators [20, Thm. 1.10], this provides another approach to CSOs. In a recent
paper [18], one can see such an application to Toeplitz operators. On the other
hand, each operator T on H can be written as the sum of a CSO and an SSO.
In fact, arbitrarily choose a conjugation C on H and set A = 1

2
(T + CT ∗C),

B = 1
2
(T − CT ∗C). Then CAC = A∗, CBC = −B∗ and T = A + B. This

reflects some universality of CSOs and SSOs.
Another motivation for the study of SSOs lies in the connections between SSOs

and anti-automorphisms of singly generated C∗-algebras. Recall that an anti-
automorphism of a C∗-algebra A is a vector space isomorphism ϕ : A → A
with ϕ(a∗) = ϕ(a)∗ and ϕ(ab) = ϕ(b)ϕ(a) for a, b ∈ A. An anti-automorphism
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or an automorphism ρ is said to be involutory if ρ−1 = ρ. Involutory anti-
automorphisms play an important role in the study of the real structure of C∗-
algebras [2, 25, 26]. It is not necessary that each C∗-algebra possesses an involu-
tory anti-automorphism on it [4, 5, 21]. In a recent paper [30], certain connections
between SSOs and anti-automorphisms of singly generated C∗-algebras are estab-
lished. In particular, it is proved that if T is skew symmetric, then C∗(T ) (the
C∗-algebra generated by T and the identity operator I) admits an involutory
anti-automorphism on it (see [30, Cor. 3.2]). Moreover, this is used to classify
certain SSOs up to approximate unitary equivalence.

Recently, there has been growing interest in SSOs (see [27, 28, 20, 19, 30]). In
[27], Zagorodnyuk studied the polar decomposition of SSOs and obtained some
basic properties of SSOs. In [28], Zagorodnyuk studied the skew symmetry of
cyclic operators. In [20], Li and the author classified skew symmetric normal
operators. In [19], Li and Zhou described skew symmetric partial isometries. In
a recent paper [30], the author obtained a classification of certain SSOs up to
approximate unitary equivalence.

The main aim of this paper is to classify skew symmetric weighted shifts.
Recall that a (forward) weighted shift T on H (dimH = ℵ0) with weighted
sequence {wn} is the operator defined by Ten = wnen+1 for all n, where {en} is
an orthonormal basis (onb , for short) of H. If the index n runs over the positive
integers, then T is called a unilateral weighted shift, while if n runs over integers,
then T is called a bilateral weighted shift.

This work is mainly inspired by a recent paper [29], where complex symmet-
ric weighted shifts are classified. In particular, it is proved that each complex
symmetric unilateral weighted shift can be written as the direct sum of some
finite-dimensional truncated weighted shifts with symmetric weights.

Definition 1.4. If {ei}n
i=1 is an onb for some finite-dimensional Hilbert space, an

operator of the form T =
∑n−1

i=1 λi[ei+1⊗ei] is called a finite-dimensional truncated
weighted shift. In particular, if |λi| = |λn−i| for each 1 ≤ i ≤ n − 1, then the
weights {λi}n−1

i=1 of T are called symmetric.

Here the operator ei+1 ⊗ ei is given by ei+1 ⊗ ei(x) = 〈x, ei〉ei+1 for x.
Noting that SSOs are intimately related to CSOs, one may wish to apply

those methods developed in [29] to describe skew symmetric weighted shifts.
Unfortunately, these methods are not applicable. One may see this in the proofs
of Lemma 2.11 and Theorem 1.9. To obtain a complete characterization, we shall
develop in this paper a completely different approach.

To state our main results, we need an extra notation.

Definition 1.5 ([1], page 95). Let T ∈ B(H). An operator A ∈ B(H) is called a
transpose of T if A = CT ∗C for some conjugation C on H.

If T ∈ B(H) is skew symmetric, then there exists a conjugation C on H such
that −T = CT ∗C. It follows that −T is a transpose of T . In general, an operator
has more than one transpose [30, Ex. 2.2]. However, one can check that any two
transposes of an operator are unitarily equivalent. We often write T t to denote
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a transpose of T . In general, there is no ambiguity especially when we write
T ∼= T t. Here and in what follows, ∼= denotes unitary equivalence.

Definition 1.6 ([8]). Let T ∈ B(H) and M be a nonzero subspace of H. If M
reduces T and T |M is irreducible, then M is called a minimal reducing subspace
of T . An operator is said to be completely reducible if it does not admit any
minimal reducing subspace.

Note that a normal operator is completely reducible if and only if it has no
eigenvalues.

Now we can list our results. The first result of this paper is the following result,
which describes the block structure of SSOs.

Theorem 1.7. Let T ∈ B(H). Then T is skew symmetric if and only if it is
unitarily equivalent to a direct sum of (some of the summands may be absent)

(i) completely reducible SSOs,
(ii) irreducible SSOs, and
(iii) operators of the form A ⊕ (−At), where A is irreducible and not skew

symmetric.

Remark 1.8. (i) The above result decomposes a general SSO into the direct
sum of three kinds of elementary ones. In Section 4, we shall construct
several examples.

(ii) In a recent paper [18], Guo and the author provided a canonical decom-
position of general CSOs. Theorem 1.7 is an analogue of this result for
SSOs.

Based on Theorem 1.7, we give a concrete description of skew symmetric (uni-
lateral or bilateral) weighted shifts. The following two results are main theorems
of this paper.

Theorem 1.9. Let T be a unilateral weighted shift on H. Then T is skew sym-
metric if and only if T can be written as T = ⊕∞i=1Ti, where each Ti is a finite-
dimensional truncated weighted shift with symmetric weights and even rank.

Theorem 1.10. A bilateral weighted shift T with weighted sequence {wi}i∈Z is
skew symmetric if and only if exactly one of the following holds:

(i) wi 6= 0 for all i ∈ Z and there exists k ∈ Z such that |wi−1| = |w2k−i| for
all i ∈ Z;

(ii) T is an infinite direct sum of finite-dimensional truncated weighted shifts
with symmetric weights and even rank;

(iii) T is unitarily equivalent to an operator with the form A⊕A∗ ⊕B, where
A is an injective unilateral weighted shift and B is absent or B is a finite
direct sum of finite-dimensional truncated weighted shifts with symmetric
weights and even rank.

Remark 1.11. By the preceding two results and Theorems 3.1/4.1 of [29], each
skew symmetric weighted shift is complex symmetric, while the converse does not
hold in general.
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The rest of this paper is organized as follows. In Section 2, we shall give the
proofs of Theorems 1.7 and 1.9. The proof of Theorem 1.10 is provided in Section
3. In Section 4, we shall give several illustrating examples of those three kinds of
SSOs mentioned in Theorem 1.7.

2. Proofs of Theorems 1.7 and 1.9

This section is devoted to the proofs of Theorems 1.7 and 1.9. We first make
some preparation. We remark that the proof of Theorem 1.7 follows a similar
line as that of Theorem 1.6 in [18].

Lemma 2.1 ([30], Lem. 3.7). If T ∈ B(H), then T ⊕ (−T t) is skew symmetric.

Corollary 2.2. Let T ∈ B(H) be a (unilateral or bilateral) weighted shift. Then
T ⊕ T ∗ is skew symmetric.

Proof. We only give the proof in the case that T is a unilateral weighted shift.
The proof for the bilateral case is similar.

Assume that T ∈ B(H) is a unilateral weighted shift defined by Tei = λiei+1

for i ≥ 1, where {ei}i≥1 is an onb of H. Since T is unitarily equivalent to
the weighted shift with nonnegative weights {|λi|}, we may directly assume that
λi ≥ 0 for all i.

For x ∈ H with x =
∑

i αiei, define Cx =
∑

i αi(−1)iei. Then one can check
that C is a conjugation on H and, for each i ≥ 1,

CTCei = (−1)iCTei = (−1)iλiCei+1 = (−1)2i+1λiei+1 = −Tei.

So −T = CTC and −T ∗ = CT ∗C, which means that −T ∗ is a transpose of T .
By Lemma 2.1, T ⊕ T ∗ is skew symmetric. �

The following result proved in [18, Lem. 2.2] is very useful. For the reader’s
convenience we still present it here.

Lemma 2.3. Let T ∈ B(H) and A = CT ∗C−1, where C is an antiunitary opera-
tor on H. If M is a reducing subspace of T , then C(M) is a reducing subspace of
A and A|C(M)

∼= (T |M)t. In particular, T |M is irreducible if and only if A|C(M)

is irreducible.

Proof. Denote N = C(M). It is easy to check that N is a reducing subspace
of A. For x ∈ M, define Dx = Cx. Thus D : M → N is an antiunitary
operator. Since AC = CT ∗, we obtain (A|N )(C|M) = (C|M)(T ∗|M), that is,
(A|N )D = D(T ∗|M). Arbitrarily choose a conjugation E on M. Then we have

A|N = D(T ∗|M)D−1 = (DE)
[
E(T ∗|M)E

]
(ED−1)

= (DE)
[
E(T |M)∗E

]
(ED−1).

Noting that DE : M→N is unitary and (DE)−1 = ED−1, it follows that A|N ∼=
(T |M)t. The assertion about minimal reducing subspace follows readily. �

Given T ∈ B(H) and a cardinal number n, 1 ≤ n ≤ ℵ0, we let H(n) denote the
direct sum of n copies of H and let T (n) denote the direct sum of n copies of T ,
acting on H(n) (see [6, Def. 6.3]).
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Proposition 2.4 ([18], Prop. 2.3). Let T ∈ B(H) and T = T0 ⊕
(
⊕i∈ΛT

(ni)
i

)
,

where T0 is completely reducible, Ti is irreducible and 1 ≤ ni ≤ ∞ for i ∈ Λ;
moreover, Ti � Tj whenever i, j ∈ Λ and i 6= j. Then each reducing subspace M
of T has the form of M0 ⊕ (⊕i∈ΛMi), where M0 is a reducing subspace of T0

and Mi is a reducing subspace of T
(ni)
i for i ∈ Λ.

Corollary 2.5. Let T ∈ B(H) and T = T0 ⊕
(
⊕i∈ΛT

(ni)
i

)
, where T0 ∈ B(H0)

is completely reducible, Ti ∈ B(Hi) is irreducible and 1 ≤ ni ≤ ∞ for i ∈ Λ;
moreover, Ti � Tj whenever i, j ∈ Λ and i 6= j. Let M be a nonzero subspace of
H. Then M is a minimal reducing subspace of T if and only if there exists i ∈ Λ

such that M⊂ H(ni)
i and M is a minimal reducing subspace of T

(ni)
i .

Corollary 2.6. Let T ∈ B(H) and T = T0 ⊕
(
⊕i∈ΛT

(ni)
i

)
, where T0 ∈ B(H0)

is completely reducible, Ti ∈ B(Hi) is irreducible and 1 ≤ ni ≤ ∞ for i ∈ Λ;
moreover, Ti � Tj whenever i, j ∈ Λ and i 6= j. If T is skew symmetric, then T0

and ⊕i∈ΛT
(ni)
i are both skew symmetric.

Proof. Since T is skew symmetric, there is a conjugation C on H such that
CTC = −T ∗. By Lemma 2.3, C maps one minimal reducing subspace of T

to another. It follows from Corollary 2.5 that C(⊕i∈ΛH(ni)
i ) ⊂ ⊕i∈ΛH(ni)

i . Since

C is a conjugation and C2 = I, one can see that C(⊕i∈ΛH(ni)
i ) = ⊕i∈ΛH(ni)

i and
hence C(H0) = H0.

Set C1 = C|H0 and C2 = C|H⊥0 . Then C1, C2 are conjugations and C = C1⊕C2.
It follows from −T ∗ = CTC that −T ∗0 = C1T0C1 and

−
(
⊕i∈ΛT

(ni)
i

)∗
= C2

(
⊕i∈ΛT

(ni)
i

)
C2.

This completes the proof. �

If A ∈ B(H) is irreducible, then the commutant algebra {A, A∗}′ of {A, A∗}
equals CI; whence the following result is clear. The reader is also referred to [17,
Prop. 7.4] for a proof.

Lemma 2.7. Let T = A(n), where A ∈ B(H) is irreducible and 1 ≤ n ≤ ∞. If
M is a nonzero reducing subspace of T , then the following are equivalent:

(i) T |M ∼= A;
(ii) T |M is irreducible;
(iii) There exist complex numbers {αi}n

i=1 with 0 <
∑n

i=1 |αi|2 < ∞ such that

M = {⊕n
i=1αiξ : ξ ∈ H}.

Corollary 2.8. Let T ∈ B(H) and T = T0 ⊕
(
⊕i∈ΛT

(ni)
i

)
, where T0 ∈ B(H0)

is completely reducible, Ti ∈ B(Hi) is irreducible and 1 ≤ ni ≤ ∞ for i ∈ Λ;
moreover, Ti � Tj whenever i, j ∈ Λ and i 6= j. If M is a minimal reducing
subspace of T , then T |M ∼= Ti for some i ∈ Λ.

Proposition 2.9. Let T = A(n), where A ∈ B(H) is irreducible and 1 ≤ n ≤ ∞.
Then T is skew symmetric if and only if exactly one of the following holds:
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(i) A is skew symmetric;
(ii) n ∈ {2i : i ∈ N} ∪ {∞}, A ∼= (−At) and A is not skew symmetric.

Proof. “⇐=”. When A is skew symmetric, the sufficiency is trivial. Now we
assume that statement (ii) holds. By the hypothesis, we have A ∼= (−At). Thus

T = A(n) = (A⊕ A)(n
2
) ∼=

(
A⊕ (−At)

)(n
2
)
.

It follows from Lemma 2.1 that T is skew symmetric.
“=⇒”. Now we assume that T is skew symmetric and A is not skew symmetric.

Then we need only prove that A ∼= (−At) and n is not odd. We need only give
the proof in the case that n < ∞, the proof for n = ∞ is easier.

For convenience, we write

T (n) =


A

A
. . .

A


H1

H2
...
Hn

,

where H1 = H2 = · · ·Hn = H.
We shall proceed by induction on n.
If n ≤ 2, then we claim that n = 2. Otherwise, n = 1 and A = T is skew

symmetric, contradicting the hypothesis.
Now suppose we have proved that n ≤ k implies n is even. Now assume that

n = k + 1. Since T is skew symmetric, there is a conjugation C on H(n) such
that −T = CT ∗C. Denote N = C(H1). Since A = T |H1 is irreducible and
−T = CT ∗C, it follows from Lemma 2.3 that N is a minimal reducing subspace
of T and (−T |N ) ∼= (T |H1)

t = At; whence T |N is irreducible. By Lemma 2.7, this
implies T |N ∼= A. Therefore we obtain A ∼= (−At). Now it remains to prove that
n is even.

Since N = C(H1) and H1 = C(N ), we obtain C(∨{H1,N}) ⊂ ∨{H1,N}.
Here ∨ denotes closed linear span. Furthermore, C(∨{H1,N}) = ∨{H1,N} and
C({H1,N}⊥) = {H1,N}⊥. So ∨{H1,N} and {H1,N}⊥ both reduce C.

On the other hand, Since N is irreducible, it follows from Lemma 2.7 that

N = {⊕n
i=1αix : x ∈ H}

for some nonzero (α1, · · · , αn) ∈ Cn. We claim that (α2, α3, · · · , αn) 6= 0. In
fact, if not, then H1 = N and C(H1) = H1. It follows that A = T |H1 is skew
symmetric, a contradiction. Denote M = {⊕n

i=2αix : x ∈ H}. Then M 6= {0},
and it follows from Lemma 2.7 that M reduces T and T |M ∼= A. Noting that

∨{H1,N} = H1 ⊕M,

∨{H1,N} reduces T and T |∨{H1,N} = (T |M) ⊕ (T |H1)
∼= A(2). It follows that

{H1,N}⊥ reduces T . Since {H1,N}⊥ also reduces C, we deduce that T |{H1,N}⊥

is skew symmetric. By [17, Cor. 7.5], there exists m ≤ n such that T |{H1,N}⊥
∼=

A(m).
Note that if A ∈ B(H) is irreducible, then the commutant algebra {A, A∗}′ of

{A, A∗} equals CI; hence the commutant algebra of {A(n), (A∗)(n)} is ∗-isomorphic
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to the matrix algebra Mn(C). It follows that m = n− 2 and T |{H1,N}⊥
∼= A(n−2).

Noting that n − 2 ≤ k and T |{H1,N}⊥ is skew symmetric, by the induction hy-
pothesis, we deduce that n−2 is even, and so is n. This completes the proof. �

Lemma 2.10 ([8], Prop. 2.4). If T ∈ B(H), then T admits the decomposition
T = T0⊕

(⊕
i∈Λ Ti

)
, where T0 ∈ B(H0) is completely reducible and Ti ∈ B(Hi) is

irreducible for all i ∈ Λ.

Proof of Theorem 1.7. By Lemma 2.1, the sufficiency is obvious. It suffices to
prove the necessity.

“=⇒”. By Lemma 2.10 and Corollary 2.6, we may directly assume that T =

⊕∞i=1T
(ni)
i , where Ti ∈ B(Hi) is irreducible and 1 ≤ ni ≤ ∞ for i ≥ 1; moreover,

Ti � Tj whenever i 6= j. Thus H = ⊕i≥1H(ni)
i . To be convenient, for each i ≥ 1,

we write

T
(ni)
i =


Ti

Ti

. . .
Ti


Hi,1

Hi,2
...

Hi,ni

,

where Hi,1 = Hi,2 = · · · = Hi,ni
= Hi.

Since T is an SSO, there exists a conjugation C on H such that −T = CT ∗C.
For each i ≥ 1, denote Mi = C(Hi,1). Since Ti = T |Hi

is irreducible, it follows
from Lemma 2.3 that Mi reduces T , T |Mi

is irreducible and (−T |Mi
) ∼= T t

i . By

Corollary 2.5, there exists unique τi ∈ N such that Mi ⊂ H(nτi )
τi . This defines a

map τ on N. It follows from Lemma 2.7 that T |Mi
= T

(nτi )
τi |Mi

∼= Tτi
. Then we

obtain

(−Tτi
) ∼= T t

i , ∀i ≥ 1. (2.1)

Claim 1. For each i ≥ 1, if N ⊂ H(ni)
i is a minimal reducing subspace of T ,

then C(N ) ⊂ H(nτi )
τi .

Since T |N is irreducible, it follows from Lemmas 2.3 and 2.7 that T |C(N ) is
irreducible and

(−T |C(N )) ∼= (T |N )t = (Ti)
t. (2.2)

Moreover there exists j ∈ Λ such that C(N ) ⊂ H(nj)
j . Thus T |C(N )

∼= Tj. In
view of (2.1) and (2.2) , we obtain (−Tj) ∼= (Ti)

t ∼= (−Tτi
). By the hypothesis, it

follows that j = τi. This proves the claim.

Claim 2. C(H(ni)
i ) = H(nτi )

τi for any i ≥ 1.
Fix an i ≥ 1 and denote j = τi. In view of (2.1), we have (−Tτi

) ∼= T t
i and

(−Tτj
) ∼= T t

j . It follows that T t
τj

∼= (−Tj) and Tτj
∼= Ti. By the hypothesis on the

decomposition T = ⊕i≥1T
(ni)
i , one can deduce that i = τj. Hence τ 2(i) = i. It

follows immediately from Claim 1 that

C(H(ni)
i ) ⊂ H(nτi )

τi and C(H(nτi )
τi ) ⊂ H(ni)

i .

Since C−1 = C, we have

C(H(ni)
i ) ⊂ H(nτi )

τi ⊂ C(H(ni)
i ),
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that is, C(H(ni)
i ) = H(nτi )

τi . This proves Claim 2.
By the above argument, the map τ : i 7→ τi is invertible and τ−1 = τ . Thus τ

induces the following partition of N{
{i, τi} : i ≥ 1

}
,

denoted by {Λr : r ∈ Γ}. Then ∪r∈ΓΛr = N and 1 ≤ card Λr ≤ 2 for all r ∈ Γ.
Thus T can be written as

T =
⊕
r∈Γ

(
⊕i∈ΛrT

(ni)
i

)
with respect to the decomposition

H =
⊕
r∈Γ

(
⊕i∈ΛrH

(ni)
i

)
.

Noting that C(⊕i∈ΛrH
(ni)
i ) = ⊕i∈ΛrH

(ni)
i for all r ∈ Γ, it follows that ⊕i∈ΛrT

(ni)
i

is skew symmetric for all r ∈ Γ. So, in order to complete the proof, it suffices to

prove that each ⊕i∈ΛrT
(ni)
i admits the desired decomposition for r ∈ Γ.

Claim 3. ni = nτi
for all i ≥ 1.

Now fix an i ≥ 1. For each 1 ≤ j ≤ ni, denote Nj = C(Hi,j). Then, by Claim

2, ⊕ni
j=1Nj = C(H(ni)

i ) = H(nτi )
τi . Hence it follows from Lemma 2.7 that

T
(nτi )
τi = T |

H
(nτi )
τi

= ⊕ni
j=1(T |Nj

) ∼= T (ni)
τi

.

Since Tτi
is irreducible, by comparing commutant algebras, one can see that

ni = nτi
. This proves Claim 3.

Now we are going to conclude our proof. Fix an r ∈ Γ.

If card Λr = 1 and k ∈ Λr, then ⊕i∈ΛrT
(ni)
i = T

(nk)
k . Since T

(nk)
k is an SSO, by

Proposition 2.9, it admits the desired decomposition.

If card Λr = 2 and k ∈ Λr, then k 6= τk and ⊕i∈ΛrT
(ni)
i = T

(nk)
k ⊕ T

(nτk
)

τk . In
view of Claim 3 and (2.1), we have

T
(nk)
k ⊕ T

(nτk
)

τk = T
(nk)
k ⊕ T (nk)

τk

∼= (Tk)
(nk) ⊕ (−T t

k)
(nk) =

(
Tk ⊕ (−T t

k)
)(nk)

.

We claim that Tk is not skew symmetric. In fact, if not, then Tk
∼= (−T t

k). In
view of (2.1), we have Tk

∼= Tτk
. This contradicts the fact that Tk � Tτk

since

k 6= τk. Therefore ⊕i∈ΛrT
(ni)
i admits the desired decomposition. This completes

the proof. �

Lemma 2.11. Let n ∈ N and {ei}n
i=1 be an onb of Cn. Assume that

T =
n−1∑
i=1

λiei+1 ⊗ ei,

where λi 6= 0 for all 1 ≤ i ≤ n− 1. Then T is skew symmetric if and only if n is
odd and |λi| = |λn−i| for all 1 ≤ i ≤ n− 1.
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Proof. Since T ∼=
∑n−1

i=1 |λi|ei+1 ⊗ ei, we may directly assume that λi > 0 for

1 ≤ i ≤ n− 1. Then it is obvious that T ∗ =
∑n−1

i=1 λiei ⊗ ei+1.
“⇐=”. For x ∈ Cn with x =

∑n
i=1 αiei, define

Cx =
n∑

i=1

αi(−1)i−n+1
2 en−i+1.

It is easy to see that C is invertible, conjugate-linear and isometric. Moreover,
one can check that

C2x = C

(
n∑

i=1

αi(−1)i−n+1
2 en−i+1

)

=
n∑

i=1

αi(−1)i−n+1
2 Cen−i+1

=
n∑

i=1

αi(−1)i−n+1
2 (−1)

n+1
2
−iei = x.

Thus C−1 = C, and hence C is a conjugation on Cn.
For 1 ≤ i ≤ n− 1, one can check that

CTei = Cλiei+1 = λi(−1)i+1−n+1
2 en−i

and

−T ∗Cei = −(−1)i−n+1
2 T ∗en−i+1 = (−1)i+1−n+1

2 λn−ien−i;

that is, CTei = −T ∗Cei. On the other hand, CTen = 0 = −(−1)n−n+1
2 T ∗e1 =

−T ∗Cen. It follows that CT = −T ∗C and T is skew symmetric.
“=⇒”. Assume that C is a conjugation on Cn and CTC = −T ∗. Thus CT iC =

(−1)i(T ∗)i for i ≥ 1. It follows that C(ker T i) = ker(T ∗)i for all i ≥ 1. Note that
ker T i = ∨{ej : n − i + 1 ≤ j ≤ n} and ker(T ∗)i = ∨{ej : 1 ≤ j ≤ i} for each
1 ≤ i ≤ n. Since 〈Cx,Cy〉 = 〈y, x〉 for all x, y ∈ Cn, there exist complex numbers
{µi}n

i=1 with |µi| = 1 such that Cei = µien−i+1 for any 1 ≤ i ≤ n.
Fix an i with 1 ≤ i ≤ n. We have

(−1)iµ1λn−i+1 · · ·λn−1λnen−i = (−1)iµ1(T
∗)ien = (−1)i(T ∗)iCe1

= CT ie1 = C(λ1λ2 · · ·λiei+1)

= λ1λ2 · · ·λiµi+1en−i.

It follows that λ1λ2 · · ·λi = λn−i+1 · · ·λn−1λn. Since 1 ≤ i ≤ n is arbitrary, it
follows that λi = λn−i+1 for 1 ≤ i ≤ n− 1.

Now it remains to prove that n is odd. If not, then n is even. Set k = n
2
. Then

Cek = µkek+1 and hence Cek+1 = µkek. A direct calculation shows that

−µkλkek = −T ∗µkek+1 = −T ∗Cek = CTek = Cλkek+1 = λkµkek,

which implies that λkµk = 0, a contradiction. This completes the proof. �

By the proof for the sufficiency of Lemma 2.11, the following corollary is clear.
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Corollary 2.12. Let n ∈ N and {ei}n
i=1 be an onb of Cn. Assume that

T =
n−1∑
i=1

λiei+1 ⊗ ei.

If n is odd and |λi| = |λn−i| for all 1 ≤ i ≤ n− 1, then T is skew symmetric.

Now we can give the proof of Theorem 1.9.

Proof of Theorem 1.9. “⇐=”. It suffices to prove that each Ti is skew symmetric.
Now fix an i. Assume that

Ti =
n−1∑
i=1

λiei+1 ⊗ ei,

where {ei}n
i=1 is an onb of the underlying space of Ti, |λj| = |λn−j| for all 1 ≤

j ≤ n − 1 and rank Ti is even. Noting that Ti
∼=
∑n−1

j=1 |λj|ej+1 ⊗ ej, we may
directly assume that λj ≥ 0 for each j.

If n is odd, then the result follows immediately from Corollary 2.12.
Now we assume that n is even. Denote k = n

2
. First we claim that λk = 0. In

fact, if not, then

rank Ti = card {1 ≤ j ≤ n− 1 : λj 6= 0}
= 1 + 2 · card {1 ≤ j ≤ k − 1 : λj 6= 0}

is odd, a contradiction.
For each x =

∑n
j=1 αjej, define

Cx =
k∑

j=1

αj(−1)jen−j+1 +
n∑

j=k+1

αj(−1)j+1en−j+1.

Then one can check that C is conjugate-linear and isometric. Moreover, one
can see that Cej = (−1)jen−j+1 for 1 ≤ j ≤ k and Cej = (−1)j+1en−j+1 for
k + 1 ≤ j ≤ n. Then for x =

∑n
j=1 αjej we have

C2x = C

(
k∑

j=1

αj(−1)jen−j+1 +
n∑

j=k+1

αj(−1)j+1en−j+1

)

=
k∑

j=1

αj(−1)jCen−j+1 +
n∑

j=k+1

αj(−1)j+1Cen−j+1

=
k∑

j=1

αj(−1)j(−1)n−j+2ej +
n∑

j=k+1

αj(−1)j+1(−1)n−j+1ej = x.

Hence C is invertible and C−1 = C. It follows that C is a conjugation on the
underlying space of Ti. Now it remains to check that CTi = −T ∗i C.
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If 1 ≤ j < k, then

CTiej = Cλjej+1 = λjCej+1 = (−1)j+1λjen−j

= (−1)j+1λn−jen−j = (−1)j+1T ∗i en−j+1

= −T ∗i (−1)jen−j+1 = −T ∗i Cej.

If k + 1 ≤ j < n, then

CTiej = Cλjej+1 = λjCej+1 = (−1)j+2λjen−j

= (−1)j+2λn−jen−j = (−1)j+2T ∗i en−j+1

= −T ∗i (−1)j+1en−j+1 = −T ∗i Cej.

Also one can check that

CTiek = Cλkek+1 = 0 = (−1)k+1λkek = −T ∗i (−1)kek+1 = −T ∗i Cek

and
CTien = 0 = (−1)n+2T ∗i e1 = −T ∗i (−1)n+1e1 = −T ∗i Cen.

Thus we have checked that CTiej = −T ∗i Cej for all 1 ≤ j ≤ n. Hence CTi =
−T ∗i C and Ti is skew symmetric.

“=⇒”. Assume that T is skew symmetric and T =
∑∞

i=1 wiei+1 ⊗ ei, where
{ei}∞i=1 is an onb of H.

First we claim that card {i ∈ N : wi = 0} = ∞. In fact, if not, then it is obvious
that T can be written as T = A ⊕ B, where A is acting on a finite dimensional
Hilbert space and B is a unilateral weighted shift with nonzero weights. Then
dim ker B = 0, dim ker B∗ = 1 and

dim ker T = dim ker A + dim ker B = dim ker A = dim ker A∗

< dim ker A∗ + dim ker B∗ = dim ker T ∗ < ∞.

Since T is skew symmetric, there exists a conjugation C on H such that CTC =
−T ∗. Then dim ker T ∗ = dim ker T , a contradiction. This proves the claim.

By the above claim, T can be written as T = ⊕∞i=1Ai, where each Ai acting on
a finite dimensional Hilbert space admits the following matrix representation

Ai =


0
µ1 0

. . . . . .
µk−2 0

µk−1 0

 (2.3)

relative to some onb {ej}k
j=1 for the underlying space of Ai, where µj 6= 0 for

1 ≤ j ≤ k − 1. So each Ai is irreducible. By Corollary 2.8, if M is a nonzero
minimal reducing subspace of T , then T |M ∼= Ai for some i ≥ 1. Moreover, it
follows from [7, Thm. 3.1] that there exists no nonzero reducing subspace N of
T such that T |N is completely reducible.

Since T is skew symmetric, it follows from Theorem 1.7 that T = ⊕s∈ΛBs,
where each Bs is either an irreducible SSO or Bs = R ⊕ (−Rt) with R being
irreducible and not skew symmetric. We shall show that each Bs admits the
desired form.
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Now we fix an s ∈ Λ.
Case 1. Bs is an irreducible SSO. Then, by the discussion above, there exists

i such that Bs
∼= Ai. Hence Ai is skew symmetric. Note that Ai admits the

matrix representation (2.3). By Lemma 2.11, Ai is a truncated weighted shift
with symmetric weights and even rank. Then so is Bs.

Case 2. Bs = R ⊕ (−Rt) with R being irreducible and not skew symmetric.
Since R is irreducible, it follows from Corollary 2.8 that R ∼= Ai for some i.
Assume that Ai admits the matrix representation (2.3). Then Ai =

∑k−1
j=1 µjej+1⊗

ej. Define a conjugation D on ∨{ej : 1 ≤ j ≤ k} by D(
∑k

j=1 αjej) =
∑k

j=1 αjej.
Note that

−DA∗
i D = −D

(
k−1∑
j=1

µjej ⊗ ej+1

)
D

= −
k−1∑
j=1

µjD(ej ⊗ ej+1)D

= −
k−1∑
j=1

µjej ⊗ ej+1 =
k−1∑
j=1

(−µj)ej ⊗ ej+1.

Then Ai ⊕ (−DA∗
i D) can be written as

0
µ1 0

. . . . . .
µk−1 0

0 0
−µk−1 0

. . . . . .
−µ1 0



e1

e2
...
ek

ek
...
e2

e1

,

whence Ai⊕ (−DA∗
i D) is a truncated weighted shift with symmetric weights and

even rank. Noting that Bs = R ⊕ (−Rt) ∼= Ai ⊕ (−DA∗
i D), this completes the

proof. �

From the proof of Theorem 1.9, one can see the following result.

Corollary 2.13. Let T be a direct sum of some finite-dimensional truncated
weighted shifts. Then T is skew symmetric if and only if T can be written as
T = ⊕i∈ΛTi, where each Ti is a finite-dimensional truncated weighted shift with
symmetric weights and even rank.

3. Proof of Theorem 1.10

Lemma 3.1. Let T ∈ B(H) and T = U |T | be the polar decomposition of T . If C
is a conjugation on H and CTC = −T ∗, then CU |T | = |T |CU .
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Proof. It is obvious that

(C|T |C)2 = C|T |2C = CT ∗TC = TT ∗ = |T ∗|2 = (U |T |U∗)2.

Then C|T |C = U |T |U∗ and hence |T |CU = CU |T |U∗U . Fix an x ∈ H. If x ∈
(ker U)⊥, then |T |CUx = CU |T |U∗Ux = CU |T |x; if x ∈ ker U , then |T |CUx =
0 = CU |T |x. It follows that |T |CU = CU |T |. �

Lemma 3.2. Let T ∈ B(H) with Tei = αiei+1 for i ∈ Z, where {ei}i∈Z is an
onb of H and αi > 0 for all i ∈ Z. Assume that C is a conjugation on H and
CTC = −T ∗. Then

(i) Cek ∈ ∨{ej : αj = αk−1} for all k ∈ Z;
(ii) if k, n ∈ Z and 〈Cek, en〉 6= 0, then 〈Cek−j, en+j〉 6= 0 and αk−1−j = αn+j

for all j ∈ Z.

Proof. (i) Assume that T = U |T | is the polar decomposition of T . It is easy to
check that Uej = ej+1 and |T |ej = αjej for all j ∈ Z. Since T is skew symmetric,
it follows from Lemma 3.1 that CU |T | = |T |CU . Then, given k ∈ Z, we have

αk−1Cek = αk−1CUek−1 = CUαk−1ek−1

= CU |T |ek−1 = |T |CUek−1 = |T |Cek,

that is, Cek ∈ ker(|T | − αk−1) = ∨{ej : αj = αk−1}.
(ii) Fix i, j ∈ Z. Note that

〈Cei−1, ej+1〉 =
1

αi−1

〈CT ∗ei, ej+1〉 =
−1

αi−1

〈TCei, ej+1〉

=
−1

αi−1

〈Cei, T
∗ej+1〉 =

−αj

αi−1

〈Cei, ej〉.

It follows that 〈Cei−1, ej+1〉 = 0 if and only if 〈Cei, ej〉 = 0. Since (Cek, en) 6= 0,
one can deduce that (Cek−l, en+l) 6= 0 for all l ∈ Z. In view of (i), it follows that
αk−1−l = αn+l for l ∈ Z. �

Theorem 3.3. Let T ∈ B(H) with Tei = αiei+1 for i ∈ Z, where {ei}i∈Z is an
onb of H and αi 6= 0 for all i ∈ Z. Then T is skew symmetric if and only if
there exists k ∈ Z such that |α2k−j| = |αj−1| for all j ∈ Z.

Proof. Since T is unitarily equivalent to the operator
∑

i∈Z |αi|ei+1 ⊗ ei, we may
directly assume that αi > 0 for all i ∈ Z.

“⇐=”. For x ∈ H with x =
∑

i∈Z βiei, we define

C

(∑
i∈Z

βiei

)
=
∑
i∈Z

βi(−1)i−ke2k−i.

One can check that C is conjugate-linear, isometric and C2x = x for all x ∈ H.
Hence C is a conjugation on H and, for j ∈ Z, we have

CTCej = (−1)j−kCTe2k−j = (−1)j−kα2k−jCe2k+1−j

= (−1)j−kα2k−j(−1)k+1−jej−1 = −α2k−jej−1

= −αj−1ej−1 = −T ∗ej,
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that is, CTCej = −T ∗ej. Thus CTC = −T ∗ and T is skew symmetric.
“=⇒”. Assume that C is a conjugation on H and CTC = −T ∗. Since C is

invertible, Ce0 6= 0 and there exists some n ∈ Z such that 〈Ce0, en〉 6= 0.
Claim. n is even.
For a proof by contradiction, we assume that n is odd. Then, by Lemma 3.2,

〈Cen−1
2

, en+1
2
〉 6= 0. For convenience, we write i = n−1

2
.

Assume that Cei =
∑

j∈Z λjej. Then, by the hypothesis, we have

λi+1 6= 0 and 〈Cei, ei+1〉 = λi+1. (3.1)

Moreover, we have

Cei+1 =
1

αi

CTei = − 1

αi

T ∗Cei

= − 1

αi

∑
j∈Z

λjT
∗ej = − 1

αi

∑
j∈Z

λjαj−1ej−1.

It follows that 〈Cei+1, ei〉 = − 1
αi
·λi+1·αi = −λi+1. Noting that C is a conjugation,

it follows that 〈Cei, ei+1〉 = 〈Cei+1, ei〉 = −λi+1, contradicting (3.1). This proves
the claim.

Since 〈Ce0, en〉 6= 0, it follows from Lemma 3.2 that αj−1 = αn−j for all j ∈ Z.
Set k = n

2
. The desired result follows readily. �

Theorem 3.4. Let T be a bilateral weighted shift with weighted sequence {wi}i∈Z.
If 0 < card {i ∈ Z : wi = 0} < ∞, then T is skew symmetric if and only if
T ∼= A⊕A∗⊕B, where A is an injective unilateral weighted shift and B is absent
or B is a finite direct sum of finite-dimensional truncated weighted shifts with
symmetric weights and even rank.

Proof. “⇐=”. By Corollary 2.2, A ⊕ A∗ is skew symmetric. From the proof for
the sufficiency of Theorem 1.9, one can see that each finite-dimensional truncated
weighted shifts with symmetric weights and even rank is skew symmetric. This
proves the sufficiency.

“=⇒”. Without loss of generality, we assume that wi ≥ 0 for all i ∈ Z. Let C
be a conjugation on H satisfying CTC = −T ∗.

Case 1. card {i ∈ N : wi = 0} = 1. In this case, we may also assume that
w0 = 0. Then ker Tm = ∨{ei : 1−m ≤ i ≤ 0} and ker(T ∗)m = ∨{ei : 1 ≤ i ≤ m}
for all m ∈ N. Note that CTmC = (−T ∗)m and C[ker(T ∗)m] = ker Tm for all
m ∈ N. Since C is a conjugation, it follows that C(∨{em}) = ∨{e1−m} for each
m ∈ N. On the other hand, C preserves the norms of vectors, then there exists
λm ∈ C with |λm| = 1 such that Cem = λme1−m for m ∈ N. Hence

wm−1 = ‖wm−1Cem−1‖ = ‖CT ∗em‖
= ‖TCem‖ = ‖λmTe1−m‖ = ‖w1−me2−m‖ = w1−m

for all m ∈ N. That is, wi = w−i for all i ∈ N. Choose another onb {fi}∞i=1

of H and define A ∈ B(H) as Afi = wifi+1 for i ≥ 1. Then it is obvious that
T ∼= A⊕ A∗.
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Case 2. 1 < card {i ∈ N : wi = 0} < ∞. In this case, there exist m, n ∈ Z,
m < n, such that wn = 0 = wm and wi 6= 0 for all i > n or i < m. Denote
H1 = ∨{ei : i ≤ m}, H2 = ∨{ei : m < i ≤ n} and H3 = ∨{ei : i > n}. Then each
Hi is a reducing subspace of T . For 1 ≤ i ≤ 3, denote Ti = T |Hi

. Then T ∗1 , T3

are two injective unilateral weighted shifts and T2 is a direct sum of some finite-
dimensional truncated weighted shifts. Note that T2 is nilpotent and T k

2 = 0,
where k = n−m.

Claim. T2 and T1 ⊕ T3 are both skew symmetric.
Obviously, it suffices to prove that C(H2) = H2. Arbitrarily choose an x ∈ H2.

Since H2 = ker T k
2 ⊂ ker T k, we have T kx = 0. Noting that CT k = (−1)k(T k)∗C,

we have

Cx ∈ ker(T k)∗ = ker(T k
1 )∗ ⊕ ker(T k

2 )∗ ⊕ ker(T k
3 )∗.

Since (T k
1 )∗ is injective and T k

2 = 0, we obtain Cx ∈ H2⊕ker(T k
3 )∗. On the other

hand, we note that

(−1)kT kCx = C(T k)∗x = C(T k
2 )∗x = 0.

Then Cx ∈ ker T k = ker T k
1 ⊕ H2 and hence Cx ∈ H2. Thus we have proved

that C(H2) ⊂ H2, and it follows from C2 = I that C(H2) = H2. This proves the
claim.

By Corollary 2.13 and the proof in Case 1, it follows from the above claim that
T has the form as stated in the theorem. �

Theorem 3.5. Let T ∈ B(H) be a weighted shift with weight sequence {wi}i∈Z.
If card {i ∈ Z : wi = 0} = ∞, then T is skew symmetric if and only if T is an
infinite direct sum of finite-dimensional truncated weighted shifts with symmetric
weights and even rank.

Proof. From the proof for the sufficiency of Theorem 1.9, each finite-dimensional
truncated weighted shifts with symmetric weights and even rank is skew symmet-
ric. Thus the sufficiency is obvious. We need only prove the necessity.

“=⇒”. Denote Γ = {i ∈ Z : wi = 0}. It suffices to prove that Γ has neither
upper nor lower bound. In fact, if this holds, then, by rearranging the vectors in
the onb {ei}i∈Z, one can see that T is also a unilateral weighted shift. Then, by
Theorem 1.9, one can obtain the conclusion.

For a proof by contradiction, we may directly assume that sup Γ < +∞ and
n = sup Γ (the proof for the case “inf Γ > −∞” is similar). In this case, T can
be written as

T =
(
⊕∞i=1 Ai

)
⊕B,

where each Ai is an irreducible, nilpotent operator on some finite-dimensional
space and B is an injective unilateral weighted shift. Since dim ker B = 0 and
dim ker B∗ = 1, B is not skew symmetric.

Assume that C is a conjugation on H such that CTC = −T ∗. Denote by
Hi and K the underlying space of Ai and B respectively for i ∈ N. Arbitrarily
choose an i ∈ N and an x ∈ Hi. Assume that Aki

i = 0. Then 0 = C(Aki
i )∗x =

C(T ki)∗x = (−1)kiT kiCx and hence Cx ∈ ker T ki ⊂ ⊕∞j=1Hj. Since i ∈ N and
x ∈ Hi were arbitrarily chosen, we have C(⊕∞j=1Hj) ⊂ (⊕∞j=1Hj). Noting that C



SKEW SYMMETRIC WEIGHTED SHIFTS 269

is a conjugation and C2 = I, we obtain C(⊕∞j=1Hj) = ⊕∞j=1Hj and C(K) = K.
Set C1 = C|K. Then it is easy to verify that C1 is a conjugation on K and it
follows from CTC = −T ∗ that C1BC1 = −B∗. That is, B is skew symmetric, a
contradiction. �

Remark 3.6. Summarizing the results of Theorems 3.3, 3.4 and 3.5, one can see
Theorem 1.10.

4. Examples

In this section, we shall give several examples of completely reducible SSOs
and irreducible SSOs. We remark that these examples are partially inspired by
several examples of special CSOs given in [18].

Example 4.1. We shall construct a completely reducible operator T which is
skew symmetric and not normal. Let H = L2([−1, 1], dm) and A be the “multi-
plication by t” operator on H, where dm denotes the Lebesgue measure. Then
A is self-adjoint and completely reducible. By [20, Thm. 1.11], A is skew sym-
metric. For the reader’s convenience, we explain this in detail. For f ∈ H, define
(Cf)(t) = f(−t). Then one can verify that C is a conjugation on H. So

(CAf)(t) = C(tf)(t) = −tf(−t) = −(AC(f))(t), ∀f ∈ H,

that is, CA = −AC. This shows that A is skew symmetric. Define a conjugation
D on H(2) as

D =

[
0 C
C 0

]
H
H.

Set

T =

[
0 A
0 0

]
H
H.

It is obvious that T is not normal. Now compute to see

DT =

[
0 0
0 CA

]
=

[
0 0
0 −AC

]
= −

[
0 0
A 0

] [
0 C
C 0

]
= −T ∗D.

Thus we have proved that T is skew symmetric.
Now we shall prove that T is completely reducible. For convenience, we write

T =

[
0 A
0 0

]
H1

H2
,

where H1 = H2 = H. Let P ∈ B(H(2)) be an orthogonal projection commuting
with T . Assume that

P =

[
P1,1 P1,2

P2,1 P2,2

]
H1

H2
.

Since ker T = H1, ker T ∗ = H2 are hyperinvariant subspace of T , we obtain
P (H1) ⊂ H1 and P (H2) ⊂ H2. It follows that P1,2 = P2,1 = 0.

Note that

|T | =
[
0 0
0 |A|

]
H1

H2
, |T ∗| =

[
|A| 0
0 0

]
H1

H2
. (4.1)
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Since P |T | = |T |P and P |T ∗| = |T ∗|P , it follows from (4.1) that Pi,i|A| = |A|Pi,i,
i = 1, 2. Noting that A is self-adjoint, we obtain Pi,iA

2 = A2Pi,i, i = 1, 2. On the
other hand, since PT = TP , we obtain P1,1A = AP2,2. Hence P1,1A

2 = A2P2,2.
Hence A2P1,1 = A2P2,2. Furthermore we obtain P1,1 = P2,2. Thus we have proved
that each orthogonal projection P commuting with T has the form Q(2), where
Q is an orthogonal projection on H commuting with A. Since A is completely
reducible, we deduce that T is completely reducible. �

Example 4.2. We shall construct an irreducible SSO on an infinite dimensional
Hilbert space. Let S ∈ B(H) be the unilateral shift defined by Sei = ei+1 for
i ≥ 1, where {ei}∞i=1 is an onb of H. Define F ∈ B(H) as

Fe1 = e2, Fe2 = e1, Fei = 0, ∀i ≥ 3.

Set

T =

[
S∗ F
0 S

]
H1

H2
,

where H1 = H2 = H. Then it is easy to verify that T is irreducible. Now it
remains to check that T is skew symmetric.

For x ∈ H with x =
∑

i αiei, define Cx =
∑

i αi(−1)iei. Then one can check
that C is a conjugation on H. For each i ≥ 1, one can see that

CSCei = (−1)iCSei = (−1)iCei+1 = (−1)2i+1ei+1 = −Sei,

which implies CSC = −S. Thus we also have CS∗C = −S∗. On the other hand,
one can check that

CFCe1 = −CFe1 = −Ce2 = −e2 = −F ∗e1,

CFCe2 = CFe2 = Ce1 = −e1 = −F ∗e2

and
CFCei = (−1)iCFei = 0 = −F ∗ei, ∀i ≥ 3.

Thus we have CFC = −F ∗.
Define a conjugation D on H(2) as

D =

[
0 C
C 0

]
H1

H2
.

A direct computation shows that

DT =

[
0 CS

CS∗ CF

]
=

[
0 −SC

−S∗C −F ∗C

]
= −

[
S 0
F ∗ S∗

] [
0 C
C 0

]
= −T ∗D.

Hence T is an irreducible SSO. �

Example 4.3. We shall give an SSO T which is reducible but does not admit a
nontrivial reducing subspace M of T such that T |M is skew symmetric.

Let S ∈ B(H) be the unilateral shift defined by Sei = ei+1 for i ≥ 1, where
{ei}∞i=1 is an onb of H. By Lemma 2.1, the operator T := S∗ ⊕ S is skew
symmetric. Arbitrarily choose a nontrivial reducing subspace M of T . We shall
prove that T |M is not skew symmetric. Noting that S, S∗ are irreducible and
S is not unitarily equivalent to S∗, it follows from Proposition 2.4 that either
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M = H1 or M = H2. Thus we have either T |M = S∗ or T |M = S. So it remains
to check that S is not skew symmetric.

In fact, if not, then there is a conjugation C on H such that CSC = −S∗. So

0 = dim ker(S +
1

2
) = dim ker C(S +

1

2
)C

= dim ker(−S∗ +
1

2
) = dim ker(S∗ − 1

2
) = 1,

which is absurd. �
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