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Abstract. In this paper, the relations between the Yang–Baxter equation
and affine actions are explored in detail. In particular, we classify the injective
set-theoretic solutions of the Yang–Baxter equation in two ways: (i) by their
associated affine actions of their structure groups on their derived structure
groups, and (ii) by the C∗-dynamical systems obtained from their associated
affine actions. On the way to our main results, several other useful results are
also obtained.

The Yang–Baxter equation has been extensively studied in the literature since
[14]. It plays important roles not only in statistical mechanics, but also in other
areas, such as, quantum groups, link invariants, operator algebras, and the con-
formal field theory. In general, it is a rather challenging problem to find all
solutions of the Yang–Baxter equation. Following a suggestion given in [6], many
researchers have done a lot of work on studying a special but important class
of solutions, which are now known as set-theoretic solutions. See, for example,
[4, 5, 7, 8, 9, 10, 11, 13, 15] to name just a few, and the references therein.

The main aim of this paper is to explore the relations between the Yang–Baxter
equation and affine actions on groups. The main ideas behind here are motivated
by [7, 11, 13]. The rest of this paper is organized as follows. In section 1, we recall
some necessary background on the Yang–Baxter equation which will be needed
later. In section 2, we first introduce affine actions and some related notions;
then associate to every solution of the Yang–Baxter equation a regular affine
action of its structure group on its derived structure group (Proposition 2.5), and
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finally describe two constructions of solutions to the Yang–Baxter equation via
their associated affine actions. Our main results of this paper are given in section
3. We classify injective solutions of the Yang–Baxter equation in terms of their
associated affine actions (Theorem 3.3). We further obtain a connection with
C∗-dynamical systems. It is shown that injective solutions can also be classified
via their associated C∗-dynamical systems (Theorem 3.6). We end this paper
with an appendix, which provides a commutation relation for semidirect product
of solutions to the Yang–Baxter equation determined by cycle sets, which might
be useful in the future studies.

1. The Yang–Baxter equation

In this section, we provide some background on the Yang–Baxter equation
which will be useful later.

Let X be a (nonempty) set, and let Xn :=

n︷ ︸︸ ︷
X × · · · ×X for n ≥ 2.

Definition 1.1. Let R(x, y) = (αx(y), βy(x)) be a bijection on X2. We call R a
set-theoretic solution of the Yang–Baxter equation (abbreviated as YBE ) if

R12R23R12 = R23R12R23 (1)

on X3, where R12 = R × idX and R23 = idX × R. The condition (1) is also
known as the braiding condition. We often simply call R a YBE solution on X.
Sometimes, we write it as RX or a pair (R,X). A YBE solution R on X is said
to be

• involutive if R2 = idX2 ;
• nondegenerate if, for all x ∈ X, αx and βx are bijections on X;
• symmetric if R is involutive and nondegenerate.

Some examples of YBE solutions are given in [15], where it is also shown that
YBE solutions are intimately connected with higher-rank graphs.

Standing assumptions: All YBE solutions in the rest of this paper are always
assumed to be set-theoretic and nondegenerate.

1.1. Two characterizations of YBE solutions. The following lemma is well-
known in the literature and also easy to prove.

Lemma 1.2. Let R(x, y) = (αx(y), βy(x)). Then R is a YBE solution on X if
and only if the following properties hold true: for all x, y, z ∈ X,

(i) αxαy = ααx(y)αβy(x),
(ii) βyβx = ββy(x)βαx(y), and
(iii) βαβy(x)(z)(αx(y)) = αβαy(z)(x)(βz(y)) (Compatibility Condition).

Furthermore, R is involutive if and only if

ααx(y)(βy(x)) = x and ββy(x)(αx(y)) = y for all x, y ∈ X.

Let us associate to a given YBE solution an important object – its structure
group.
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Definition 1.3. Let R(x, y) = (αx(y), βy(x)) be a YBE solution onX. The struc-
ture group of R, denoted as GRX

, is the group generated by X with commutation
relations determined by R:

GRX
= gp

⟨
X;xy = αx(y)βy(x) for all x, y ∈ X

⟩
.

Sometimes we also write GRX
as GR,X or GX .

One can easily rephrase the characterization given in Lemma 1.2 in terms of
actions of structure groups (see, e.g., [7, 9]).

Corollary 1.4. A map R(x, y) = (αx(y), βy(x)) is a YBE solution on X, if and
only if

(i) α can be extended to a left action of GRX
on X,

(ii) β can be extended to a right action of GRX
on X, and

(iii) the compatibility condition in Lemma 1.2 (iii) holds.

1.2. Constructing YBE solutions from old to new. There are several known
constructions of YBE solutions from old to new. For our purpose, we only intro-
duce two below.

▶ Dual of R. Let R(x, y) = (αx(y), βy(x)) be a YBE solution on X. Define R◦

on X2 by

R◦(x, y) = (βx(y), αy(x)) for all x, y ∈ X.

We call R◦ the dual of R. It is also a YBE solution on X. Indeed, this can be
seen by switching x and y in the first two identities, and x and z in the third
one in Lemma 1.2. We give it such a name because we “dualize” the process
xy = αx(y)βy(x) in GRX

via y ◦ x = βy(x) ◦ αx(y) (by switching the factors on
both sides).

Clearly, R◦◦ = R.
Let Φ : GRX

→ GR◦
X
be defined via Φ(x) := x for x ∈ X and Φ(xy) := y ◦x for

all x, y ∈ X. Since Φ(xy) = Φ(αx(y)βy(x)) for all x, y ∈ X, Φ can be extended
to an anti-isomorphism from GRX

to GR◦
X
.

▶Derived solution of R [7, 13]. LetR(x, y) = (αx(y), βy(x)) be a YBE solution
on X. Then

(x, y)
R7→ (αx(y), βy(x))

R7→
(
ααx(y)(βy(x)), ββy(x)(αx(y))

)
determines a YBE solution

(x, αx(y)) 7→
(
αx(y), ααx(y)(βy(x))

)
,

namely,

R′ : (x, y) 7→
(
y, αy(βα−1

x (y)(x))
)
.

This solution R′ is called the derived solution of R.
The derived structure group ARX

of R is defined as

ARX
=

⟨
X : x • y = y • αy(βα−1

x (y)(x)) for all x, y ∈ X
⟩
.

As GRX
, ARX

is sometimes also written as AR,X or AX .
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Remark 1.5. It is often useful to think that ARX
and GRX

have the same gen-
erator set X with the relations

x • y = xαx−1(y) for all x, y ∈ X,

equivalently, xy = x • αx(y) for all x, y ∈ X.

Remark 1.6. (i) If R(x, y) = (αx(y), x), then R′(x, y) = (y, αy(x)). Namely,
R′ = R◦.

(ii) As in [13], one can also define another derived YBE solution

′R(x, y) =
(
βx(αβ−1

y (x)(y)), x
)

for all x, y ∈ X.

(iii) One can easily check the following: R is symmetric ⇔ ′R = R′ ⇔ R◦ is
symmetric ⇔ ARX

and AR′
X
are abelian ⇔ ARX

and AR◦
X
are abelian.

1.3. A distinguished action of GRX
on ARX

. Let R(x, y) = (αx(y), βy(x)) be
a YBE solution on X. By Corollary 1.4, both α and β−1 can be extended to
actions of GX on X. For our convenience, let

ϕR(x, y) := αy(βα−1
x (y)(x)),

ψR(x, y) := βx(αβ−1
y (x)(y))

for all x, y ∈ X. Similar to [13, Theorem 2.3], one has the following.

Lemma 1.7. ϕ is GRX
-equivariant with respect to the action α:

ϕR(αg(x), αg(y)) = αg(ϕR(x, y)) for all x, y ∈ Xand g ∈ GRX
.

Proof. Notice that ψR◦(x, y) = ϕR(y, x) for all x, y ∈ X. Now first apply [13,
Theorem 2.3] to R◦, and then use the relation between R and R◦ to obtain the
following:

αg−1ψR◦(x, y) = ψR◦(αg−1(x), αg−1(y)) for all x, y ∈ X, g ∈ GR◦
X

⇒ αg−1ϕR(y, x) = ϕR(αg−1(y), αg−1(x)) for all x, y ∈ X, g ∈ GR◦
X

⇒ αgϕR(y, x) = ϕR(αg(y), αg(x)) for all x, y ∈ X, g ∈ GRX
.

We are done. □
Let AutX(ARX

) be the group of all automorphisms of ARX
preserving X.

Proposition 1.8 ([13]). Keep the above notation. The action α of GRX
on

X induces an action of GRX
on ARX

preserving X. That is, there is a group
homomorphism from GRX

to AutX(ARX
).

Proof. Notice that for all g ∈ GRX

x • y = y • ϕR(x, y)

⇒ αg(x) • αg(y) = αg(y) • ϕR(αg(x), αg(y)) (replacing x, y by αg(x), αg(y))

⇒ αg(x) • αg(y) = αg(y) • αg(ϕR(x, y)) (by Lemma 1.7).

This implies that αg can be extended to an element in AutX(ARX
), as desired. □

By Proposition 1.8, one has a generator preserving action α : GRX
↷ ARX

.
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2. Affine actions on groups

For a given YBE solution, we associate to it a regular affine action (Proposition
2.5). This plays a vital role in section 3. Conversely, in subsection 2.3, we use the
two constructions of affine actions described in subsection 2.2 to construct new
YBE solutions.

Let A be a group. Denote by Aff(A) the semidirect product

Aff(A) = Aut(A)⋉ A,

where (S, a)(T, b) = (ST, aS(b)) for all S, T ∈ Aut(A) and a, b ∈ A. Aff(A) acts
on A via (S, a)b = aS(b).

Definition 2.1. Let G and A be groups. An affine action of G on A is a group
homomorphism ρ : G→ Aff(A).

By definition, any affine action ρ : G→ Aff(A) has the following form:

ρg(a) = b(g)πg(a) for all g ∈ G and a ∈ A,

where π : G→ Aut(A) is a group homomorphism, called the linear part of ρ, and
b : G → A, called the translational part of ρ, is a 1-cocycle with respect to π in
coefficient A:

b(g1g2) = b(g1)πg1(b(g2)) for all g1, g2 ∈ G.

We sometimes simply write ρ = (π, b), and also write b(g) as bg for convenience.
Recall that a group action is called regular if it is transitive and free.
The following lemma should be known. But we include a proof below for

completeness.

Lemma 2.2. An affine action ρ = (π, b) of a group G on a group A is regular if
and only if b is bijective.

Proof. (⇒): Since ρ is regular, for arbitrary x and y in A there is a unique g ∈ G
such that ρg(x) = y. Letting x = e and y ∈ A arbitrary shows that b is surjective.

Now suppose that b(g1) = b(g2) for some g1, g2 ∈ G. Then ρg1(e) = b(g1)πg1(e) =
b(g2)πg2(e) = ρg2(e). So g1 = g2 as ρ is free. Thus b is injective.

(⇐): Let x, y ∈ A. Since b is bijective, there is a unique h0 ∈ G such that
b(h0) = x, and further a unique g ∈ G such that b(gh0) = y. Then ρg(x) =
b(g)πg(x) = b(g)πg(b(h0)) = b(gh0) = y. Thus ρ is transitive.

To show that ρ is free, suppose that there are g1, g2 ∈ G such that ρg1(x) =
ρg2(x) for some x ∈ A. Then b(g1)πg1(x) = b(g2)πg2(x). Since b is surjective,
there is g ∈ G such that b(g) = x. Hence b(g1)πg1(b(g)) = b(g2)πg2(b(g)); that
is, b(g1g) = b(g2g). But b is injective, g1g = g2g, and so g1 = g2. Therefore, ρ is
free. □

Definition 2.3. Let ρi be an affine action of a group G on a group Ai (i = 1, 2).
A group homomorphism φ : A1 → A2 is said to be G-equivariant relative to
(ρ1, ρ2) if

φ ◦ ρ1g = ρ2g ◦ φ for all g ∈ G. (2)
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That is, for every g ∈ G, the following diagram commutes:

A1

ρ1g
//

φ

��

A1

φ

��

A2
ρ2g

// A2.

If, furthermore, the above φ is bijective, then ρ1 and ρ2 are said to be conjugate.

Remark 2.4. (i) Let ρi = (πi, bi) (i = 1, 2). It is easy to see that (2) is equivalent
to

φ ◦ π1
g = π2

g ◦ φ,
b2g = φ ◦ b1g

for all g ∈ G. So, in particular, φ is also G-equivariant relative to (π1, π2).
(ii) If b1 is surjective, then using the definition of 1-cocycles, it is easy to see

that the second identity in (i) above determines the first one. In fact, from the
second one has, for all g, h ∈ G,

b2gh = φ(b1gh) ⇒ b2gπ
2
g(b

2
h) = φ(b1g)φ(π

1
g(b

1
h))

⇒ π2
g(b

2
h) = φ(π1

g(b
1
h)) (as b2g = φ(b1g))

⇒ π2
g(φ(b

1
h)) = φ(π1

g(b
1
h)) (as b2h = φ(b1h))

⇒ π2
g ◦ φ = φ ◦ π1

g (as b1(G) = A1).

2.1. Affine actions associated to YBE solutions. This subsection shows why
we are interested in affine actions. We should mention that these actions are also
considered in [13] in a different terminology.

Proposition 2.5 (andDefinition). Any YBE solution R on X induces a regular
affine action ρX of GX on AX .

The action ρX is called the affine action associated to RX and also denoted as
ρRX

or even just ρ if the context is clear.

Proof. The proof is completely similar to [13, Theorem 2.5]. We only sketch it
here. By Proposition 1.8, there is an action α : GX ↷ AX .

Step 1: Extend the mapping

ρ : X → GX ⋉α AX , x 7→ (x, x)

to a group homomorphism

ρG : GX → GX ⋉α AX .

To do so, one needs to check that

ρ(x)ρ(y) = ρ(αx(y))ρ(βy(x)) for all x, y ∈ X.

But

ρ(x)ρ(y) = (x, x)(y, y) = (xy, x • αx(y)),
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and similarly

ρ(αx(y))ρ(βy(x)) =
(
αx(y)βy(x), αx(y) • ααx(y)(βy(x))

)
.

They are obviously equal.
Step 2: Let p : GX ⋉α AX → AX be the second projection to AX , and let

b := p ◦ ρG. Then b is a 1-cocycle with respect to the action GX
α↷ AX :

b(gh) = b(g) • αg(b(h)) for all g, h ∈ GX .

In fact, for all g, h ∈ X,

b(gh) = pρG(gh) = p((g, g)(h, h)) = p(gh, g • αg(h)) = g • αg(h),

and

b(g) • αg(b(h)) = pρG(g) • αg(pρG(h)) = g • αg(h).

Step 3: Check that b is bijective (see [13, Theorem 2.5]). □

Remark 2.6. In what follows, we will frequently use that the simple fact that
b(x) = x, for all x ∈ X, in the associated affine action ρX = (α, b) obtained from
Proposition 2.5.

2.2. Two constructions of affine actions. In this subsection, we construct
two new affine actions from given ones.

1◦ Lifting. This generalizes a construction given in [1, 2], which plays key roles
in these works.

Let A and H be two groups, and let θ : H → A be a homomorphism. Suppose
that ρ = (π, b) is a regular affine action of G on A and that σ is an action of G
on H, such that θ is G-equivariant relative to (σ, π)

θ ◦ σg = πg ◦ θ for all g ∈ G.

Introduce a new multiplication · on H via

x · y := xσb−1◦θ(x)(y) for all x, y ∈ H. (3)

Then the lifting of ρ from A to H is defined as

ρ̃x(y) = x · y for all x, y ∈ H.

Conclusion 1. The lifting ρ̃ is an affine action of (H, ·) on H. Furthermore, θ is
(H, ·)-equivariant relative to (ρ̃, ρ ◦ b−1 ◦ θ).

Pictorially, one can summarize the above as follows: for all g ∈ G and h ∈
(H, ·),

H
σg

//

θ
��

H

θ
��

A πg

// A

⇝

⇝

H
ρ̃h

//______

θ
��

H

θ
��

A ρb−1◦θ(h)
// A
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Proof. One can show that (H, ·) is indeed a group: · is closed and associative, the
identity is (still) e, and the inverse of x in (H, ·) is σb−1◦θ(x)(x). The verification
is tedious and left to the reader.

Also, ρ̃ is an affine action of (H, ·) on H. In fact,

ρ̃x1·x2(y) = (x1 · x2)σb−1◦θ(x1·x2)(y)

= x1σb−1◦θ(x1)(x2)σb−1◦θ(x1σb−1◦θ(x1)
(x2))(y) (by (3))

= x1σb−1◦θ(x1)(x2)σb−1(θ(x1)θ(σb−1◦θ(x1)
(x2)))(y) (as θ is a homomorphism)

= x1σb−1◦θ(x1)(x2)σb−1(θ(x1)πb−1◦θ(x1)
θ(x2)))(y) (as θ is G-equivariant)

= x1σb−1◦θ(x1)(x2)σb−1(θ(x1))b−1◦θ(x2)(y) (as b is a 1-cocycle w.r.t π)

= x1σb−1◦θ(x1)(x2σb−1◦θ(x2)(y)) (as θ is an action)

= x1σb−1◦θ(x1)(ρx2(y)) (by (3))

= ρ̃x1(ρ̃x2(y)) (by (3)).

Furthermore, ρ ◦ b−1 ◦ θ is an affine action of (H, ·) on A. For this, since θ is
G-equivariant for (σ, π) and b is 1-cocycle with respective to π, one has

b−1 ◦ θ(h1 · h2) = b−1(θ(h1)θ ◦ σb−1(θ(h1))(h2))

= b−1(θ(h1)πb−1(θ(h1)(θ(h2)))

= b−1 ◦ θ(h1)b−1 ◦ θ(h2).

Hence, for all h1, h2 ∈ H and a ∈ A, we get

ρb−1◦θ(h1·h2)(a) = b(b−1 ◦ θ(h1)b−1 ◦ θ(h2))πb−1◦θ(h1)b−1◦θ(h2)(a)

and

ρb−1◦θ(h1)ρb−1◦θ(h2)(a)

= ρb−1◦θ(h1)(b(b
−1 ◦ θ(h2)))πb−1◦θ(h2)(a)

= b(b−1 ◦ θ(h1))πb−1◦θ(h1)(b(b
−1 ◦ θ(h2)))πb−1◦θ(h2)(a))

= b(b−1 ◦ θ(h1))πb−1◦θ(h1)(b(b
−1 ◦ θ(h2)))πb−1◦θ(h1)b−1◦θ(h2)(a).

This implies

ρb−1◦θ(h1·h2) = ρb−1◦θ(h1)ρb−1◦θ(h2)

as b is a 1-cocycle with respect to π.
Using the property that θ is G-equivariant relative to (σ, π) again, we have, for

all x, z ∈ H,

θ(ρ̃z(x)) = θ(zσb−1◦θ(z))(x) = θ(z)θ(σb−1◦θ(z)(x))

= bb−1(θ(z))πb−1◦θ(z)(θ(x))

= ρb−1◦θ(z)(θ(x)).

Thus θ ◦ ρ̃z = ρb−1◦θ(z) ◦ θ, as desired. □
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2◦ Semidirect product. Let ρ be an affine action of G on A, and let ρ̃ = (π̃, b̃)
be a regular affine action of G̃ on Ã. Suppose that θ : G ↷ G̃ is an action of G
on G̃ such that

θg(b̃
−1π̃hb̃) = (b̃−1π̃θg(h)b̃)θg for all g ∈ G, h ∈ G̃. (4)

Then the semidirect product of ρ and ρ̃ via θ is defined as

ρ⋉θ ρ̃ :G⋉θ G̃→ Aff(A× Ã)

(g, h) 7→ (ρg, ρ̃h ◦ b̃ ◦ θg ◦ b̃−1).

Conclusion 2. The semidirect product ρ ⋉θ ρ̃ is an affine action of G ⋉θ G̃ on
A× Ã.

Proof. First notice that (4) guarantees that the mapping

(g, h) 7→ (πg, πhb̃ ◦ θg ◦ b̃−1)

is a group homomorphism from G⋉θ G̃ to Aut(A× Ã). The tedious verification
is left to the reader.

We now show the following identity:

θg(b̃
−1ρ̃hb̃) = (b̃−1ρ̃θg(h)b̃)θg for all g ∈ G and h ∈ G̃. (5)

In fact, one has

θg(h1h2) = θg(h1)θg(h2) for all g ∈ G, h1, h2 ∈ G̃

⇒ b̃(θg(h1h2)) = b̃(θg(h1)θg(h2))

⇒ b̃(θg(b̃
−1(b̃(h1)π̃h1(b̃(h2)))) = b̃(θg(h1))π̃θg(h1)(b̃θg(h2)) (as b̃ is a 1-cocycle)

⇒ b̃θg b̃
−1ρ̃h1(b̃(h2)) = ρ̃θg(h1)(b̃(θg(h2))) (by the definition of ρ̃)

⇒ θg(b̃
−1ρ̃h1 b̃) = (b̃−1ρ̃θg(h1)b̃)θg.

Set Γ := ρ⋉θ ρ̃. In order to show that Γ is an affine action, it suffices to check
that

Γ(g,h)(g′,h′) = Γ(g,h)Γ(g′,h′) for all g, g′ ∈ G, h, h′ ∈ G̃.

For this, let y ∈ G, and let t ∈ G̃. We have

Γ(g,h)(g′,h′)(y, t) = Γ(gg′,hθg(h′)(y, t)

=
(
ρgg′(y), ρ̃hθg(h′) b̃ θgg′ b̃

−1(t)
)

=
(
ρgg′(y), ρ̃hθg(h′) b̃ θgθg′ b̃

−1(t)
)

=
(
ρgg′(y), ρ̃hb̃b̃

−1ρ̃θg(h′) b̃ θgθg′ b̃
−1(t)

)
=

(
ρgg′(y), ρ̃hb̃θg b̃

−1ρ̃h′ b̃ θg′ b̃
−1(t)

)
, (by (5))

and

Γ(g,h)Γ(g′,h′)(y, t) = Γ(g,h)

(
ρg′(y), ρ̃h′ b̃θg′ b̃

−1(t)
)

=
(
ρgρg′(y), ρ̃hb̃θg b̃

−1(ρ̃h′ b̃θg′ b̃
−1(t))

)
.

We are done. □
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When θ is the trivial action, then the condition (4) is redundant and the cor-
responding affine action is just the direct product of ρ and ρ̃.

An application of the above semidirect product construction is given in the
appendix.

2.3. Constructing YBE solutions. Let us first recall the following result.

Theorem 2.7. [11] Let G be a group. Then following two groups of data are
equivalent:

(1) There is a pair of left-right actions (α, β) of the group G on G, which is
compatible (i.e., gh = αg(h)βh(g) for all g, h in G).

(2) There is a regular affine action ρ = (π, b) of G on some group A.

Proof. This is proved in [11]. Since the idea of the proof will be useful later, we
sketch it below.

(i)⇒(ii): Let A := G as sets but the multiplication ⊙ on A is given by

g ⊙ h = gαg−1(h) for all g, h ∈ G,

namely,

gh = g ⊙ αg(h) for all g, h ∈ G.

This implies that the identity mapping “id” is a (bijective) 1-cocycle with respect
to α.

(ii)⇒(i): Set

αg(h) := b−1 ◦ πg ◦ b(h) and βh(g) := αg(h)
−1gh

for all g, h ∈ G. □
Remark 2.8. (i) Let G and A be groups. Given a regular affine action ρ of G
on A, by Theorem 2.7 and [11, Corollary 3], one obtains a YBE solution on G
given by R(g, h) = (αg(h), βh(g)) for all g, h ∈ G.

(ii) Let R be a YBE solution on X, and let ρX be its associated regular affine
action of GX on AX (see Proposition 2.5). From (i) above, there is a YBE solution
R̄ on GX . From its construction, one can see that this is nothing but the universal
extension of R mentioned in [11, Theorem 9].

Remark 2.9. This remark shows that there is a natural generalization of the
relation βh(g) = α−1

αg(h)
(g) holding for symmetric YBE solutions (see Lemma 1.2).

Let us return to the proof of (i)⇒(ii) in Theorem 2.7. The property of b := id
being a 1-cocycle with respect to α gives

g ⊙ h = gαg−1(h) = gα−1
g (h) for all g, h ∈ G,

which implies

gh = g ⊙ αg(h) for all g, h ∈ G.

In particular,

ḡ = αg(g
−1) for all g ∈ G.

To distinguish, we write ḡ as the inverse of g in A, while g−1 as the inverse of g in G as
usual.
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If (α, β) is a compatible pair, then we claim

βh(g) = ααg(h)
−1 ◦ Adαg(h)

(g),

where Adαg(h)
acts on A.

Indeed, since (α, β) is a compatible pair, one has

g ⊙ h = gαg−1(h) = hβαg−1 (h)(g)

⇒ g ⊙ αg(h) = αg(h)βh(g)

⇒ βh(g) = αg(h)
−1(g ⊙ αg(h))

= αg(h)
−1 ⊙ ααg(h)−1

(
g ⊙ αg(h)

)
= ααg(h)−1

[
ααg(h)(αg(h)

−1)⊙ g ⊙ αg(h)
]
(as αg ∈ Aut(A))

= ααg(h)−1

[
αg(h)⊙ g ⊙ αg(h)

]
= ααg(h)

−1 ◦ Adαg(h)
(g).

This proves our claim.
In particular, if the YBE solution R on G determined by (α, β) is symmetric,

then A is abelian [11]. So in this case Adg (g ∈ A) is nothing but the identity
mapping on A.

Making use of Theorem 2.7, Remark 2.8, and the constructions of affine actions
in subsection 2.2, we get two constructions of YBE solutions on groups.

Lifting revisited. Let RX be a YBE solution. In the lifting construction on
affine actions, let G = GX , A = AX , and ρ be the affine action associated to RX .
Then (3) becomes

x · y = xσθ(x)(y) for all x, y ∈ H.

In this case, ρ̃x(y) = x ·y is a regular affine action, and so it yields a YBE solution
on (H, ·).

Semidirect product revisited. Let RX and RY be two YBE solutions. Let
G = GX , A = AX , G̃ = GY , and Ã = AY in the semidirect product construction
on affine actions. Suppose that θ is an action of GX on GY satisfying (4). In this
case,

ρX ⋉θ ρ
Y (g, h) = (ρXg , ρ

Y
h ◦ θg),

and ρX ⋉θ ρ
Y is also regular. It follows that ρX ⋉θ ρ

Y determines a YBE solution,
say R̄, on GX ⋉θ GY . Notice that if θ is the trivial action, then R̄ is nothing but
the trivial extension of RX and RY in the sense of [7] (also, see [15, 2.2 2◦]).

3. Classifying solutions of the Yang–Baxter equation via their
associated affine actions

In this section, we state and prove our main results in this paper. We classify all
injective YBE solutions in terms of their associated regular affine actions (Theo-
rem 3.3). Furthermore, a connection with C∗-dynamical systems is obtained: All
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injective YBE solutions can also be classified via their associated C∗-dynamical
systems (Theorem 3.6).

Let RX be a YBE solution. Denote by ιG and ιA the natural mappings from
X into GX and AX , respectively.

Definition 3.1. If ιG is injective, then RX is said to be injective.

It is known from [13] that ιG is injective if and only if so is ιA. Also, every
symmetric YBE solution is injective.

Let RX and RY be two YBE solutions. Recall that a mapping h : X → Y
is a YB-homomorphism between RX and RY , if RY (h × h) = (h × h)RX . This
amounts to saying that

αY
h(x)(h(y)) = h(αX

x (y)) and βY
h(x)(h(y)) = h(βX

x (y)) (6)

for all x, y ∈ X. In this case, we also say that RX is homomorphic to RY via h.
Of course, if h is bijective, then RX and RY are called isomorphic.

If RX and RY are symmetric, then only one of the two identities in (6) suffices.

Proposition 3.2. Let RX and RY be two arbitrary YBE solutions. If RX is
homomorphic to RY via h, then h induces group homomorphisms hG : GX → GY

and hA : AX → AY such that hA is GX-equivariant relative to (ρX , ρY ◦ hG).
If h is furthermore bijective, then ρX and ρY ◦ hG are conjugate.

Proof. For convenience of notation, let RX(x1, x2) = (αX
x1
(x2), β

X
x2
(x1)) for all

x1, x2 ∈ X, and let RY (y1, y2) = (αY
y1
(y2), β

Y
y2
(y1)) for all y1, y2 ∈ Y .

Notice that since h : X → Y is a YB-homomorphism between RX and RY , it
is easy to check that h can be extended to a group homomorphism, say hG, from
GX to GY . Indeed, it follows from (6) and the definition of GY that

h(αX
x (y))h(β

X
y (x)) = αY

h(x)(h(y))β
Y
h(y)(h(x)) = h(x)h(y)

for all x, y ∈ X. Obviously, ρY ◦ hG is an affine action of GX on AY .
Similarly, one can extend h to a group homomorphism, say hA, from AX to

AY . In fact, repeatedly using (6) yields

h(αX
x (y)) • h(αX

αX
x (y)(β

X
y (x)))

= αY
h(x)(h(y)) • αY

h(αX
x (y))(h(β

X
y (x)))

= αY
h(x)(h(y)) • αY

αY
h(x)

(h(y))(β
Y
h(y)(h(x)))

for all x, y ∈ X. But the definition of AY gives

h(x) • αY
h(x)(h(y)) = αY

h(x)(h(y)) • αY
αY
h(x)

(h(y))(β
Y
h(y)(h(x))),

and so

h(x) • h(αX
x (y)) = h(x) • αY

h(x)(h(y))

= h(αX
x (y)) • h(αX

αX
x (y)(β

X
y (x))) for all x, y ∈ X.
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In what follows, we show that hA is GX-equivariant relative to ρ
X and ρY ◦hG.

By Remark 2.4 it is equivalent to show

αY
hG(g)(hA(a)) = hA(α

X
g (a)) for all g ∈ GX , a ∈ AX , (7)

hA(b
X(g)) = bY (hG(g)) for all g ∈ GX . (8)

Applying (6) and Proposition 1.8, one has that

αY
hG(g)(hA(x)) = hA(α

X
g (x)) for all g ∈ GX , x ∈ X.

Now from this identity and Proposition 1.8, one can easily verify (7).
For (8), first notice that it is true when g ∈ X, as both sides are equal to h(g).

Then the general case follows from (7) and the definition of 1-cocycles.
The last assertion of the proposition is clear. □
The following theorem generalizes the case of symmetric YBE solutions (see,

e.g., [7]).

Theorem 3.3. Let RX and RY be two injective YBE solutions. Then they are
isomorphic, if and only if there is a group isomorphism ϕ : GX → GY such that
ϕ(X) = Y , and ρX and ρY ◦ ϕ are conjugate.

Proof. “Only if” part: Let h : X → Y be a YB-isomorphism between RX and
RY . Keep the same notation used in the proof of Proposition 3.2. Then ϕ := hG
has all desired properties, and furthermore ρX and ρY ◦ ϕ are conjugate via hA.

“If” part: As before, write ρX = (αX , bX) and ρY = (αY , bY ). Let h : AX → AY

be a GX-equivariant mapping relative to (ρX , ρY ◦ ϕ). Then by Remark 2.4 we
have

h ◦ αX
g = αY

ϕ(g) ◦ h, (9)

bY ◦ ϕ(g) = h ◦ bX(g) (10)

for all g ∈ GX .
On the other hand, it follows from the proof of Theorem 2.7 and Remark 2.8

that ρX and ρY induce YBE solutions R̄X and R̄Y on GX and GY , respectively.
Actually,

R̄X(g1, g2) = (α̃X
g1
(g2), β̃

X
g2
(g1)) for all g1, g2 ∈ GX ,

R̄Y (g
′
1, g

′
2) = (α̃Y

g′1
(g′2), β̃

Y
g′2
(g′1)) for all g′1, g

′
2 ∈ GY ,

where
α̃X
g1

:= (bX)−1αX
g1
bX , β̃X

g2
(g1) := α̃X

g1
(g2)

−1g1g2,

and similarly for α̃Y , β̃Y .
From (10) one has

ϕ = (bY )−1 ◦ h ◦ bX .

We claim that ϕ is actually a YB-isomorphism between R̄X and R̄Y . To this end,
we must show that the two identities in (6) hold true.
▶ Firstly, we check

ϕ ◦ α̃X
g = α̃Y

ϕ(g) ◦ ϕ for all g ∈ GX .
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But this follows from (9), the definitions of α̃X and α̃Y :

(9) ⇒ hbX((bX)−1αX
g b

X) = bY ((bY )−1αY
ϕ(g)b

Y )((bY )−1hbX)

⇒ [(bY )−1hbX ][(bX)−1αX
g b

X ] = [(bY )−1αY
ϕ(g)b

Y ][(bY )−1hbX ]

⇒ ϕ ◦ α̃X
g = α̃Y

ϕ(g) ◦ ϕ.

▶ Secondly, we verify that

ϕ ◦ β̃X
g = β̃Y

ϕ(g) ◦ ϕ for all g ∈ GX .

Since bX is a 1-cocycle with respect to αX in coefficient AX , one has that, for
all g1, g2 ∈ GX ,

bXg1g2 = bXg1 • α
X
g1
(bXg2)

⇒ g1(b
X)−1(αX

g−1
1
(bXg2)) = (bX)−1(bXg1 • b

X
g2
) = g1 ⊙ g2

⇒ g1α̃
X
g−1
1
(g2) = g1 ⊙ g2

⇒ g−1
1 α̃X

g1
(g2) = g−1

1 ⊙ g2

⇒ α̃X
g1
(g2)

−1 = (g−1
1 ⊙ g2)

−1g−1
1 . (11)

Similarly,

α̃Y
g′1
(g′2)

−1 = (g′−1
1 ⊙ g′2)

−1g′−1
1 for all g′1, g

′
2 ∈ GY . (11’)

Now define a new multiplication ⊙ on GX by

g1 ⊙ g2 = (bX)−1(bXg1 • b
X
g2
) for all g1, g2 ∈ GX ,

and similarly on GY . Then it is easy to check that (GX ,⊙) and (GY ,⊙) are
groups. In what follows, we claim that ϕ is also a group homomorphism from
(GX ,⊙) to (GY ,⊙). As a matter of fact, for all g1, g2 ∈ GX , one has

ϕ(g1 ⊙ g2) = ϕ ◦ (bX)−1(bXg1 • b
X
g2
)

= (bY )−1 ◦ h(bXg1 • b
X
g2
) (by (10))

= (bY )−1(h(bXg1) • h(b
X
g2
)) (as h : AX → AY is a homomorphism)

= (bY )−1(bYϕ(g1) • b
Y
ϕ(g2)

) (by (10))

= ϕ(g1)⊙ ϕ(g2) (by the definition of ⊙ in GY ).
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We now have

ϕ ◦ β̃X
g2
(g1)

= ϕ(α̃X
g1
(g2)

−1g1g2) (by the definition of β̃X)

= ϕ((g−1
1 ⊙ g2)

−1g−1
1 g1g2) (by (11))

= ϕ(g−1
1 ⊙ g2)

−1ϕ(g2) (as ϕ is a homomorphism from GX to GY )

= (ϕ(g−1
1 )⊙ ϕ(g2))

−1ϕ(g2) (by the above claim)

= (ϕ(g1)
−1 ⊙ ϕ(g2))

−1ϕ(g2) (as ϕ is a homomorphism from GX to GY )

= (ϕ(g1)
−1 ⊙ ϕ(g2))

−1

ϕ(g1)
−1ϕ(g1)ϕ(g2)

= α̃X
ϕ(g1)

(ϕ(g2))
−1ϕ(g1)ϕ(g2) (by (11’))

= β̃Y
ϕ(g2)

(ϕ(g1)) (by the definition of β̃Y )

for all g1, g2 ∈ GX .
Therefore, ϕ is a YB-isomorphism between R̄X and R̄Y .
Recall from Remark 2.8 that R̄X is an extension of RX from X to GX and

similarly for R̄Y . Since RX and RY are injective and ϕ(X) = Y , the restriction
ϕ|X yields a YB-isomorphism between RX and RY . □

We are now ready to provide a characterization when the extensions R̄X and
R̄Y are isomorphic.

Theorem 3.4. Let RX and RY be two arbitrary YBE solutions. Then the ex-
tensions R̄X and R̄Y on GX and GY are YB-isomorphic, if and only if there is a
group isomorphism ϕ : GX → GY such that ρX and ρY ◦ ϕ are conjugate.

Proof. (⇐): It directly follows from the proof of “If” part of Theorem 3.3.
(⇒): Let h : GX → GY be a YB-isomorphism between R̄X and R̄Y . Now

consider h|ιG(X). Then completely similar to the proof of Proposition 3.2, h|ιG(X)

can be extended to an isomorphism ϕ from GX to GY , such that ρX and ρY ◦ ϕ
are conjugate. □

In the rest of this section, we provide a connection with C∗-dynamical systems.
For any group G, by C∗(G) we mean the group C∗-algebra of G. Since all
groups here are assumed to be discrete, C∗(G) is unital. Furthermore, G can be
canonically embedded to C∗(G) as its unitary generators. For the background on
C∗-dynamical systems which is needed below, refer to [3].

Proposition 3.5.

(i) A YBE solution RX determines an action πX of GX on M2(C
∗(AX)) such

that

πX
g (diag(x, y)) = diag(γg(x), ζg(y)) for all g ∈ GX , x, y ∈ C∗(AX),

where γ and ζ are representations of GX on C∗(AX).
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(ii) If h is a YB-homomorphism between RX and RY , then there are group ho-
momorphisms hG : GX → GY and hA : AX → AY such that the inflation

h
(2)
A is GX-equivariant relative to (πX , πY ◦ hG).

Proof. (i) Let πX be defined as

πX
g

(
a1 a2
a3 a4

)
=

(
αX
g (a1) αX

g (a2)(b
X
g )

∗

bXg α
X
g (a3) bXg α

X
g (a4)(b

X
g )

∗

)
=

(
1 0
0 bXg

)
(αX

g )
(2)

(
a1 a2
a3 a4

)(
1 0
0 (bXg )

∗

)
for all g ∈ GX and a1, a2, a3, a4 ∈ AX . Then one can use the properties of α and b
to easily check that πX is an action of GX on the matrix C∗-algebraM2(C

∗(AX)).
Also γg(·) = αX

g (·) and ζg(·) = bXg α
X
g (·)(bXg )∗ are two representations of GX on

C∗(AX).
(ii) Since h is a YB-isomorphism between RX and RY , as in the proof of

Proposition 3.2, it induces group homomorphisms hG : GX → GY and hA :
AX → AY satisfying (7) and (8). Then we extend hA to a C∗-homomorphism,

still denoted by hA, from C∗(AX) to C∗(AY ). Furthermore, its inflation h
(2)
A :

M2(C
∗(AX)) →M2(C

∗(AY )) gives a GX-equivariant mapping relative to πX and
πY ◦ hG. In fact, a simple calculation gives

h
(2)
A ◦ πX

g

(
a1 a2
a3 a4

)
=

(
hA(α

X
g (a1)) hA(α

X
g (a2))hA((b

X
g )

∗)
hA(b

X
g )hA(α

X
g (a3)) hA(bg)hA(α

X
g (a4))hA((b

X
g )

∗)

)
and

πY
hG(g) ◦ h

(2)
A

(
a1 a2
a3 a4

)
=

(
αY
hG(g)(hA(a1)) αY

hG(g)(hA(a2))(b
Y
hG(g))

∗

bYhG(g)α
Y
hG(g)(hA(a3)) bYhG(g)αhG(g)(a4)(b

Y
hG(g))

∗

)
.

Then apply (7) and (8) to obtain the right hand sides equal. □

By Proposition 3.5, from the associated regular affine action ρX of a given YBE
solution RX , one obtains a C∗-dynamical system (GX ,M2(C

∗(AX)), π
X).

Theorem 3.6. Two injective YBE solutions RX and RY are isomorphic, if and
only if there is a group isomorphism ϕ : GX → GY mapping X onto Y such that
(GX ,M2(C

∗(AX)), π
X) and (GX ,M2(C

∗(AY )), π
Y ◦ ϕ) are conjugate.

Proof. (⇒): Keep the same notation as in the proof of Proposition 3.5. If h :
X → Y is a YB-isomorphism between RX and RY , then ϕ := hG, and π

X and

πY ◦ ϕ are equivalent via h
(2)
A .

(⇐): Let h : M2(C
∗(AX)) → M2(C

∗(AY )) be an intertwining homomorphism

between πX and πY ◦ϕ. Let us write h =

(
h11 h12
h21 h22

)
. Then h acts as a 2×2 matrix

multiplication of the applications of hij. Then h ◦ πX
g

(
a 0
0 0

)
= πY

ϕ(g) ◦ h
(
a 0
0 0

)
yields

h11α
X
g (a) = αY

ϕ(g)h11(a) for all a ∈ AX .
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Also h ◦ πX
g

(
0 I
0 0

)
= πY

ϕ(g) ◦ h
(
0 I
0 0

)
yields (h11(b

X
g ))

∗ = (bYϕ(g))
∗, which implies

h11(b
X
g ) = bYϕ(g).

The above two identities give (9) and (10). Then applying the proof of “If” part
of Theorem 3.3 ends the proof. □

Appendix A. A Commutation Relation for Semidirect Products

In this appendix, we prove a commutation relation for semidirect products
of YBE solutions derived from cycle sets, which might be useful in the future
studies. We further describe a connection between the structure group of the
semidirect product of two YBE solutions and the semidirect product of their
structure groups.

Definition A.1. A nonempty set X with a binary operation · is called a cycle
set, if

(x · y) · (x · z) = (y · x) · (y · z) for all x, y, z ∈ X.

A cycle set X is said to be nondegenerate if x 7→ x · x is bijective.

The main motivation to study cycle sets is the following theorem due to Rump
([12]): There is a one-to-one correspondence between the set of symmetric YBE
solutions and the set of nondegenerate cycle sets. In fact, let (X, ·) be a nonde-
generate cycle set. If we let ℓx(y) = x · y, then

R(x, y) =
(
ℓℓ−1

y (x)(y), ℓ
−1
y (x)

)
is a symmetric YBE solution on X. Conversely, given a symmetric YBE solution
R(x, y) = (αx(y), βy(x)) on X, let x · y = β−1

x (y). Then (X, ·) is a nondegenerate
cycle set.

The following small lemma turns out very handy.

Lemma A.2. Keep the above notation. Then

GRX
= gp ⟨X; (y · x)y = (x · y)x for all x, y ∈ X⟩ .

Proof. By Lemma 1.2, αx(y) = β−1
βy(x)

(y) for all x, y ∈ X. Hence

R(x, y) = (β−1
βy(x)

(y), βy(x)) ⇔ R(β−1
y (x), y) = (β−1

x (y), x)

⇔ R(y · x, y) = (x · y, x)
for all x, y ∈ X. □

Let us now recall Rump’s semidirect product of cycle sets below.

Definition A.3. Let X and S be two finite cycle sets, and let π be an action of
X on S. That is, π : X × S → S, (x, s) 7→ πx(s), satisfies

(1) πx(s · t) = πx(s) · πx(t) for every x ∈ X and for all s, t ∈ S;
(2) πy·xπy(s) = πx·yπx(s) for all x, y ∈ X and s ∈ S;
(3) πx ∈ Sym(S) for every x ∈ X.
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Set

γx,y(s, t) = πx·y(s) · πy·x(t).
Now define

(x, s) · (y, t) := (x · y, γx,y(s, t)). (12)

Then this gives a cycle structure on X×S, which is denoted by X⋉πS, called the
semidirect product of X and S by π. The symmetric YBE solution determined
by X ⋉π S is written as RX⋉πS.

Remark A.4. Notice that for Definition A.3 (i) one has

πx(s · t) = πx(s) · πx(t) ⇔ πx(β
−1
s (t)) = β−1

πx(s)
(πx(t))

⇔ βπx(s)(πx(t)) = πx(βs(t))

⇔ πx(αs(t)) = απx(s)(πx(t))

for all s, t ∈ S and x ∈ X. In particular, this shows that, for every x ∈ X, πx is
a YB-isomorphism between RS and itself.

In what follows, let us write

RX(x, y) = (αx(y), βy(x)) and RS(s, t) = (α̃s(t), β̃t(s)).

Corollary A.5. Let X and S be cycles sets, and let π be an action of X on S.
Then the YBE solution RX⋉πS is explicitly given by the following formula

RX⋉πS

(
(x, s), (y, t)

)
=

((
αx(y), α̃s(πx(t))

)
,
(
βy(x), π

−1
αx(y)

(β̃πx(t)(s))
))

for all x, y ∈ X and s, t ∈ S.

Proof. First observe that

x · y = β−1
x (y) ⇒ x · βx(y) = y ⇒ y · βy(x) = x

and
x · y = β−1

x (y) ⇒ βy(x) · y = β−1
βy(x)

(y) = αx(y).

The above identities will be frequently used in what follows.
Suppose that

RX⋉πS((x, s), (y, t)) =
(
α′
(x,s)(y, t), β

′
(y,t)(x, s)

)
for all x, y ∈ X, s, t ∈ S.

Let β′
(y,t)(x, s) = (z, p). Then

(x, s) = ℓ(y,t)(z, p) = (y, t) · (z, p) = (y · z, πy·z(t) · πz·y(p)).
So z = βy(x) and

s = πy·z(t) · πz·y(p) ⇒ πz·y(p) = β̃πy·z(t)(s) ⇒ p = π−1
z·y(β̃πy·z(t)(s))

⇒ p = π−1
βy(x)·y(β̃πy·βy(x)(t)(s)) ⇒ p = π−1

αx(y)
(β̃πx(t)(s)).

Thus
β′
(y,t)(x, s) =

(
βy(x), π

−1
αx(y)

(β̃πx(t)(s))
)
.

Now
α′
(x,s)(y, t) = β′−1

β′
(y,t)

(x,s)(y, t) =: (u, v).
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Then

(u, v) =
(
βy(x), π

−1
αx(y)

(β̃πx(t)(s))
)
· (y, t)

=
(
βy(x) · y, πβy(x)·y(π

−1
αx(y)

(β̃πx(t)(s)) · πy·βy(x)(t))
)

=
(
βy(x) · y, παx(y)(π

−1
αx(y)

(β̃πx(t)(s)) · πx(t))
)

=
(
βy(x) · y, β̃πx(t)(s) · πx(t)

)
=

(
βy(x) · y, α̃s(πx(t))

)
.

Therefore

α′
(x,s)(y, t) =

(
βy(x) · y, α̃s(πx(t))

)
.

This ends the proof. □
Lemma A.6. Let X and S be cycle sets, and let π be an action of X on S. Then
π can be extended to an action of GRX

on GRS
.

Proof. Notice that, in Definition A.3, (i) says that πx is a cycle morphism on
S for every x ∈ X, and (ii) says that πy·xπy = πx·yπx for all x, y ∈ X. Thus
Lemma A.2 and the latter imply that the action π can be extended to an action
π : GRX

↷ S.
Applying Lemma A.2 to GRS

, one has

(s · t)s = (t · s)t for all s, t ∈ S.

Since πx(s), πx(t) ∈ S by Definition A.3 (iii), replacing s and t by πx(s) and πx(t),
respectively, in the identity obtained above gives

(πx(s) · πx(t))πx(s) = (πx(t) · πx(s))πx(t) for all x ∈ X, s, t ∈ S.

This implies

πx(s · t)πx(s) = πx(t · s)πx(t) for all x ∈ X, s, t ∈ S

as πx is a cycle morphism on S. Therefore, by Lemma A.2, π can be extended to
an action π : GRX

↷ GRS
. □

Under the conditions of Lemma A.6, one can form the semidirect product
GRX

⋉π GRS
, where

π : GRX
×GRS

→ GRS
, (x, s) 7→ πx(s).

It is also worth mentioning that the identity (4) automatically holds true for the
action π of GRX

on GRS
obtained in Lemma A.6. In fact, let θ = π, and so it

suffices to show that πx(b̃
−1αsb̃) = (b̃−1απx(s)b̃)πx for all x ∈ X and s ∈ S. But

the restrictions b and b̃, respectively, onto X and S are the identity mappings.
Thus this amounts to πx(αs(t)) = απx(s)(πx(t)). But this holds true by Remark
A.4.

Therefore, one obtains a regular affine action ρX ⋉π ρ
S of GRX

⋉π GRS
on

ARX
× ARS

(see subsection 2.2), and so a YBE solution R̂ on GRX
⋉π GRS

. (see

subsection 2.3). It is natural to write R̂|(X×S)2 as RX ⋉πRS, called the semidirect
product of RX and RS by π. Then we obtain the following commutation relation:
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Proposition A.7 (Commutation Relation for SemiDirect Products). Let
X and S be cycle sets, and let π be an action of X on S. Then

RX ⋉π RS = RX⋉πS.

Proof. Assume that

R̂((x, s), (y, t)) =
(
α̂(x,s)(y, t), β̂(y,t)(x, s)

)
for all x, y ∈ X, s, t ∈ S.

It follows from subsection 2.2 2◦ that

α̂(x,s)(y, t) = (αx(y), α̃s(πx(t))).

Then an easy calculation yields

β̂(y,t)((x, s)) = α̂(x,s)(y, t)
−1(xy, sπx(t))

= (αx(y)
−1xy, παx(y)−1(α̃s(πx(t))

−1sπx(t)))

= (βy(x), π
−1
αx(y)

(β̃πx(t)(s))).

Therefore comparing the formula of RX⋉πS given in Corollary A.5 yields the
desired commutation relation. □

For the structure groups GRX
, GRS

and GRX⋉πRS
, we have the following.

Proposition A.8. Keep the above notation. Then there is a group homomor-
phism

Π : GRX⋉πRS
→ GRX

⋉π GRS
.

Proof. By Proposition A.7, GRX⋉πRS
= GRX⋉πS

. Applying Lemma A.2 toGRX⋉πS
,

we have the following relations

((x, s) · (y, t))(x, s) = ((y, t) · (x, s))(y, t) for all x, y ∈ X, s, t ∈ S.

From (12), this is equivalent to

(x · y, γx,y(s, t))(x, s) = (y · x, γy,x(t, s))(y, t).
Let Π : X ⋉π S → GRX

⋉π GRS
be defined via

Π(x, s) = (x, s) for all x ∈ X, s ∈ S.

Simple calculations show that

Π(x · y, γx,y(s, t))Π(x, s) =
(
x · y, πx·y(s) · πy·x(t)

)
(x, s)

=
(
(x · y)x, (πx·y(s) · πy·x(t))πx·y(s)

)
and

Π(y · x, γy,x(t, s))Π(y, t) = (y · x, πy·x(t) · πx·y(s))(y, t)
=

(
(y · x)y, (πy·x(t) · πx·y(s))πy·x(t)

)
.

Therefore, by Lemma A.2, Π can be extended a group homomorphism, still
denoted by Π, from GRX⋉πRS

to GRX
⋉π GRS

. □
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