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Abstract. Suppose that b̂m ↓ 0, {b̂m}∞m=1 /∈ l2, and bn = 2−
m
2 b̂m for all

n ∈ (2m, 2m+1]. In this paper, it is proved that any measurable and almost
everywhere finite function f(x) on [0, 1] can be corrected on a set of arbitrarily

small measure to a bounded measurable function f̃(x); so that the nonzero
Fourier–Haar coefficients of the corrected function present some subsequence
of {bn}, and its Fourier–Haar series converges uniformly on [0, 1].

1. Introduction

At first we recall the definition of the Haar system normalized in L2[0, 1](see
[8]).

Set ∆1 = (0, 1). An interval ∆2m+k = (k−1
2m
, k
2m

), k = 1, 2, . . . , 2m and m =
0, 1, 2, . . . , is called a dyadic interval. It is clear that

∆n = ∆2n−1 ∪∆2n ∪ { 2k−1
2m+1}.

The Haar function associated with ∆1 is the function h1(x) = 1, and the Haar
function associated with ∆n, n = 2m + k, k = 1, 2, . . . , 2m, and m = 0, 1, 2, . . . ,
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is the following function:

hn(x) = h(k)m (x) :=


2

m
2 for x ∈ ∆2n−1,

−2
m
2 for x ∈ ∆2n,

0 for x /∈ [k−1
2m
, k
2m

].

(1.1)

The values of functions in points of discontinuity are equal to the average of
left and right limits at this point.

The Lebesgue measure of a measurable set E is denoted by mesE. The char-
acteristic function of a set E is denoted by χE.

The notation L∞[0, 1] denotes the space of bounded measurable functions on
[0, 1] with norm

||f ||∞ = sup
x∈[0,1]

{|f(x)|}.

The spectrum of f(x) (denoted by spec(f)) is the support of {ck(f)}; that is,
the set of integers k for which ck(f) is nonzero, where {cn(f)}∞n=0 is the Fourier–
Haar coefficients

cn(f) =

∫ 1

0

f(x)hn(x)dx (n ≥ 1).

Note that the Haar system is a basis for all Lp[0, 1], 1 ≤ p <∞ (see [10]); that
is, each function f(x) ∈ Lp[0, 1] can be represented by a unique series

∞∑
n=1

cn(f)hn(x),

which converges to f(x) in the Lp[0, 1]-norm.
Note also that the Fourier–Haar series of any continuous function converges

uniformly on [0, 1]. But it is not true for functions in space L∞[0, 1]. For example,
it is not hard to see that the Fourier–Haar series of the function

f0(x) =
∞∑
n=0

cn(f0)hn(x) =
∞∑
k=1

1

2
k
2

h
(2k−1)

2k
(x) ∈ L∞[0, 1]

does not converge uniformly on [0, 1] and

{||cn(f0)hn||∞ : n ∈ spec(f0)} = 1.

The following question arises naturally: Is there a measurable set E of arbi-
trarily small measure such that a suitable change of the values of any function of
class L∞[0, 1] on E leads to a new modified function g(x) ∈ L∞[0, 1], which the
Fourier series in the Haar system converges uniformly on [0, 1] and the nonzero
elements in the sequence {||cn(g)hn||∞}∞n=0 are arranged in decreasing order?

In the present work, we prove that this question has a positive answer.

Theorem 1.1. For any ε > 0 and each measurable and almost everywhere fi-

nite function f on [0, 1], there exists a function f̃ ∈ L∞[0, 1] with mes{x ∈ [0, 1] :

f̃(x) ̸= f(x)} < ε such that the sequence {||cn(f̃)hn||∞:n ∈ spec(f̃)} is monotoni-

cally decreasing and the Fourier series of function f̃ in the Haar system converges
uniformly on [0, 1].
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Note that the idea of correcting of the function to improve its properties is
due to Luzin (see [9]). The classical Luzin correction theorem states that any
measurable function can be made continuous by correcting its values on a set of
arbitrarily small measure (see [9]).

This important result is generalized by numerous authors. These generaliza-
tions are related to the fact that the correcting function possesses some additional
properties. In particular, the first generalization of that type belongs to Men’shov
and states that the correcting function has a uniformly convergent Fourier series
in the trigonometric system [11].

Further interesting results in this direction are obtained by many mathemati-
cians (see [1],[4], [5], [13], [14], [15]).

Note that a number of papers (see [3], [4], [5],[7],[12]) have been devoted to the
correction theorems, in which the absolute values of the nonzero Fourier coeffi-
cients (by Haar, Walsh, and Faber–Schauder systems) of the corrected function
monotonically decrease. Note the result of paper [6].

There exists a function U ∈ L1[0, 1) with the strictly decreasing Fourier–Walsh
coefficients {ck(U)} ↘ such that, for every almost everywhere finite measurable
function on [0, 1], one can find a function g ∈ L∞[0, 1) with mes{x ∈ [0, 1) : g ̸=
f} < ϵ such that |ck(g)| = ck(U), for all k ∈ spec(g), and the Fourier–Walsh
series of g(x) converges uniformly on [0, 1).

Let B denote the set of all sequences {bn}∞n=2 of the form

bn = 2−
m
2 b̂m for n ∈ (2m, 2m+1], (1.2)

where {b̂m}∞m=1 is a sequence with

b̂m ↘ 0 and
∞∑

m=0

b̂2m = +∞. (1.3)

Theorem 1.1 follows from a more general theorem.

Theorem 1.2. Suppose that {bn} ∈ B, ε > 0 and that f is measurable and almost

everywhere finite function on [0, 1]. Then there exists a function f̃ ∈ L∞[0, 1] with
the following properties:

(1) mes{x ∈ [0, 1] : f̃(x) ̸= f(x)} < ε,

(2) cn(f̃) = bn, n ∈ spec(f̃),

(3) limn→∞ ||
∑∞

n=1 cn(f̃)hn − f̃ ||∞ = 0.

The following result follows from Theorem 1.2.

Corollary 1.3. For any ε > 0 and each measurable and almost everywhere fi-

nite function f on [0, 1], there exists a function f̃ ∈ L∞[0, 1] with mes{x ∈
[0, 1] : f̃(x) ̸= f(x)} < ε such that the sequence {||cn(f̃)hn||∞: n ∈ spec(f̃)} is
monotonically decreasing and the Greedy algorithm of modified function converges
uniformly on [0, 1].
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Recall that the Greedy algorithm is a method to approximate an element f ∈ X
( f =

∑∞
k=1 ak(f)ψk ) (see [2]) by the sequence {Gm(f, ψ)}∞m=1,

Gm(f, ψ) =
m∑
k=1

aσ(k)(f)ψσ(k),

where ψ = {ψk}∞k=1 is a basis in a Banach space X and σ = {σ(k)}∞k=1 is a
permutation of the positive natural integers such that

||aσ(k)(f)ψσ(k)||X ≥ ||aσ(k+1)(f)ψσ(k+1)||X , k = 1, 2, . . . .

One can pose the following problems.

Problem 1.4. Can the values of any function f ∈ L∞[0, 1] be modified on a set of
small measure such that the absolute values of the nonzero Fourier coefficients of
corrected function with respect to trigonometric system are arranged in decreasing
order?

Problem 1.5. Can the corrected function f̃(x) in Theorem 1.1 be chosen to be
continuous on [0, 1]?

2. Proof of main lemmas

A function g is called dyadic step function if g(x) =
∑2n

k=1 γkχ∆̂k
(x), where

∆̂k = (k−1
2n
, k
2n
), and the value of g in point k

2n
is equal to the average of left

and right limits (k = 0, 1, . . . , 2n). For each function g we will denote g(x + 0)
and g(x− 0) right and left limits in point x, respectively ( In the paper, we will
assume that g(−0) = g(+0) and g(1 + 0) = g(1− 0)).

Lemma 2.1. Let {bn}∞n=1 be a sequence satisfying the following conditions:

lim
n→∞

||bnhn||∞ = 0, (2.1)

∞∑
n=1

|bnhn(x)|2 = +∞, almost everywhere on [0, 1], (2.2)

and let numbers γ ̸= 0, ε > 0, δ > 0, N0 ∈ N, and dyadic interval ∆ = (α, β)
be given. Then there exist a measurable set E ⊂ ∆, a dyadic step function
g(x) and a polynomial in the Haar system Q(x) =

∑M
n=N0

ϵnbnhn(x) (where ϵn =
0 or 1) such that

(1) mesE > (1− ε)mes∆,
(2)

g(x) =

{
γ if x ∈ E,

0 if x /∈ [α, β],

(3) ∥g −Q∥∞ ≤ δ,
(4) Q(x) = 0 for all x /∈ [α, β],

(5) maxN0≤m≤M ||
∑m

n=N0
ϵnbnhn||∞ ≤ 4|γ|

ε
.
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Proof. At first, we prove the lemma in the case when γ > 0.
By (2.1), (2.2), and Arutyunyan’s theorem (see [1]), it follows that the following

conditions are true almost everywhere on [0, 1]:

lim sup
L→∞

L∑
n=0

bnhn(x) = +∞, (2.3)

lim inf
L→∞

L∑
n=0

bnhn(x) = −∞. (2.4)

We denote by E0 ⊂ ∆ the set of all points for which conditions (2.3) and (2.4)
are true. Obviously mesE0 = mes∆. We take a natural number N > N0 such
that mes∆N < mes∆ and

|bnhn(x)| < δ̃ ∀x ∈ E0, ∀n ≥ N, (2.5)

where

δ̃ := min

{
δ

2
,
|γ|
2

}
. (2.6)

At first the numbers {Ns}∞s=1 and sets {Gs}∞s=1 will be constructed with some
property. We denote by N1 the least natural number m ≥ N for which

N1+1∑
n=N

bnhn(x) /∈ [−4γ

ε
, γ] for some x ∈ E0.

Let

G1 = {x ∈ E0 :

N1+1∑
n=N

bnhn(x) /∈ [−4γ

ε
, γ]}. (2.7)

Since all polynomials in the Haar system are step functions, then, from the
definition of N1 by (2.5) and (2.7), we obtain mes G1 > 0, and

if x ∈ G1, then

∣∣∣∣∣
N1∑

n=N

bnhn(x)− γ

∣∣∣∣∣ < δ̃ or

∣∣∣∣∣
N1∑

n=N

bnhn(x) +
4γ

ε

∣∣∣∣∣ < δ̃.

If mesE0 \G1 = 0, we assume that Ns = N1 and Gs = ∅, for all s > 1 and that
construction of numbers {Ns}∞s=1 is completed. In the other case, we denote by
N2 the least natural number m ≥ N for which

N2+1∑
n=N

bnhn(x) /∈ [−4γ

ε
, γ] for some x ∈ E0 \G1.

It is not hard to see that N2 > N1 and mes G2 > 0, where

G2 = {x ∈ E0 \G1 :

N2+1∑
n=N

bnhn(x) /∈ [−4γ

ε
, γ]}.

From this and (2.5), we have

k∑
n=N

bnhn(x) ∈ [−4γ

ε
, γ] ∀k ≤ N2,∀x ∈ E0 \G1,
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and

if x ∈ G2, then

∣∣∣∣∣
N2∑

n=N

bnhn(x)− γ

∣∣∣∣∣ < δ̃ or

∣∣∣∣∣
N2∑

n=N

bnhn(x) +
4γ

ε

∣∣∣∣∣ < δ̃.

If mes (E0 \ (G1 ∪G2)) = 0, we assume that Ns = N2 and Gs = ∅, for all s > 2
and that construction of numbers {Ns}∞s=1 is completed.

Hence we can define {Ns}s=1 and sets {Gs}s=1 by finite or infinite steps induc-
tion such that for each s ≥ 1 satisfy the following conditions:

N < N1 ≤ N2 ≤ · · · ≤ Ns ≤ · · ·

Gs = {x ∈ E0 \ (∪s−1
j=1Gj) :

Ns+1∑
n=N

bnhn(x) /∈ [−4γ

ε
, γ]}, (2.8)

k∑
n=N

bnhn(x) ∈ [−4γ

ε
, γ], ∀k ≤ Ns,∀x ∈ E0 \ (∪s−1

j=1Gj), (2.9)

if x ∈ Gs, then

∣∣∣∣∣
Ns∑

n=N

bnhn(x)− γ

∣∣∣∣∣ < δ̃ or

∣∣∣∣∣
Ns∑

n=N

bnhn(x) +
4γ

ε

∣∣∣∣∣ < δ̃. (2.10)

Taking into account the relations (2.3),(2.4), and (2.8), we obtain

mes(E0 \
∞∪
s=1

Gs) = 0,

∞∑
s=1

mes Gs = mesE0.

We take a natural number s0 ≥ 1; so that

mes(

s0∪
s=1

Gs) =

s0∑
i=1

mes Gi ≥ (1− ε

4
) mesE0 =

(
1− ε

4

)
mes∆.

Note that if we have a finite number steps in construction of numbers {Ns}∞s=1,
then we can take as s0 the breaking step.

Let E1 =
∪s0

s=1Gs. Obviously we have

mesE1 > (1− ε

4
) mes∆. (2.11)

Now define a polynomial Q(x) as follows:

Q(x) :=
M∑

n=N0

ϵnbnhn(x), (2.12)

where M = Ns0 and

ϵn :=


0 if ∆n

∩
∆ = 0,

0 if n < N,

0 if (∆n ∩ E0) ⊂ Gs, for some s ∈ [1, s0],

1 otherwise.

(2.13)
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From (2.8), (2.9), (2.12), and (2.13), we get

|
m∑

n=N

ϵnbnhn(x)| ≤
4γ

ε
, ∀x ∈ [0, 1],∀m ∈ [N0,M ],

Q(x) = 0 if x /∈ [α, β],

and

if x ∈ Gs and x ∈ ∆n, for some s ∈ [1, s0] and n > Ns, then (∆n ∩ E0) ⊂ Gs.

This immediately yields that if x ∈ Gs, s ∈ [1, s0], and n > Ns, then ϵn = 0 or
hn(x) = 0. Clearly for each point x ∈ Gs, s ∈ [1, s0], we have

Q(x) =
M∑

n=N0

ϵnbnhn(x) =
Ns∑

n=N

bnhn(x) +
M∑

Ns+1

ϵnbnhn(x) =
Ns∑

n=N

bnhn(x). (2.14)

By (2.10) and (2.14), we have

if x ∈ E1, then |Q(x)− γ| < δ̃ or |Q(x) + 4γ

ε
| < δ̃.

Let

E2 := {x ∈ E1 : |Q(x)− γ| < δ̃}, A := {x ∈ E1 : |Q(x) +
4γ

ε
| < δ̃}. (2.15)

It is clear that E1 = E2

∪
A and E2

∩
A = ∅.

From (2.6), (2.11), and (2.15), we have

0 =

∫ 1

0

Q(x)dx =

∫
∆

Q(x)dx =

∫
∆\E1

Q(x)dx+

∫
E1

Q(x)dx

=

∫
∆\E1

Q(x)dx+

∫
E2

Q(x)dx+

∫
A

Q(x)dx

≤4γ

ε
mes(∆ \ E1) + (γ + δ̃) mesE2 + (−4γ

ε
+ δ̃) mesA

≤γ mes∆ + γ mes∆ + δ̃( mesE2 +mesA)− 4γ

ε
mesA

=3γ mes∆− 4γ

ε
mesA.

Clearly

mesA ≤ 3ε

4
mes∆.

Then (see (2.11) and (2.16))

mesE2 ≥ (1− ε) mes∆.

Let

D := {x =
i

2j
∈ ∆ : i ≤ 2j s.t. Q(x+ 0) ̸= Q(x− 0)},

and let

E := E2\D, mesE = mesE2 ≥ (1− ε) mes∆.
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Define

g(x) :=


γ if x ∈ E,

Q(x) if x /∈ E
∪
D,

g(x+0)+g(x−0)
2

if x ∈ D.

From the definition of function g(x), we deduce that g(x) is a dyadic step
function and

sup
x∈D

|g(x)−Q(x)| = sup
x∈D

|g(x+ 0) + g(x− 0)

2
− Q(x+ 0) +Q(x− 0)

2
| < δ.

From this and (2.15), we have

||g −Q||∞ = sup
x∈[0,1]

|g(x)−Q(x)| = max{sup
x∈E

|γ −Q(x)|, sup
x∈D

|g(x)−Q(x)|} < δ.

The lemma is proved in the case γ > 0.
In the case when γ < 0, we consider the sequence {an}∞n=0 with an = −bn

and number γ′ = −γ. It is easy to see that the sequence {an}∞n=0 also satisfies
conditions (2.1) and (2.2) and γ′ > 0. Applying Lemma 2.1 for sequence {an}∞n=0,
numbers γ′ > 0, ε, δ,N0 ∈ N, and dyadic interval ∆ = (α, β), one can find a
measurable set E ⊂ ∆, a dyadic step function g′(x), and a polynomial in the

Haar system Q′(x) =
∑M

n=N0
ϵnanhn(x) (where ϵn = 0 or 1) such that

(1) mesE > (1− ε)mes∆,
(2)

g′(x) =

{
γ′ if x ∈ E,

0 if x /∈ [α, β],

(3) ∥g′ −Q′∥∞ ≤ δ,
(4) Q′(x) = 0 for all x /∈ [α, β],

(5) maxN0≤m≤M ||
∑m

n=N0
ϵnanhn||∞ ≤ 4|γ|

ε
.

If we choose g(x) = −g′(x) and Q(x) = −Q′(x) = −
∑M

n=N0
ϵnanhn(x) =∑M

n=N0
ϵnbnhn(x), then, from the above, we get the truthfulness of Lemma 2.1 in

the case when γ < 0.
Lemma 2.1 is proved. □

Lemma 2.2. Let {bn}∞n=1 ∈ B, and let numbers N0 > 1, ε > 0, δ > 0 and
dyadic step function f(x) be given. Then one can find a dyadic step function
g(x), measurable set E ⊂ [0, 1], and a polynomial in the Haar system of the form

Q(x) =
∑M

n=N0
ϵnbnhn(x), where ϵn = 0 or 1, such that

(1) mesE > 1− ε,
(2) g(x) = f(x) for all x ∈ E,
(3) ||g −Q||∞ < δ,

(4) maxN0≤m≤M ||
∑m

n=N0
ϵnbnhn||∞ ≤ 8||f ||∞

ε
.

Proof. Taking into account (1.1)–(1.3), we obtain that the sequence {bn}∞n=1 sat-
isfies conditions (2.1) and (2.2).
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Let

D :=

{
i

2j
: i ≤ 2j, j = 1, 2, . . .

}
,

and let

f(x) =

n0∑
n=1

γn · χ∆̂n
(x), for x ∈ [0, 1] \D, (2.16)

where ∆̂n = (αn, βn) are dyadic intervals that satisfy
∑n0

n=1 mes∆̂n = 1 and

∆̂j

∩
∆̂i = ∅ (i ̸= j). We can assume that γn ̸= 0, n = 1, . . . , n0.

Successive applications of Lemma 2.1 yield measurable sets En ⊂ ∆̂n, dyadic
step function gn(x), and polynomials

Qn(x) =
Nn−1∑

k=Nn−1

ϵkbkhk(x), n ≥ 1, Nn ↗, ϵk = 1 or 0,

satisfy, for all n = 1, . . . , n0,

Qn(x) = 0 if x /∈ [αn, βn], (2.17)

gn(x) =

{
γn if x ∈ En,

0 if x /∈ [αn, βn],
(2.18)

||gn −Qn||∞ < 2−nδ, (2.19)

mesEn > (1− ε) mes∆̂n (2.20)

and

max
Nn−1≤m<Nn

||
m∑

k=Nn−1

ϵkbkhk||∞ ≤ 4|γn|
ε

. (2.21)

Let

Q =

n0∑
n=1

Qn =
M∑

k=N0

ϵkbkhk where M = Nn0 − 1, (2.22)

and let

E =

n0∪
n=1

En g =

n0∑
n=1

gn. (2.23)

The definition of intervals ∆̂n, (2.20), and (2.23) immediately yield the assertion
(1) in the statement of lemma.

By using (2.17)–(2.23), we obtain that g(x) is a dyadic step function and

||g −Q||∞ < δ, g(x) = f(x) for x ∈ E.

For a givenm ∈ [N0,M ], there is a unique n̄ ∈ [1, n0] such thatm ∈ [Nn̄, Nn̄+1).
Thus

m∑
k=N0

ϵkbkhk(x) =
n̄∑

n=1

Qn(x) +
m∑

k=Nn̄

ϵkbkhk(x).
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From this, (2.16), (2.17), and (2.21), we have

max
N0≤m≤M

||
m∑

k=N0

ϵkbkhk||∞ ≤ 8||f ||∞
ε

.

Lemma 2.2 is proved. □

3. Proof of Theorem 1.2.

Proof. Let ε ∈ (0, 1), and let f(x) be an arbitrary measurable and almost ev-
erywhere finite function on [0, 1]. By Luzin’s theorem (see [9]) one can find a
continuous function g(x), defined on [0, 1], such that

mes{x ∈ [0, 1] : f(x) ̸= g(x)} < ε/2.

One can find a sequence of dyadic step function {fn(x)}∞n=1 such that

lim
N→∞

||
N∑

n=1

fn − g||∞ = 0 ||fn||∞ ≤ ε · 2−8(n+1), n ≥ 2. (3.1)

Further, by using induction and Lemma 2.2, we construct sequences of dyadic
step function {g̃n(x)}∞n=1, a sequence of polynomials

Qn(x) =
mn−1∑

k=mn−1

ϵkbkhk(x), (ϵk = 0 or 1, n = 1, 2, . . . )

and a sequence of sets {En}∞n=1 satisfying the following conditions:

||g̃n||∞ ≤ 2−2n (n ≥ 2), (3.2)

max
mn−1≤m≤mn−1

||
m∑

k=mn−1

ϵkbkhk||∞ ≤ 2−3(n−1), (3.3)

mesEn > 1− ε2−n−1, (3.4)

g̃n(x) = fn(x) ∀x ∈ En, (3.5)∣∣∣∣∣
∣∣∣∣∣

n∑
j=1

(Qj − g̃j)

∣∣∣∣∣
∣∣∣∣∣
∞

≤ ε 2−5(n+1). (3.6)

At first step, let us apply Lemma 2.2 for f1(x) and find set E1, dyadic step
function g1(x), and polynomial in the Haar system of the form

Q1(x) =

m1−1∑
k=1

ϵkbkhk(x), ϵk = 0 or 1,

satisfying the following conditions:

g̃1(x) = g1(x) = f1(x), x ∈ E1,

mesE1 > 1− ε2−2,

||g̃1 −Q1||∞ ≤ ε2−10,

||g̃1||∞ ≤ 8ε−1||f1||∞ + ε2−10.

It is easy to see that the conditions (3.4)–(3.6) are true for n = 1.
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Assume that dyadic step functions g̃n(x), 1 ≤ n ≤ q− 1, sets E1, E2, . . . , Eq−1,
and polynomials

Qn(x) =
mn−1∑

k=mn−1

ϵkbkhk(x), 1 ≤ n ≤ q − 1,m0 = 1,

are chosen in such way that the conditions (3.4)–(3.6) are fulfilled for all n ≤ q−1.
Now we construct function g̃q(x), a polynomial Qq(x), and set Eq and show that
the conditions (3.2)–(3.6) hold for n = q.

Let

Hq(x) = fq(x)−
q−1∑
n=1

[Qn(x)− g̃n(x)] . (3.7)

From above, (3.1), and (3.6), one can find

||Hq||∞ ≤ ε 2−4q−1.

It is not hard to see that the function Hq(x) is a dyadic step function. By ap-
plying Lemma 2.2, we obtain set Eq, dyadic step function gq(x), and polynomial
in the Haar system of the form

Qq(x) =

mq−1∑
k=mq−1

ϵkbkhk(x),

where ϵk is equal to 0 or 1, which satisfy the following conditions:

gq(x) = Hq(x), x ∈ Eq, (3.8)

mesEq > 1− ε2−q−1, (3.9)

||gq −Qq||∞ ≤ ε2−5(q+1), (3.10)

max
mq−1≤m≤mq−1

||
m∑

k=mq−1

ϵkbkhk||∞ ≤ ε−1 2q+4||Hq||∞ ≤ 2−3(q−1). (3.11)

We put

g̃q(x) = fq(x)− [Hq(x)− gq(x)] =

q−1∑
j=1

(Qj(x)− g̃j(x)) + gq(x). (3.12)

By (3.8), we have

g̃q(x) = fq(x), ∀x ∈ Eq. (3.13)

By employing the relations (3.6), (3.7), and (3.10)–(3.12), we find that

||g̃q||∞ ≤

∣∣∣∣∣
∣∣∣∣∣
q−1∑
j=1

(Qj − g̃j)

∣∣∣∣∣
∣∣∣∣∣
∞

+ ||gq||∞ ≤ 2−3q+4. (3.14)
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From this and (3.7), (3.10), and (3.12), we get∣∣∣∣∣
∣∣∣∣∣

q∑
j=1

(Qj − g̃j)

∣∣∣∣∣
∣∣∣∣∣
∞

=

∣∣∣∣∣
∣∣∣∣∣
q−1∑
j=1

(Qj − g̃j) +Qq − g̃q

∣∣∣∣∣
∣∣∣∣∣
∞

=

∣∣∣∣∣
∣∣∣∣∣Hq −

(
fq −

q−1∑
n=1

[Qn − g̃n]

)
+Qq − gq

∣∣∣∣∣
∣∣∣∣∣
∞

= ||Qq − gq||∞ ≤ ε 2−5(q+1). (3.15)

Clearly we prove that the statements (3.2)–(3.6) are true for n = q. (see (3.9),
(3.11), (3.13)–(3.15)).

We put

f̃(x) =
∞∑
n=1

g̃n(x).

Obviously (see (3.1),(3.2),(3.4),(3.5))

f̃(x) ∈ L∞[0, 1],

f̃(x) = g(x), for x ∈
∞∩
n=1

En, and mes(
∞∩
n=1

En) ≥ 1− ε

2
.

Consequently,

mes{x ∈ [0, 1] : f̃(x) = f(x)} ≥ mes(
∞∩
n=1

En)−mes{x ∈ [0, 1] : f(x) ̸= g(x)} ≥ 1−ε.

From (3.3) and (3.6) it follows that the series

∞∑
k=1

ϵkbkhk(x) =
∞∑
q=1

mq−1∑
k=mq−1

ϵkbkhk(x)

converges to the function f̃(x) uniformly in [0, 1]. Therefore

ϵkbk =

∫ 1

0

f̃(x)hk(x)dx = ck(f̃), k = 1, 2, . . . .

and Theorem 1.2 is proved. □

Remark 3.1. Note that Lemma 2.2 is true with assumptions (2.1) and (2.2), which
are weaker than assumption {bn}∞n=1 ∈ B. That would yield a more general result.

Suppose that the sequence {bn}∞n=1 satisfies the conditions (2.1),(2.2), and that
f is measurable and almost everywhere finite function on [0, 1]. Then there exists

a function f̃ ∈ L∞[0, 1] with the following properties:

(1) mes{x ∈ [0, 1] : f̃(x) ̸= f(x)} < ε,

(2) cn(f̃) = bn, n ∈ spec(f̃),

(3) limn→∞ ||
∑∞

n=1 cn(f̃)hn − f̃ ||∞ = 0.
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