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MORE OPERATOR INEQUALITIES FOR POSITIVE LINEAR
MAPS
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Abstract. Some operator inequalities for positive linear maps are presented.
These inequalities improve and generalize the corresponding results due to Fu
and He [Linear Multilinear Algebra, doi: 10.1080/03081087.2014.880432.].

1. Introduction

As customary, we reserve M, m for scalars and I for the identity operator.
Other capital letters denote general elements of the C∗-algebra B(H) (with unit)
of all bounded linear operator acting on a Hilbert space (H, 〈·, ·〉). Also, we
identify a scalar with unit multiplied by this scalar. The operator norm is denoted
by ‖·‖. In this article, the inequality between operators is in the sense of Loewner
partial order, that is, T ≥ S (the same as S ≤ T ) means that T − S is positive.
A positive invertible operator T is naturally denoted by T > 0.

A linear map Φ is positive if Φ(A) ≥ 0 whenever A ≥ 0. It is said to be unital
if Φ(I) = I. We say that Φ is 2-positive if whenever the 2 × 2 operator matrix[

A B
B∗ C

]
is positive, then so is

[
Φ(A) Φ(B)
Φ(B∗) Φ(C)

]
. More information on such

maps can be found in [12].
The Kantorovich inequality was introduced by Kantorovich [7] (see also [6,

p.444]). In 1990, the operator Kantorovich inequality was firstly established by
Marshall and Olkin [10]. For a recent survey on this topic, we refer to [11]. In
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2013, Lin [8, Theorem 2.8] found that the operator Kantorovich inequality can
be squared. This result was further generalized by Fu and He, who obtained

Theorem 1.1. [5, Theorem 3] Let 0 < m ≤ A ≤ M . Then for every positive
unital linear map Φ,

Φ(A−1)p ≤
(

(M + m)2

4
2
p Mm

)p

Φ(A)−p, p ≥ 2. (1.1)

It is interesting to ask whether the inequality (1.1) can be improved. This is a
main motivation for the present paper.

Let A and B be positive operators with 0 < m ≤ A, B ≤ M and Φ be a
positive unital linear map. The geometric mean of A and B is defined by

A]B = A
1
2 (A− 1

2 BA− 1
2 )

1
2 A

1
2 .

Lin [9, Theorem 2.1] obtained:

Φ(
A + B

2
)2 ≤

(
(M + m)2

4Mm

)2

Φ(A]B)2, (1.2)

and

Φ(
A + B

2
)2 ≤

(
(M + m)2

4Mm

)2

(Φ(A)]Φ(B))2 . (1.3)

Fu and He [5, Theorem 4] generalized (1.2) and (1.3) to the power of p (p ≥ 2):

Φ(
A + B

2
)p ≤

(
(M + m)2

4
p
2 Mm

)p

Φ(A]B)p, (1.4)

and

Φ(
A + B

2
)p ≤

(
(M + m)2

4
p
2 Mm

)p

(Φ(A)]Φ(B))p . (1.5)

We will improve (1.4) and (1.5) if the condition number M
m

is not too big.
Bhatia and Davis [3] proved an operator Wielandt inequality which states that

if 0 < m ≤ A ≤ M and X and Y are two partial isometries on H whose final
spaces are orthogonal to each other, then for every 2-positive linear map Φ,

Φ(X∗AY )Φ(Y ∗AY )−1Φ(Y ∗AX) ≤
(

M −m

M + m

)2

Φ(X∗AX). (1.6)

Lin [8, Conjecture 3.4] conjectured that a stronger result than (1.6) could be true:

‖Φ(X∗AY )Φ(Y ∗AY )−1Φ(Y ∗AX)Φ(X∗AX)−1‖ ≤
(

M −m

M + m

)2

.

In an attempt of solving this conjecture, Fu and He [5, Theorem 5] proved:

‖Φ(X∗AY )Φ(Y ∗AY )−1Φ(Y ∗AX)Φ(X∗AX)−1‖

≤ 1

4

((
M −m

M + m

)2

M +
1

m

)2

. (1.7)

We shall generalize and improve (1.7) under some extra conditions.
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2. Main results

Two useful lemmas are given before the main theorems are presented.

Lemma 2.1. Let A, B ≥ 0. Then the following inequality holds:

‖AB‖ ≤ 1

4
‖A + B‖2.

Remark 2.2. Lemma 2.1 is essentially due to Bhatia and Kittaneh in [1, Theorem
1]. They stated the result for the finite dimensional case, however, all technical
results used to prove this result for operator norm is also true for the infinite
dimensional case. Also, we remark that if A, B are compact operators, then a
stronger result can be found in [4].

Lemma 2.3. [2, Theorem 3] Let A, B ≥ 0. Then for 1 ≤ r < ∞
‖Ar + Br‖ ≤ ‖(A + B)r‖.

Firstly, we give a refinement of the inequality (1.1) when p ≥ 4.

Theorem 2.4. Let 0 < m ≤ A, B ≤ M . Then for every positive unital linear
map Φ,

Φp(A−1) ≤ (M2 + m2)p

16Mpmp
Φ(A)−p, p ≥ 4. (2.1)

Proof. The claimed inequality is equivalent to

‖Φ
p
2 (A−1)Φ

p
2 (A)‖ ≤ (M2 + m2)

p
2

4M
p
2 m

p
2

.

Compute

‖M
p
2 m

p
2 Φ

p
2 (A−1)Φ

p
2 (A)‖ ≤ 1

4
‖M

p
2 m

p
2 Φ

p
2 (A−1) + Φ

p
2 (A)‖2 By Lemma 2.1

≤ 1

4
‖
(
M2m2Φ2(A−1) + Φ2(A)

) p
4‖2 By Lemma 2.3

=
1

4
‖M2m2Φ2(A−1) + Φ2(A)‖p/2

≤ 1

4
(M2 + m2)p/2. By [9, (4.7)]

So

‖Φ
p
2 (A−1)Φ

p
2 (A)‖ ≤ 1

4

(M2 + m2)p/2

M
p
2 m

p
2

.

Thus (2.1) holds. �

Remark 2.5. Since M, m > 0, then

M2 + m2 < (M + m)2.

Thus, our inequality in Theorem 2.4 is tighter than that in (1.1) when p ≥ 4.

Next, we present an alternative operator reverse AM-GM inequality to the
power of p (p ≥ 4).
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Theorem 2.6. Let 0 < m ≤ A, B ≤ M and 4 ≤ p < ∞. Then for every positive
unital linear map Φ

Φp(
A + B

2
) ≤ (k(M2 + m2))p

16Mpmp
Φp(A]B), (2.2)

and

Φp(
A + B

2
) ≤ (k(M2 + m2))p

16Mpmp
(Φ(A)]Φ(B))p, (2.3)

where k = (M+m)2

4Mm
.

Proof. It follows from the inequality (1.2) and operator reverse monotonicity of
the inverse that

k2Φ−2(
A + B

2
) ≥ Φ−2(A]B). (2.4)

Combining Lemma 2.1, Lemma 2.3 and (2.4) gives
‖Φ p

2 (A+B
2

)M
p
2 m

p
2 Φ− p

2 (A]B)‖

≤ 1

4

∥∥∥∥k p
4 Φ

p
2 (

A + B

2
) + (

M2m2

k
)

p
4 Φ− p

2 (A]B)

∥∥∥∥2

≤ 1

4

∥∥∥∥∥
(

kΦ2(
A + B

2
) +

M2m2

k
Φ−2(A]B)

) p
4

∥∥∥∥∥
2

=
1

4

∥∥∥∥(kΦ2(
A + B

2
) +

M2m2

k
Φ−2(A]B)

)∥∥∥∥ p
2

≤ 1

4

∥∥∥∥(kΦ2(
A + B

2
) + kM2m2Φ−2(

A + B

2
)

)∥∥∥∥ p
2

≤ 1

4
(k(M2 + m2))

p
2 , By [9, (4.7)]

which leads to

‖Φ
p
2 (

A + B

2
)Φ− p

2 (A]B)‖ ≤ 1

4

(
k(M2 + m2)

Mm

) p
2

.

Hence, (2.2) holds.
Similarly, (2.3) holds by the inequality (1.3). �

Remark 2.7. When M
m

< 2 +
√

3, we have

(M + m)2

4Mm
(M2 + m2) < (M + m)2.

Thus, our inequalities in (2.2) and (2.3) are sharper than those in (1.4) and (1.5),
respectively when M

m
< 2 +

√
3 and p ≥ 4.

Recall that an isometry X on H is an operator satisfying X∗X = I. Clearly
X∗Y = 0 if and only the ranges of X, Y are orthogonal to each other. Using a
similar idea of Fu and He [5], we can generalize the inequality (1.7) as follows.
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Theorem 2.8. Let 0 < m ≤ A ≤ M and let X and Y be two isometries, whose
ranges are orthogonal to each other. Then for every 2-positive unital linear map
Φ
‖ (Φ(X∗AY )Φ(Y ∗AY )−1Φ(Y ∗AX))

p
2 Φ(X∗AX)−

p
2‖

≤



(M−m
M+m

)p, when 0 ≤ p ≤ 1,

1
2p

(
(M−m

M+m
)2M + 1

m

)p
, when 1 < p < 2,

1
4

(
(M−m

M+m
)2M + 1

m

)p
, when p ≥ 2.

Proof. There are three cases to consider.
Case 1. Combining the inequality (1.6) and the fact that f(t) = tr is operator
monotone for 0 ≤ r ≤ 1, we have

(
Φ(X∗AY )Φ(Y ∗AY )−1Φ(Y ∗AX)

)p ≤ (
M −m

M + m
)2pΦ(X∗AX)p, (2.5)

where 0 ≤ p ≤ 1.
From (2.5), we derive

‖
(
Φ(X∗AY )Φ(Y ∗AY )−1Φ(Y ∗AX)

) p
2 Φ(X∗AX)−

p
2‖ ≤ (

M −m

M + m
)p,

when 0 ≤ p ≤ 1.
Case 2. Let α = (M−m

M+m
)2M + 1

m
. From the inequality (1.7), we know that

(
Φ(X∗AY )Φ(Y ∗AY )−1Φ(Y ∗AX)

)2 ≤ 1

16
α4Φ(X∗AX)2,

which together with the fact that f(t) = tr is operator monotone for 0 ≤ r ≤ 1
gives

(
Φ(X∗AY )Φ(Y ∗AY )−1Φ(Y ∗AX)

)p ≤ 1

4p
α2pΦ(X∗AX)p,

when 0 < p ≤ 2,
i.e.,

‖
(
Φ(X∗AY )Φ(Y ∗AY )−1Φ(Y ∗AX)

) p
2 Φ(X∗AX)−

p
2‖ ≤ 1

2p
αp. (2.6)

Thus, (2.6) holds when 1 < p < 2.
Case 3. When p ≥ 2, it follows from Lemma 2.1, Lemma 2.3 and the inequality
(1.6) that
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‖ (Φ(X∗AY )Φ(Y ∗AY )−1Φ(Y ∗AX))
p
2 Φ(X∗AX)−

p
2‖

≤ 1

4
‖
(
Φ(X∗AY )Φ(Y ∗AY )−1Φ(Y ∗AX)

) p
2 + Φ(X∗AX)−

p
2‖2

≤ 1

4
‖
(
Φ(X∗AY )Φ(Y ∗AY )−1Φ(Y ∗AX) + Φ(X∗AX)−1

) p
2 ‖2

=
1

4
‖Φ(X∗AY )Φ(Y ∗AY )−1Φ(Y ∗AX) + Φ(X∗AX)−1‖p

≤ 1

4
‖(M −m

M + m
)2Φ(X∗AX) + Φ(X∗AX)−1‖p

≤ 1

4

(
(
M −m

M + m
)2M +

1

m

)p

.

The last inequality above holds since X∗X = I and 0 < m ≤ A ≤ M , then
m ≤ Φ(X∗AX) ≤ M and 1

M
≤ Φ(X∗AX)−1 ≤ 1

m
. �

It is clear that when 0 ≤ p ≤ 1, the bound in Theorem 2.8 is optimal. The
next result gives a strengthening of Theorem 2.8 in the case p > 1.

Theorem 2.9. Let 0 < m ≤ A ≤ M and let X and Y be two isometries, whose
ranges are orthogonal to each other. Then for p > 1 and every 2-positive unital
linear map Φ

‖
(
Φ(X∗AY )Φ(Y ∗AY )−1Φ(Y ∗AX)

) p
2 Φ(X∗AX)−

p
2‖ ≤ (

M −m

M + m
)p(

M

m
)

p
2 .

Proof. ‖ (Φ(X∗AY )Φ(Y ∗AY )−1Φ(Y ∗AX))
p
2 Φ(X∗AX)−

p
2‖

≤ ‖
(
Φ(X∗AY )Φ(Y ∗AY )−1Φ(Y ∗AX)

) p
2 ‖‖Φ(X∗AX)−

p
2‖

= ‖Φ(X∗AY )Φ(Y ∗AY )−1Φ(Y ∗AX)‖
p
2‖Φ(X∗AX)−1‖

p
2

≤ (
M −m

M + m
)p‖Φ(X∗AX)‖

p
2‖Φ(X∗AX)−1‖

p
2

≤ (
M −m

M + m
)p(

M

m
)

p
2 .

The required result follows. �

Remark 2.10. By the scalar AM-GM inequality, it is easy to see that the bound
in Theorem 2.9 is tighter than the corresponding bounds in Theorem 2.8.
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