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Abstract. We consider a coupled system describing the interaction between
acoustic and elastic regions, where the coupling occurs not via material prop-
erties but through an interaction on an interface separating the two regimes.
Evolutionary well-posedness in the sense of Hadamard well-posedness supple-
mented by causal dependence is shown for a natural choice of generalized in-
terface conditions. The results are obtained in a real Hilbert space setting
incurring no regularity constraints on the boundary and almost none on the
interface of the underlying regions.

1. Introduction and preliminaries

Similarities between various initial boundary value problems of mathematical
physics have been noted as general observations throughout the literature. In-
deed, the work by K. O. Friedrichs, [2, 3], already showed that the classical linear
phenomena of mathematical physics belong — in the static case — to his class
of symmetric positive hyperbolic partial differential equations, later referred to as
Friedrichs systems, which are of the abstract form

(M1 + A)u = f, (1.1)
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with A at least formally, that is, on C∞-vector fields with compact support in the
underlying region Ω, a skew-symmetric differential operator and the L∞-matrix-
valued multiplication-operator M1 satisfying the condition

sym (M1) :=
1

2
(M1 +M∗

1 ) ≥ c > 0

for some real number c. Indeed, a typical choice of boundary condition is, when
A is skew-selfadjoint (A m-accretive would be sufficient). To assume A to be
skew-selfadjoint is less restrictive than one might think. For this we note that
for example typical dissipative boundary conditions actually give rise to natural
skew-selfadjoint spatial operators A, [20]. That A is skew-selfadjoint, is a quite
common assumption but may not be easily recognized. As a typical example in
case we consider the popular transcription of the wave equation ∂20 −∆D, where
∆D denotes the Laplacian with a homogeneous Dirichlet boundary condition
in a bounded domain Ω, into a first order system of the form ∂0 + A, where

A =

(
0 ∆D

1 0

)
is indeed skew-selfadjoint due to the standard choice of Hilbert

space setting. Problem (1.1) can be considered as the static problem associated
with the dynamic problem (∂0 denotes the time-derivative)

(∂0M0 +M1 + A)u = f (1.2)

with M0 selfadjoint L∞-multiplication-operator and M0 ≥ 0, which were also
addressed in [3]. It is noteworthy, that even the temporal exponential weight
factor, which plays a central role in the approach of [16], is introduced as an
ad-hoc formal trick to produce a suitableM1 for a well-posed static problem. For
the so-called time-harmonic case, where ∂0 is replaced by iω, ω ∈ R, we replace
A simply by iωM0 + A to arrive at a system of the form (1.1).
Operators of the abstract Friedrichs type ∂0M0+M1+A appearing in (1.2), can be
generalized to obtain a fully time-dependent theory allowing for operator-valued
coefficients, indeed, in the time-shift invariant case, for systems of the general
form (

∂0M
(
∂−1
0

)
+ A

)
U = F (Evo-Sys)

where A is — for simplicity — skew-selfadjoint and M an operator-valued — say
— rational function (regular at 0) as an abstract coefficient. The meaning of the
so-called material law operatorM

(
∂−1
0

)
is in terms of a suitable function calculus

associated with the (normal) operator ∂0, [19, Chapter 6]. This spacious class
of operators allows for a large class of material laws including — the recently of
great interest — meta-materials.
We shall refer to such systems as evo-systems (or evolutionary equations) to dis-
tinguish them from the special subclass of classical (explicit) evolution equations.
In this paper we intend to study a particular transmission problem between two
physical regimes, acoustics, and elasto-dynamics, within this general framework
to establish its well-posedness, which for evo-systems entails not only Hadamard
well-posedness; that is, uniqueness, existence, and continuous dependence, but
also the crucial property of causality. For this we will only have to establish the
skew-selfadjointness of a suitably constructed operator A. Then it is known that
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the requirement

ϱM (0) + sym (M ′ (0)) ≥ c0 > 0 (1.3)

for some number c0 and all sufficiently large ϱ ∈]0,∞[ , yields the desired well-
posedness; see the survey [22]. For the simple Friedrichs type case where we
additionally assume that

M0 =M (0) ≥ c0 > 0 (1.4)

for some number c0 , which clearly implies (1.3), we may even use the commonly
invoked semi-group theory to establish the desired well-posedness (note that in
this case M1 = M ′ (0) and all higher derivatives of M vanish). Indeed, under
these strong restrictions (1.2) is congruent to

∂0 +

√
M−1

0 M1

√
M−1

0 +

√
M−1

0 A

√
M−1

0 , (1.5)

which amounts to havingM0 = 1 (M1 replaced by the congruent
√
M−1

0 M1

√
M−1

0 )
and using

√
M0U as the new unknown in the corresponding problem of the form

(Evo-Sys). With
√
M−1

0 A
√
M−1

0 inheriting its skew-selfadjointness fromA we ob-

tain indeed a one-parameter group
(
exp

(
t
√
M−1

0 A
√
M−1

0

))
t∈R

, which, by a sim-

ple perturbation argument, yields a group (U (t))t∈R such that
(
χ

[0,∞[
(t)U (t)

)
t∈R

,

with χ
[0,∞[

denoting the characteristic function of the interval [0,∞[ , is the fun-

damental solution associated with (1.5). Thus a fairly general solution can be
obtained by convolution with this fundamental solution. Restricting this funda-
mental solution to its support yields a continuous, one-parameter semi-group
(U (t))t∈[0,∞[. In any case we are justified to focus on the underlying skew-
selfadjointness of the operator A as a central feature to obtain well-posedness
for a large class of general material laws, since we shall be concerned with the
interaction between the elastic and the acoustic regimes solely via the interface,
not via material interactions through the material law; as for example in piezo-
electrics, compare, for instance, [11] for a typical effect of the latter type. This
specific focus also allows us in the interest of brevity to by-pass the intricacies of
the time-dependent theory of [16].
Skew-selfadjointness of an operator A; that is,

A = −A∗, (1.6)

in a real Hilbert space H results in

⟨u|Au⟩H = 0

for all u ∈ D (A). Moreover, in typical cases skew-selfadjointness of A is a simple
consequence of A being congruent to a block matrix of the form(

0 −C∗

C 0

)
,

where C : D (C) ⊆ H0 → H1 is a closed, densely defined,and linear operator
between real Hilbert spaces H0, H1, which is clearly skew-selfadjoint in the direct
sum Hilbert space H = H0 ⊕H1.
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The interest of studying the coupling between acoustic and elasticity wave phe-
nomena has a relatively long history in the engineering community, with [7], [8],
and being earlier references. Originally motivated by submarine noise propaga-
tion, this coupling is also of interest in connection with loudspeaker and hearing
aid design, as well as nondestructive testing. Near the close of the last century
there has been a rekindled interest in these specific issues, [23], [9]. More re-
cent publications are the numerical investigations [1], [24], [10], and the more
mathematically oriented [5], [12], [6], [4], just to mention a few. Here we want to
transcend the predominant constant coefficient and — with the notable exception
of [4] — largely time-harmonic analysis and consider the time-dependent case in
anisotropic and inhomogeneous media. Since we shall consider operator coeffi-
cients, this also includes media with nonlocal behavior. For sake of accessibility
we restrict our attention to the autonomous case with classical block-diagonal
material laws and no memory effects. We use a functional-analytical setting in
real Hilbert space to obtain a well-posedness for this elasto-acoustic transmission
problem.
We shall first establish the spatial operator of acoustics and elasticity, respectively,
as intimately related skew-selfadjoint operators (mother-descendant mechanism)
in a real Hilbert space framework based on the above-mentioned block structure
with suitably introduced operators C. Then, in Section 3 we apply these ob-
servations to a particular interface coupling problem between the two regimes in
adjacent regions via a refined mother-descendant mechanism. We emphasize that
our setup allows for arbitrary open sets as underlying domains with no additional
constraints on boundary regularity and almost no constraints on interface regu-
larity. Indeed we only require the interface to be a Lebesgue null set to ensure the
decomposition (3.1). The induced homogeneous boundary value constraints and
transmission conditions are encoded — as customary — in suitable generalization
as containment in the domain of the operator.

2. The connection of the spatial operators of acoustics and
elasticity

2.1. Basic ideas. Without loss of generality we may and will assume that all
Hilbert spaces used in the following are real. Note that every complex Hilbert
space X is a real Hilbert space choosing only real numbers as multipliers and

(ϕ, ψ) 7→ Re ⟨ϕ|ψ⟩X
as new inner product. With this choice ϕ and iϕ are always orthogonal. Moreover,
for any skew-symmetric operator A, we have

x ⊥ Ax

for all x ∈ D (A). Indeed, since ⟨x|y⟩ − ⟨y|x⟩ = 0 (symmetry), we have

⟨x|Ax⟩ − ⟨Ax|x⟩ = 0

or by skew-symmetry

0 = ⟨x|Ax⟩ − ⟨Ax|x⟩
= 2 ⟨x|Ax⟩



820 R. PICARD

for all x ∈ D (A).
In many practical cases the desired skew-selfadjointness of the spatial operator A
is evident from its structure as a block operator matrix of the form

A =

(
0 −C∗

C 0

)
,

with H = H0 ⊕H1 and C : D (C) ⊆ H0 → H1 is a closed, densely defined, and
linear operator. We shall start our exploration by focusing for simplicity and
definiteness on the Cartesian situation and on the case of the so-called Dirichlet
boundary condition. For this, we initially take C as the closure ˚grad of the
classical differential operator

C̊1

(
Ω,R3

)
⊆ L2

(
Ω,R3

)
→ L2

(
Ω,R3×3

)
,

u 7→ u′,

where u′ is the derivative (in matrix language the Jacobian) of the vector field

u and C̊1 (Ω,R3) denotes the space of continuously differentiable vector fields in
R3 with compact support in Ω. The negative adjoint is the weak extension of the
classical divergence operator on matrix fields

div := −
(

˚grad
)∗
.

Thus, the operator of our initial interest is

A =

(
0 div
˚grad 0

)
as a skew-selfadjoint operator in H = L2 (Ω,R3) ⊕ L2 (Ω,R3×3) . Here R3×3 is
equipped with the standard Frobenius inner product. As an illustration, let us
consider (

∂0

(
ϱ∗ 0
0 C−1

)
+

(
0 − div

− ˚grad 0

))(
v
T

)
=

(
f
g

)

as an associated dynamic problem for finding a solution

(
v
T

)
∈ L2 (Ω,R3) ⊕

L2 (Ω,R3×3).
Here ϱ∗ : L2 (Ω,R3) → L2 (Ω,R3) and C : L2 (Ω,R3×3) → L2 (Ω,R3×3) are as-
sumed to be strongly positive definite mappings in order to obtain well-posedness
in the sense of our introductory exposition. This type of system can be under-
stood as modeling asymmetric elasticity theory in the sense of [13, 14, 15].

2.2. Symmetric elasticity as a descendant of asymmetric elasticity. To
illustrate the mother-descendant mechanism, as introduced in [18], see also [17,
21], we first perform the transition to classical (symmetric) elasticity using this
concept.
We recall from [18] the following simple but crucial lemma.
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Lemma 2.1. Let C : D (C) ⊆ H → Y be a closed densely-defined linear operator
between Hilbert spaces H, Y . Moreover, let B : Y → X be a continuous linear
operator into another Hilbert space X. If C∗B∗ is densely defined, then

BC = (C∗B∗)∗ .

Proof. It is

C∗B∗ ⊆ (BC)∗ .

If ϕ ∈ D ((BC)∗), then

⟨BCu|ϕ⟩X = ⟨u| (BC)∗ ϕ⟩H
for all u ∈ D (C). Thus, we have

⟨Cu|B∗ϕ⟩Y = ⟨BCu|ϕ⟩X = ⟨u| (BC)∗ ϕ⟩H
for all u ∈ D (C), and we read off that B∗ϕ ∈ D (C∗) and

C∗B∗ϕ = (BC)∗ ϕ.

Thus we have

(BC)∗ = C∗B∗.

If now C∗B∗ is densely defined, we have, for its adjoint operator,

(C∗B∗)∗ = BC.

□
As a consequence we have that the descendant(

1 0
0 B

)(
0 −C∗

C 0

)(
1 0
0 B∗

)
=

(
0 −C∗B∗

BC 0

)
indeed inherits its skew-selfadjointness from its mother

(
0 −C∗

C 0

)
(with C

replaced by BC).

Remark 2.2. Clearly, the role of the components can be interchanged; so that(
D 0
0 1

)(
0 −C∗

C 0

)(
D∗ 0
0 1

)
=

(
0 −DC∗

CD∗ 0

)
with D : H → Y such that CD∗ is densely defined, is also a valid descendant
construction.
These constructions can be combined. In general, a repeated application of the
mother-descendant mechanism may, however, depend on the order in which they
are carried out. This fact has been overlooked in [18]. An illuminating example
is choosing C as the weak L2 (R)-derivative ∂ and B = D as the cut-off by
the characteristic function χ

]−1/2,1/2[
of the symmetric unit interval ] − 1/2, 1/2[

yielding (
0 χ

]−1/2,1/2[

(
∂χ

]−1/2,1/2[

)
χ

]−1/2,1/2[
∂χ

]−1/2,1/2[
0

)
(2.1)
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if first the construction with B and then with D is carried out. In reverse order
we obtain (

0 χ
]−1/2,1/2[

∂χ
]−1/2,1/2[

χ
]−1/2,1/2[

(
∂χ

]−1/2,1/2[

)
0

)
. (2.2)

In comparison, (2.1) models vanishing at ±1
2
for the second component, whereas

(2.2) leads to no boundary condition for the second component (implying in turn
vanishing at ±1

2
of the first component).

As a convenient mother operator to start from, we take the above-mentioned
theory of asymmetric elasticity of Nowacki, [13, 15]. Indeed, the classical (sym-
metric) elasticity theory can be considered as a descendant in the above sense of
the form (

0 −Div

− ˚Grad 0

)
, (2.3)

where

˚Grad := ι∗sym
˚grad

and

Div := div ιsym

with

ιsym : L2
(
Ω, sym

[
R3×3

])
→ L2

(
Ω,R3×3

)
,

T 7→ T,

where sym [R3×3] denotes the image of R3×3 under the mapping sym; that is, we
have in the descendant construction B = ι∗sym. Note that

ι∗symT = sym (T )

for all T ∈ L2 (Ω,R3×3).

2.3. Acoustics as a descendant of asymmetric elasticity. The spatial oper-
ator used in the acoustics model can also be introduced as a descendant of asym-
metric elasticity. It is actually the scalar version corresponding to the asymmetric
elasticity case.
Indeed, classical acoustics can be considered as a descendant of the form(

0 grad

d̊iv 0

)
,

where we reuse the classical notations by letting

d̊iv := trace ˚grad

and

grad := div trace∗
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with

trace : L2
(
Ω,R3×3

)
→ L2 (Ω,R) ,

T = (Tij)i,j 7→ trace T :=
∑
i

Tii;

that is, B = trace. Note that

trace∗p =

 p 0 0
0 p 0
0 0 p


for all p ∈ L2 (Ω,R).

Remark 2.3. The acoustic system can also be constructed by applying B = trace
to the symmetric elasticity operator (2.3). Note that the pressure distribution p
is in both cases obtained from the stress as

p := −traceT.

3. An interface coupling between acoustics and elasticity

We will now combine the two descendant constructions above to obtain an in-
terface coupling set-up for the skew-selfadjoint operator A. We assume that
Ω0 ∪ Ω1 ⊆ Ω, such that the orthogonal decomposition

L2 (Ω,R) = L2 (Ω0,R)⊕ L2 (Ω1,R) (3.1)

holds; that is, the interface Ω ∩ Ω̇0 ∩ Ω̇1 is a Lebesgue null set. Here /dotΩk

denotes the set of boundary points of Ωk, k = 0, 1. Consequently, we also have

L2
(
Ω,R3×3

)
= L2

(
Ω0,R3×3

)
⊕ L2

(
Ω1,R3×3

)
,

L2
(
Ω,R3

)
= L2

(
Ω0,R3

)
⊕ L2

(
Ω1,R3

)
.

Then, with the respective canonical embeddings into L2 (Ω,R3×3), we obtain

B : L2
(
Ω,R3×3

)
→ L2

(
Ω0, sym

[
R3×3

])
⊕ L2 (Ω1,R) ,

T 7→
(
ι∗L2(Ω0,sym[R3×3])ι

∗
symT

−ι∗L2(Ω1,R)trace T

)
,

and so

B =

(
ι∗L2(Ω0,sym[R3×3])ι

∗
sym

−ι∗L2(Ω1,R) trace

)
.

With this, we get as a descendant construction

A =

(
1 0
0 B

)(
0 − div

− ˚grad 0

)(
1 0
0 B∗

)
(3.2)

⊆

 0
(
−DivΩ0 gradΩ1

)(
−GradΩ0

divΩ1

) (
0 0
0 0

)  (3.3)
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and

M
(
∂−1
0

)
=M (0) =

 ϱ∗,Ω0 + κ−1
Ω1

(
0 0

)(
0
0

) (
C−1

Ω0
0

0 cΩ1

)  .

The indexes Ωk, k = 0, 1, are used to denote the respective supports of the
quantities. The coefficients κΩ1 and cΩ1 describe the acoustic properties of the
media in Ω1. In the spirit of the mother and descendant mechanism they may be
considered as resulting from suitable corresponding (artificial) elastic coefficients
ϱ∗,Ω1 , CΩ1 in Ω1:

κ−1
Ω1

= ϱ∗,Ω1 ,

cΩ1 = traceC−1
Ω1

trace∗.

The unknowns are now of the form vΩ0 + vΩ1(
TΩ0

pΩ1

)  ∈ H = L2
(
Ω,R3

)
⊕
(
L2
(
Ω0, sym

[
R3×3

])
⊕ L2 (Ω1,R)

)
,

where the first component is to be understood in the sense of (3.1). From the
inclusion (3.2) and (3.3), we read off that the resulting evo-system

(∂0M (0) + A)

 vΩ0 + vΩ1(
TΩ0

pΩ1

)  =

 fΩ0 + fΩ1(
FΩ0

gΩ1

)  (3.4)

indeed yields

∂0
(
ϱ∗,Ω0 + κ−1

Ω1

)
(vΩ0 + vΩ1)−DivΩ0 TΩ0 + gradΩ1

pΩ1 = fΩ0 + fΩ1 ,

which in turn — according to (3.1) — splits into equations in Ω0 and in Ω1

∂0ϱ∗,Ω0vΩ0 −DivΩ0 TΩ0 = fΩ0 ,

∂0κ
−1
Ω1
vΩ1 + gradΩ1

pΩ1 = fΩ1 .

The second block row yields another pair of equations

∂0C
−1
Ω0
TΩ0 −Grad vΩ0 = FΩ0 ,

∂0cΩ1pΩ1 + div vΩ1 = gΩ1 .

The actual system models now generalized natural transmission conditions on
the common boundary part Ω ∩ Ω̇0 ∩ Ω̇1 (the interface) and the homogeneous
Dirichlet boundary condition on Ω̇0 \ Ω̇1 and the standard homogeneous Neu-
mann boundary condition on Ω̇1 \ Ω̇0 without assuming any smoothness of the

boundary via containment of the solution U =

 vΩ0 + vΩ1(
TΩ0

pΩ1

)  in the operator

domain D
(
∂0M (0) + A

)
. Due to lack of boundary and interface regularity, we

have chosen Ω̇k, to denote the set of boundary points, rather than the boundary
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manifold notation ∂Ωk, k = 0, 1. Since we do not have maximal regularity in this
case, this does not mean that U ∈ D (A), but we do have

∂−1
0 U ∈ D (A)

as a form of expressing generalized boundary constraints and transmission con-
ditions.
If, however, we assume sufficient regularity of the boundary and solution one can
easily motivate that the model yields a generalization of classical transmission
conditions on Ω̇0 ∩ Ω̇1. Indeed, with uΩ0 + vΩ1(

SΩ0

qΩ1

)  ,

 vΩ0 + vΩ1(
TΩ0

pΩ1

)  ∈ D (A)

we have (noting for the smooth exterior unit normal vector fields nΩ̇0
, nΩ̇1

on the

boundaries of Ω0 and Ω1, respectively, that nΩ̇0
= −nΩ̇1

on Ω̇0 ∩ Ω̇1) with

Ã =

 0
(
− DivΩ0 gradΩ1

)(
−GradΩ0

divΩ1

) (
0 0
0 0

)  ,

0 =

⟨ uΩ0 + uΩ1(
SΩ0

qΩ1

) ∣∣∣Ã
 vΩ0 + vΩ1(

TΩ0

pΩ1

) ⟩

+

⟨
Ã

 uΩ0 + uΩ1(
SΩ0

qΩ1

) ∣∣∣
 vΩ0 + vΩ1(

TΩ0

pΩ1

) ⟩

= −
⟨
uΩ0

∣∣∣DivΩ0 TΩ0

⟩
−
⟨
SΩ0

∣∣∣GradΩ0 vΩ0

⟩
+

+
⟨
qΩ1

∣∣∣ divΩ1 vΩ1

⟩
+
⟨
uΩ1

∣∣∣ gradΩ1
pΩ1

⟩
+

−
⟨
GradΩ0 uΩ0

∣∣∣TΩ0

⟩
−
⟨
DivΩ0 SΩ0

∣∣∣vΩ0

⟩
+

+
⟨
gradΩ1

qΩ1

∣∣∣vΩ1

⟩
+
⟨
divΩ1 uΩ1

∣∣∣pΩ1

⟩
= −

∫
Ω̇0∩Ω̇1

u⊤Ω0
TΩ0nΩ̇0

do−
∫
Ω̇0∩Ω̇1

v⊤Ω0
SΩ0nΩ̇0

do+

+

∫
Ω̇0∩Ω̇1

n⊤
Ω̇1

(pΩ1uΩ1) do+

∫
Ω̇0∩Ω̇1

n⊤
Ω̇1

(qΩ1vΩ1) do.

We want to arrive at point-wise transmission conditions by the fundamental

lemma of variational calculus. Since (uΩ0 + uΩ1) ∈ D
(

˚Grad
)

= D
(

˚grad
)

=

D
(
B ˚grad

)
⊆ D

(
B ˚grad

)
is, by construction, admissible, we may assume that

uΩ0 = uΩ1 on the interface and conclude with SΩ0 = 0, qΩ1 = 0 that

TΩ0nΩ̇0
+ pΩ1nΩ̇0

= 0 (3.5)
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is a needed transmission condition. In particular, we see that

nΩ̇0
× TΩ0nΩ̇0

= 0.

Now letting uΩ0 = uΩ1 = 0 on the interface and noting that due to skew-

selfadjointness of Ã also our test elements SΩ0 , qΩ1 must satisfy the explicit
transmission condition (3.5) (now with SΩ0 replacing TΩ0 and qΩ1 instead of pΩ1)
yields

0 =

∫
Ω̇0∩Ω̇1

(vΩ0 − vΩ1)
⊤ (qΩ1nΩ̇0

)
do

=

∫
Ω̇0∩Ω̇1

qΩ1n
⊤
Ω̇0

(vΩ0 − vΩ1) do

which, with qΩ1 being arbitrary, now implies

n⊤
Ω̇0
vΩ0 = n⊤

Ω̇0
vΩ1 . (3.6)

That is, the continuity of the normal components

vΩ0,n = vΩ1,n,

as a complementing transmission condition. Note that although we were al-

lowed to choose a test element (uΩ0 + uΩ1) in the dense subspace D
(

˚grad
)

of

D
(
B ˚grad

)
for general (vΩ0 + vΩ1) ∈ D

(
B ˚grad

)
we are left with the weaker

transmission condition (3.6).
Conversely, transmission conditions (3.5) and (3.6), which are recovering the clas-
sical transmission conditions, compare, for example, [4, 5, 9, 10] and the literature
quoted there, warrant the vanishing of the above interface integral. These more
or less heuristic considerations motivate to take the above evo-system as a ap-
propriate generalization to cases, where the boundary does not have a reasonable
normal vector field.
All in all, we summarize our findings in the following well-posedness result.

Theorem 3.1. If ϱ∗,Ω0 , CΩ0 and κΩ1 , cΩ1 are selfadjoint, strictly positive definite,
and continuous operators on L2 (Ω0,R3), L2 (Ω0, sym [R3×3]), and on L2 (Ω1,R3),
L2 (Ω1,R), respectively, and the interface Ω∩ Ω̇0 ∩ Ω̇1 is a Lebesgue null set, then
the evo-system (3.4) is Hadamard well-posed. Moreover, the solution depends
causally on the data.

The operator character of the coefficients in our well-posedness result even allows
for nonlocal material behavior. If, however, it is assumed that the coefficients
ϱ∗,Ω0 , CΩ0 , κΩ1 , and cΩ1 are bounded measurable multiplication operators of the
appropriate type; that is, coefficients in the more colloquial sense, then, since
they are scalar, tensor, matrix, and scalar-valued, respectively, we see that the
inhomogeneous and anisotropic media case is covered in great generality. This
is particularly interesting, since commonly only the isotropic case and mostly
the isotropic, constant coefficient case has been considered; see, for example,
[4, 5, 9, 10].
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Remark 3.2.

(1) Since M (0) ≫ 0, we could construct a fundamental solution of ∂0 +√
M (0)

−1
A
√
M (0)

−1
, which in turn is obtained from the unitary group(

exp
(
−t
√
M (0)

−1
A
√
M (0)

−1
))

t∈R

as described above.
(2) We note that we may actually allow for completely general — say, for

simplicity, rational —material laws as long as condition (1.3) is warranted.
The above simple choice has been used as a more approachable illustrating
example, which links up more explicitly with cases considered elsewhere.
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