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Abstract. The present work continues the study of the stability of the func-
tional equations of the type f(pr, qs) + f(ps, qr) = f(p, q) f(r, s) namely (i)
f(pr, qs)+f(ps, qr) = g(p, q) g(r, s), and (ii) f(pr, qs)+f(ps, qr) = g(p, q)h(r, s)
for all p, q, r, s ∈ G, where G is an abelian group. These functional equations
arise in the characterization of symmetrically compositive sumform distance
measures.

1. Introduction

Let G be an abelian group. Let I denote the open unit interval (0, 1). Let R
and C denote the set of real and complex numbers, respectively. Further, let

Γon =

{
P = (p1, p2, ..., pn)

∣∣ 0 < pk < 1,
n∑
k=1

pk = 1

}
denote the set of all n-ary discrete complete probability distributions (without
zero probabilities), that is Γon is the class of discrete distributions on a finite set
Ω of cardinality n with n ≥ 2. Over the years, many distance measures between
discrete probability distributions have been proposed. Hellinger coeeficient, Jef-
freys distance, Chernoff coefficient, directed divergence, and its symmetrization
J-divergence are examples of such measures (see [1] and [8]).

Almost all similarity, affinity or distance measures µn : Γon×Γon → R+ that have
been proposed between two discrete probability distributions can be represented
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in the sum form

µn(P,Q) =
n∑
k=1

φ(pk, qk), (1.1)

where φ : I × I → R is a real-valued function on unit square, or a monotonic
transformation of the right side of (1.1), that is

µn(P,Q) = ψ

(
n∑
k=1

φ(pk, qk)

)
,

where ψ : R → R+ is an increasing function on R. The function φ is called a
generating function. It is also referred to as the kernel of µn(P,Q).

In information theory, for P and Q in Γon, the symmetric divergence of degree
α is defined as

Jn,α(P,Q) =
1

2α−1 − 1

[
n∑
k=1

(
pαkq

1−α
k + p1−αk qαk

)
− 2

]
.

It is easy to see that Jn,α(P,Q) is symmetric. That is Jn,α(P,Q) = Jn,α(Q,P ) for
all P,Q ∈ Γon. Moreover it satisfies the composition law

Jnm,α(P ∗R,Q ∗ S) + Jnm,α(P ∗ S,Q ∗R)

= 2Jn,α(P,Q) + 2Jm,α(R, S) + λ Jn,α(P,Q) Jm,α(R, S)

for all P,Q ∈ Γon and R, S ∈ Γom where λ = 2α−1 − 1 and

P ∗R = (p1r1, p1r2, ..., p1rm, p2r1, ..., p2rm, ..., pnrm).

In view of this, symmetrically compositive statistical distance measures are de-
fined as follows. A sequence of symmetric measures {µn} is said to be symmetri-
cally compositive if for some λ ∈ R,

µnm(P ? R, Q ? S) + µnm(P ? S, Q ? R)

= 2µn(P, Q) + 2µm(R, S) + λµn(P, Q)µm(R, S)

for all P,Q ∈ Γon, S,R ∈ Γom, where

P ∗R = (p1r1, p1r2, ..., p1rm, p2r1, ..., p2rm, ..., pnrm).

Chung, Kannappan, Ng and Sahoo [1] characterized symmetrically compositive
sumform distance measures with a measurable generating function. The following
functional equation

f(pr, qs) + f(ps, qr) = f(p, q) f(r, s) (FE)

holding for all p, q, r, s ∈ I was instrumental in the characterization of symmetri-
cally compositive sumform distance measures. They proved the following theorem
giving the general solution of this functional equation (FE).

Theorem 1.1. Suppose f : I2 → R satisfies the functional equation (FE), that
is

f(pr, qs) + f(ps, qr) = f(p, q) f(r, s)
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for all p, q, r, s ∈ I. Then

f(p, q) = M1(p)M2(q) +M1(q)M2(p)

where M1,M2 : R → C are multiplicative functions. Further, either M1 and M2

are both real or M2 is the complex conjugate of M1. The converse is also true.

The stability of the functional equation (FE) and two generalizations of (FE)
namely,

f(pr, qs) + f(ps, qr) = f(p, q)g(r, s) (FEfg)

f(pr, qs) + f(ps, qr) = g(p, q)f(r, s) (FEgf )

for all p, q, r, s ∈ G, were studied in [5]. In this paper, we study the stability of
two more generalizations of (FE), namely

f(pr, qs) + f(ps, qr) = g(p, q)g(r, s) (FEgg)

f(pr, qs) + f(ps, qr) = g(p, q)h(r, s) (FEgh)

for all p, q, r, s ∈ G. For other functional equations similar to (FE), the interested
reader should refer to [3], [4], [6] and [7]. For an account on stability of functional
equations, the book [2] is an excellent source for reference.

2. Stability of functional equation (FEgg)

The following theorem states that an approximate equation of (FEgg) with the
boundedness of f(p, q) − g(p, q) and f(p, q) − f(q, p) also implies the functional
equation (FEgg).

Theorem 2.1. Let f, g : G2 → R and φ : G2 → R be a nonzero function
satisfying

|f(pr, qs) + f(ps, qr)− g(p, q)g(r, s)| ≤ φ(p, q) ∀ p, q, r, s ∈ G (2.1)

and |f(p, q) − g(p, q)| ≤ M, and |f(p, q) − f(q, p)| ≤ M ′ for all p, q ∈ G and
some constants M,M ′. Then either g is bounded or g satisfy the equation (FE),
that is

g(pr, qs) + g(ps, qr) = g(p, q)g(r, s).

Proof. Let g be an unbounded solution of the inequality (2.1). Then we can
choose a sequence {(xn, yn) |n ∈ N} in G2 such that 0 6= |g(xn, yn)| → ∞ as
n→∞.

Letting r = xn and s = yn in (2.1), we have

|f(pxn, qyn) + f(pyn, qxn)− g(p, q)g(xn, yn)| ≤ φ(p, q)

which is ∣∣∣∣f(pxn, qyn) + f(pyn, qxn)

g(xn, yn)
− g(p, q)

∣∣∣∣ ≤ φ(p, q)

|g(xn, yn)|
. (2.2)

Taking the limit of the both sides of (2.2) as n→∞, we obtain

g(p, q) = lim
n→∞

f(pxn, qyn) + f(pyn, qxn)

g(xn, yn)
. (2.3)



STABILITY OF A FUNCTIONAL EQUATION 29

Next, letting r = rxn and s = syn in (2.1), we have

|f(prxn, qsyn) + f(psyn, qrxn)− g(p, q)g(rxn, syn)| ≤ φ(p, q)

which is∣∣∣∣f(prxn, qsyn) + f(psyn, qrxn)

g(xn, yn)
− g(p, q)

g(rxn, syn)

g(xn, yn)

∣∣∣∣ ≤ φ(p, q)

|g(xn, yn)|
. (2.4)

Further, letting r = sxn and s = ryn in (2.1), we have

|f(psxn, qryn) + f(pryn, qsxn)− g(p, q)g(sxn, ryn)| ≤ φ(p, q)

which is∣∣∣∣f(psyn, qryn) + f(pryn, qsxn)

g(xn, yn)
− g(p, q)

g(sxn, ryn)

g(xn, yn)

∣∣∣∣ ≤ φ(p, q)

|g(xn, yn)|
. (2.5)

Thus from (2.3), (2.4), (2.5), boundedness by M,M ′, and 0 6= |g(xn, yn)| → ∞,
we obtain

g(pr, qs) + g(ps, qr)

= lim
n→∞

f(prxn, qsyn) + f(pryn, qsxn)

g(xn, yn)
+ lim

n→∞

f(psxn, qryn) + f(psyn, qrxn)

g(xn, yn)

= lim
n→∞

(
f(prxn, qsyn) + f(psyn, qrxn)

g(xn, yn)
+
f(psxn, qryn) + f(pryn, qsxn)

g(xn, yn)

)
= g(p, q) lim

n→∞

g(rxn, syn) + g(sxn, ryn)

g(xn, yn)

= g(p, q)
[
g(r, s) + lim

n→∞

g(rxn, syn)− f(rxn, syn)

g(xn, yn)

+ lim
n→∞

g(sxn, ryn)− f(sxn, ryn)

g(xn, yn)
+ lim

n→∞

f(sxn, ryn)− f(ryn, sxn)

g(xn, yn)

]
= g(p, q)g(r, s) + g(p, q)

[
lim
n→∞

g(rxn, syn)− f(rxn, syn)

g(xn, yn)

+ lim
n→∞

g(sxn, ryn)− f(sxn, ryn)

g(xn, yn)
+ lim

n→∞

f(sxn, ryn)− f(ryn, sxn)

g(xn, yn)

]
= g(p, q)g(r, s).

The proof of the theorem is now complete. �

Theorem 2.2. Let f, g : G2 → R and φ : G2 → R be a nonzero function
satisfying

|f(pr, qs) + f(ps, qr)− g(p, q)g(r, s)| ≤ φ(r, s) ∀ p, q, r, s ∈ G. (2.6)

Then g is bounded or g satisfies the equation (FE) for all p, q, r, s ∈ G if and
only if |f(p, q)− g(p, q)| ≤M for all p, q ∈ G and some nonnegative constant M .

Proof. Suppose g is unbounded. We would like to show that g satisfies (FE) for
all p, q, r, s ∈ G if and only if |f(p, q)− g(p, q)| ≤M for all p, q ∈ R and for some
M ≥ 0.
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Since g is unbounded, because of (2.6), f must be unbounded. Now we prove
that the if part of the proof. Suppose g satisfies (FE) for all p, q, r, s ∈ G. Letting
p = q = r = s = 1 in (FE), we see that that g(1, 1) = 0 or g(1, 1) = 2. We claim
that g(1, 1) = 2. Suppose not. Then g(1, 1) = 0. Taking r = s = 1 in (2.6), we
obtain

|2 f(p, q)| = |2 f(p, q)− g(p, q) g(1, 1)| ≤ φ(1, 1),

that is f is bounded contrary to the fact that f is unbounded. Hence g(1, 1) = 2
and therefore

|2f(p, q)− g(p, q) g(1, 1)| ≤ φ(1, 1)

which implies

|f(p, q)− g(p, q)| ≤ φ(1, 1)

2
= M.

Next, let us prove the only if part. Since g is the unbounded solution of the
inequality (2.6), therefore, there exists a sequence {(xn, yn) |n ∈ N} in R2 such
that 0 6= |g(xn, yn) | → ∞ as n→∞.

Letting p = xn and q = yn in (2.6), we have

|f(xnr, yns) + f(xns, ynr)− g(xn, yn)g(r, s)| ≤ φ(r, s).

Taking the limit as n→∞, we obtain that

g(r, s) = lim
n→∞

f(xnr, yns) + f(xns, ynr)

g(xn, yn)
(2.7)

Letting p = xnp and q = ynq in (2.6), we have

|f(xnpr, ynqs) + f(xnps, ynqr)− g(xnp, ynq)g(r, s)| ≤ φ(r, s)

which is∣∣∣∣f(xnpr, ynqs) + f(xnps, ynqr)

g(xn, yn)
− g(xnp, ynq)

g(xn, yn)
g(r, s)

∣∣∣∣ ≤ φ(r, s)

|g(xn, yn)|
. (2.8)

Letting p = xnq and q = ynp in (2.6), dividing g(xn, yn), passing to the limit as
n→∞, we have∣∣∣∣f(xnqr, ynps) + f(xnqs, ynpr)

g(xn, yn)
− g(r, s)

g(xnq, ynp)

g(xn, yn)

∣∣∣∣ ≤ φ(r, s)

|g(xn, yn)|
. (2.9)
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Thus from (2.7), (2.8), (2.9), boundedness by M , and 0 6= |g(xn, yn)| → ∞, we
obtain

g(pr, qs) + g(ps, qr)

= lim
n→∞

f(xnpr, ynqs) + f(xnqs, ynpr)

g(xn, yn)
+ lim

n→∞

f(xnps, ynqr) + f(xnqr, ynps)

g(xn, yn)

= lim
n→∞

(
f(xnpr, ynqs) + f(xnps, ynqr)

g(xn, yn)
+
f(xnqs, ynpr) + f(xnqr, ynps)

g(xn, yn)

)
= lim

n→∞

g(xnp, ynq) + g(xnq, ynp)

g(xn, yn)
g(r, s)

=
[
g(p, q) + lim

n→∞

g(xnp, ynq)− f(xnp, ynq) + g(xnq, ynp)− f(xnq, ynp)

g(xn, yn)

]
g(r, s)

= g(p, q) g(r, s)

+
[

lim
n→∞

g(xnp, ynq)− f(xnp, ynq) + g(xnq, ynp)− f(xnq, ynp)

g(xn, yn)

]
g(r, s)

= g(p, q) g(r, s).

This completes the proof of the theorem. �

The following corollary follows from the Theorem 2.2.

Corollary 2.3. Let f, g : G2 → R be functions satisfying

|f(pr, qs) + f(ps, qr)− g(p, q)g(r, s)| ≤ ε ∀ p, q, r, s ∈ G
for some ε ≥ 0. Then the function g is bounded or it satisfies the equation (FE)
for all p, q, r, s ∈ G if and only if |f(p, q)−g(p, q)| ≤M for all p, q ∈ G and some
nonnegative constant M .

3. Stability of functional equation (FEgh)

Theorem 3.1. Let f, g, h : G2 → R and φ : G2 → R be a nonzero function
satisfying

|f(pr, qs) + f(ps, qr)− g(p, q)h(r, s)| ≤ φ(r, s) (3.1)

for all p, q, r, s ∈ G. If |f(p, q)− g(p, q)| ≤M for all p, q ∈ G and some constant
M , then g is bounded or h satisfies (FE) for all p, q, r, s ∈ G.

Proof. Let g be unbounded. Then we can choose a sequence {(xn, yn) |n ∈ N} in
R2 such that 0 6= |g(xn, yn)| → ∞ as n→∞.

Letting p = xn and q = yn in (3.1), we have

|f(xnr, yns) + f(xns, ynr)− g(xn, yn)h(r, s)| ≤ φ(r, s),

which is ∣∣∣∣f(xnr, yns) + f(xns, ynr)

g(xn, yn)
− h(r, s)

∣∣∣∣ ≤ φ(r, s)

|g(xn, yn)|
.

Taking the limit as n→∞, we obtain

h(r, s) = lim
n→∞

f(xnr, yns) + f(xns, ynr)

g(xn, yn)
(3.2)
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Letting p = xnp and q = ynq in (3.1), we have

f(xnpr, ynqs) + f(xnps, ynqr)− g(xnp, ynq)h(r, s)| ≤ φ(r, s),

which is∣∣∣∣f(xnpr, ynqs) + f(xnps, ynqr)

g(xn, yn)
− g(xnp, ynq)

g(xn, yn)
h(r, s)

∣∣∣∣ ≤ φ(r, s)

|g(xn, yn)|
. (3.3)

Letting p = xnq and q = ynp in (3.1) and proceeding as above, we have

|f(xnqr, ynps) + f(xnqs, ynpr)− g(xnq, ynp)h(r, s)| ≤ φ(r, s). (3.4)

From the last inequality (3.4), we obtain∣∣∣∣f(xnqr, ynps) + f(xnqs, ynpr)

g(xn, yn)
− g(xnq, ynp)

g(xn, yn)
h(r, s)

∣∣∣∣ ≤ φ(r, s)

|g(xn, yn)|
. (3.5)

Using (3.2), (3.3), and (3.5), we obtain

h(pr, qs) + h(ps, qr)

= lim
n→∞

f(xnpr, ynqs) + f(xnqs, ynpr)

g(xn, yn)
+ lim

n→∞

f(xnps, ynqr) + f(xnqr, ynps)

g(xn, yn)

= lim
n→∞

g(xnp, ynq) + g(xnq, ynp)

g(xn, yn)
h(r, s)

= lim
n→∞

[g(xnp, ynq)− f(xnp, ynq) + g(xnq, ynp)− f(xnq, ynp)

g(xn, yn)
+ h(p, q)

]
h(r, s)

= h(p, q)h(r, s).

This completes the proof. �

Theorem 3.2. Let f, g, h : G2 → R and φ : G2 → R+ be functions satisfying

|f(pr, qs) + f(ps, qr)− g(p, q)h(r, s)| ≤ φ(p, q)

for all p, q, r, s ∈ G. If |f(p, q)− h(p, q)| ≤M for all p, q ∈ G and some constant
M then h is bounded or g satisfies (FE) for all p, q, r, s ∈ G.

Proof. Let h be unbounded. Then we can choose a sequence {(xn, yn) |n ∈ N} in
G2 such that 0 6= |h(xn, yn)| → ∞ as n→∞.

Proceeding as similar to the derivation of (3.2), we obtain

g(p, q) = lim
n→∞

f(prn, qsn) + f(psn, qrn)

h(xn, yn)
.

The rest of the proof runs similar to the Theorem 3.1 and we see that g satisfies
(FE) for all p, q, r, s ∈ G. �

Corollary 3.3. Let f, g, h : G2 → R be functions satisfying

|f(pr, qs) + f(ps, qr)− g(p, q)h(r, s)| ≤ ε

for all p, q, r, s ∈ G and for some ε ≥ 0.
(a) If |f(p, q) − g(p, q)| ≤ M for all p, q ∈ G and some constant M then g is
bounded or h satisfies (FE) for all p, q, r, s ∈ G.
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(b) If |f(p, q) − h(p, q)| ≤ M for all p, q ∈ G and some constant M then h is
bounded or g satisfies (FE) for all p, q, r, s ∈ G.

Remark 3.4. (i) Choosing g and h appropriately in Theorem 3.1 one can obtain
the stability for the functional equations (FEfg), (FEgf ) and (FE). For example,
by letting first g to be f and then h to be g, the stability of (FEfg) can be obtained
which was studied in [5].

(ii) Theorems 2.1 and 3.1 hold if one replaces the domain of the functions
f, g, h, φ by S2, where S is an abelian semigroup.

4. Extension of the results to Banach spaces

In this section, let (E, ‖ · ‖) be a semisimple commutative Banach space. All
results in the Section 2 and the Section 3 can be extended to the superstability on
the Banach space. For simplicity, we will combine the two theorems of the same
functional equation in Section 2 and Section 3 into the one theorem, respectively.

Theorem 4.1. Let f, g, h : G2 → E and φ : G2 → R be functions satisfying

‖f(pr, qs) + f(ps, qr)− g(p, q)h(r, s)‖ ≤
{

(i) φ(r, s)
(ii) φ(p, q)

(4.1)

for all p, q, r, s ∈ G. For an arbitrary linear multiplicative functional x∗ ∈ E∗:
(a) If ‖f(p, q) − g(p, q)‖ ≤ M for all p, q ∈ G and some constant M then the
superposition x∗ ◦g is bounded or h satisfies (FE) for all p, q, r, s ∈ G in the case
(i) of (4.1).
(b) If ‖f(p, q) − h(p, q)‖ ≤ M for all p, q ∈ G and some constant M then the
superposition x∗ ◦h is bounded or g satisfies (FE) for all p, q, r, s ∈ G in the case
(ii) of (4.1).

Proof. First we show (a). Assume that (i) of (4.1) holds, and fix arbitrarily a
linear multiplicative functional x∗ ∈ E∗. As well known we have ‖x∗‖ = 1 hence,
for every x, y ∈ G, we have

φ(r, s) ≥ ‖f(pr, qs) + f(ps, qr)− g(p, q)h(r, s)‖
= sup
‖y∗‖=1

∣∣y∗(f(pr, qs) + f(ps, qr)− g(p, q)h(r, s)
)∣∣

≥
∣∣x∗(f(pr, qs)

)
− x∗

(
f(ps, qr)

)
− x∗

(
g(p, q)

)
x∗
(
h(r, s)

)∣∣,
which states that the superpositions x∗ ◦ f , x∗ ◦ g and x∗ ◦ h yield solutions of
inequality (3.1). Since, by assumption, the superposition x∗ ◦ g is unbounded, an
appeal to Theorem 3.1 shows that the function x∗◦h solves the equation (FE). In
other words, bearing the linear multiplicativity of x∗ in mind, for all p, q, r, s ∈ G,
the difference

DFE := h(pr, qs) + h(ps, qr)− h(p, q)h(r, s)

falls into the kernel of x∗. Therefore, in view of the unrestricted choice of x∗, we
infer that

DFE(p, q, r, s) ∈
⋂{

kerx∗ | x∗ is a multiplicative member of E∗
}
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for all p, q, r, s ∈ G. Since the algebra E has been assumed to be semisimple, the
last term of the above formula coincides with the singleton {0}, i.e.

h(pr, qs) + h(ps, qr)− h(p, q)h(r, s) = 0 for all p, q, r, s ∈ G,

as claimed. The other case (b) is similar, so its proof will be omitted. This
completes the proof. �

Corollary 4.2. Let f, g, h : G2 → E and φ : G2 → R be functions satisfying

‖f(pr, qs) + f(ps, qr)− g(p, q)h(r, s)‖ ≤ ε

for all p, q, r, s ∈ G. For an arbitrary linear multiplicative functional x∗ ∈ E∗:
(a) If ‖f(p, q) − g(p, q)‖ ≤ M for all p, q ∈ G and some constant M then the
superposition x∗ ◦ g is bounded or h satisfies (FE) for all p, q, r, s ∈ G.
(b) If ‖f(p, q) − h(p, q)‖ ≤ M for all p, q ∈ G and some constant M then the
superposition x∗ ◦ h is bounded or g satisfies (FE) for all p, q, r, s ∈ G.

The proof of the following theorem follows similar to the proof of Theorem 4.1.

Theorem 4.3. Let f, g, h : G2 → E and φ : G2 → R be functions satisfying

‖f(pr, qs) + f(ps, qr)− g(p, q)g(r, s)‖ ≤
{

(i) φ(r, s)
(ii) φ(p, q)

for all p, q, r, s ∈ G. For an arbitrary linear multiplicative functional x∗ ∈ E∗:
(a) In case (i), the superposition x∗◦g is bounded or g satisfies the equation (FE)
for all p, q, r, s ∈ G if and only if ‖f(p, q) − g(p, q)‖ ≤ M for all p, q ∈ G and
some nonnegative constant M .
(b) In case (ii), if ‖f(p, q) − g(p, q)‖ ≤ M and ‖f(p, q) − f(q, p)‖ ≤ M ′ for all
p, q ∈ G and for some nonnegative constants M, M ′, then either the superposition
x∗ ◦ g is bounded or g satisfy the equation (FE).

Corollary 4.4. Let f, g, h : G2 → E be a function satisfying

‖f(pr, qs) + f(ps, qr)− g(p, q)g(r, s)‖ ≤ ε

for all p, q, r, s ∈ G. For an arbitrary linear multiplicative functional x∗ ∈ E∗, the
superposition x∗◦g is bounded or g satisfies the equation (FE) for all p, q, r, s ∈ G
if and only if ‖f(p, q) − g(p, q)‖ ≤ M for all p, q ∈ G and some nonnegative
constant M .
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