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Abstract. An operator T ∈ B(H) is called quasi-class (A, k) if T ∗k(|T 2| −
|T |2)T k ≥ 0 for a positive integer k, which is a common generalization of class
A. The famous Fuglede–Putnam’s theorem is as follows: the operator equation
AX = XB implies A∗X = XB∗ when A and B are normal operators. In
this paper, firstly we show that if X is a Hilbert-Schmidt operator, A is a
quasi-class (A, k) operator and B∗ is an invertible class A operator such that
AX = XB, then A∗X = XB∗. Secondly we consider the Putnam’s inequality
for quasi-class (A, k) operators and we also show that quasisimilar quasi-class
(A, k) operators have equal spectrum and essential spectrum.

1. Introduction

Throughout this paper let H be a separable complex Hilbert space with inner
product 〈·, ·〉. Let B(H) denote the C∗-algebra of all bounded linear operators
on H. The spectrum, essential spectrum and numerical range of an operator
T ∈ B(H) are denoted by σ(T ), σe(T ) and W (T ).

Here an operator T ∈ B(H) is called p-hyponormal for 0 < p ≤ 1 if (T ∗T )p −
(TT ∗)p ≥ 0, and log-hyponormal if T is invertible and log T ∗T ≥ log TT ∗. And an
operator T is called paranormal if ‖ Tx ‖2≤‖ T 2x ‖‖ x ‖ for all x ∈ H. By the cel-

ebrated L
··
owner-Heinz theorem ”A ≥ B ≥ 0 ensures Aα ≥ Bα for any α ∈ [0, 1]”,

every p-hyponormal operator is q-hyponormal for p ≥ q ≥ 0. And every invert-
ible p-hyponormal operator is log-hyponormal since logt is an operator monotone
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function. We remark that (Ap − I)/p →logA as p → +0 for positive invertible
operator A > 0, so that p-hyponormality of T approaches log-hyponormality of
T as p→ +0. In this sense, log-hyponormal can be considered as 0−hyponormal.
p-hyponormal, log-hyponormal and paranormal operators were introduced by A.
Aluthge [1], K. Tanahashi [28] and T. Furuta [8, 9] respectively.

In order to discuss the relations between paranormal and p-hyponormal and
log-hyponormal operators, T. Furuta, M. Ito and T. Yamazaki [11] introduced a
very interesting class of bounded linear Hilbert space operators: class A defined
by |T 2|−|T |2 ≥ 0, where |T | = (T ∗T )

1
2 which is called the absolute value of T and

they showed that class A is a subclass of paranormal and contains p-hyponormal
and log-hyponormal operators. Class A operators have been studied by many
researchers, for example [5, 6, 14, 29, 30, 31, 33].

I. H. Jeon and I. H. Kim [15] introduced quasi-class A (i.e., T ∗(|T 2|− |T |2)T ≥
0) operators as an extension of the notion of class A operators.

Recently K. Tanahashi et al. [29] considered an extension of quasi-class A op-
erators, similar in sprit to the extension of the notion of p-quasihyponormality to
(p, k) -quasihyponormality.

Definition 1.1. T ∈ B(H) is called a quasi-class (A, k) operator for a positive
integer k if

T ∗k(|T 2| − |T |2)T k ≥ 0.

Remark: In [12], this class of operators is called k-quasi-class A. It is clear

p-hyponormal operators ⊆ class A operators
⊆ quasi-class A operators
⊆ quasi-class(A, k) operators.

and

quasi-class (A, k) operators ⊆ quasi-class (A, k + 1) operators. (1.1)

In [12] we show that the inclusion relation (1.1) is strict by an example.

The famous Fuglede–Putnam’s theorem is as follows [7, 9, 23]:

Theorem 1.2. Let A and B be normal operator and X be an operator such that
AX = XB, then A∗X = XB∗.

The Fuglede–Putnam’s theorem is very useful in operator theory thanks to its
numerous applications. In fact, the Fuglede–Putnam’s theorem was first proved
in case A = B by B. Fuglede [7] and then a proof in the general case by C. R. Put-
nam [23]. A lot of researchers have worked on it since the papers of Fuglede and
Putuam. S. Berberian [2] proved that the Fuglede theorem was actually equiva-
lent to that of Putnam by a nice operator matrix derivation trick. M. Rosenblum
[26] gave an elegant and simple proof of Fuglede–Putnam’s theorem by using
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Liouville’s theorem. There were various generalizations of Fuglede–Putnam’s
theorem to nonnormal operators, we only cite [10, 3, 24, 32]. For example, M.
Radjabalipour [24] showed that Fuglede–Putnam’s theorem holds for hyponormal
operators; A. Uchiyama and K. Tanahashi [32] showed that Fuglede–Putnam’s
theorem holds for p-hyponormal and log-hyponormal operators. But further ex-
tension for class A operators remains as an open problem. If let X ∈ B(H) be
Hilbert-Schmidt class, S. Mecheri and A. Uchiyama [20] showed that normality in
Fuglede–Putnam’s theorem can be replaced by A and B∗ class A operators. Re-
cently M. H. M. Rashid and M. S. M. Noorani [25] showed that the above result
of S. Mecheri and A. Uchiyama holds for A and B∗ quasi-class A operators with
the additional condition ‖ |A∗| ‖ ‖ |B|−1 ‖≤ 1. In this paper, firstly we show that
if X is a Hilbert-Schmidt operator, A is a quasi-class (A, k) operator and B∗ is
an invertible quasi-class (A, k) operator such that AX = XB, then A∗X = XB∗.
Secondly we consider the Putnam’s inequality for quasi-class (A, k) operators and
we also show that quasisimilar quasi-class (A, k) operators have equal spectrum
and essential spectrum.

2. Main results

Let C2(H) denote the Hilbert-Schmidt class. For each pair of operator A,
B ∈ B(H), there is an operator ΓA,B defined on C2(H) via the formula ΓA,B(X) =
AXB in [3]. Obviously ‖ Γ ‖≤‖ A ‖ ‖ B ‖. The adjoint of Γ is given by the
formula Γ∗

A,B(X) = A∗XB∗, see details [3].
Let T ⊗S denote the tensor product on the product space H⊗H for non-zero

T , S ∈ B(H). In [12] we give a necessary and sufficient condition for T ⊗ S to
be a quasi-class (A, k) operator.

Lemma 2.1. [12] Let T , S ∈ B(H) be non-zero operators. Then T ⊗ S is a
quasi-class (A, k) operator if and only if one of the following assertions holds:

(1) T k+1 = 0 or Sk+1 = 0;
(2) T and S are quasi-class (A, k) operators.

Theorem 2.2. Let A and B ∈ B(H). Then ΓA,B is a quasi-class (A, k) operator
on C2(H) if and only if one of the following assertions holds:

(1) Ak+1 = 0 or Bk+1 = 0;
(2) A and B∗ are quasi-class (A, k) operators.

Proof. The unitary operator U : C2(H)→ H⊗H by a map x⊗y∗ → x⊗y induces
the ∗-isomorphism Ψ : B(C2(H)) → B(H ⊗ H) by a map X → UXU∗. Then
we can obtain Ψ(ΓA,B) = A ⊗ B∗, see [4]. This completes the proof by Lemma
2.1. �

Lemma 2.3. [29, 12] Let T ∈ B(H) be a quasi-class (A, k) operator for a positive
integer k. If λ 6= 0 and (T − λ)x = 0 for some x ∈ H, then (T − λ)∗x = 0.

Now we are ready to extend Fuglede–Putnam’s theorem to quasi-class (A, k)
operators.
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Theorem 2.4. Let A be a quasi-class (A, k) operator and B∗ be an invertible
class A operator. If AX = XB for X ∈ C2(H), then A∗X = XB∗.

Proof. Let Γ be defined on C2(H) by ΓY = AY B−1. Since B∗ is an invertible class
A operator, we have that (B∗)−1 is also a class A operator by [14, Corollary 4].
Since A is a quasi-class (A, k) operator and (B−1)∗ = (B∗)−1 is a quasi-class (A, k)
operator, we have that Γ is a quasi-class (A, k) operator on C2(H) by Theorem
2.2. Moreover we have ΓX = AXB−1 = X because of AX = XB. Hence X is
an eigenvector of Γ. By Lemma 2.3 we have Γ∗X = A∗X(B−1)∗ = X, that is,
A∗X = XB∗. The proof is complete. �

Here we give out an example that if X ∈ B(H), A is a quasi-class (A, k) opera-
tor and B∗ is a quasi-class (A, k) or normal operator satisfying AX = XB, we can

not get A∗X = XB∗. To see this, just consider the operator A = X =

(
0 1
0 0

)
and B = 0, we have AX =

(
0 1
0 0

) (
0 1
0 0

)
=

(
0 0
0 0

)
= XB, but

A∗X =

(
0 0
1 0

) (
0 1
0 0

)
=

(
0 0
0 1

)
and XB∗ =

(
0 0
0 0

)
.

In general, by the condition S−1TS = T ∗ and 0 /∈ W (S) we can not get that
T is normal. For instance, [34], if T = SB, where S is positive and invertible, B

is self-adjoint, and S and B do not commute, then S−1TS = T ∗ and 0 /∈ W (S),
but T is not normal.

I. H. Sheth [27] showed that if T is a hyponormal operator and S−1TS = T ∗

satisfying 0 /∈ W (S), then T is self-adjoint. I. H. Kim [18] extended the result
of Sheth to the class of p-hyponormal operators. In the following, we shall show
that if T or T ∗ is a class A operator, the result of Sheth also holds. Actually if T
is a class A operator, the result has already been shown in [16] by I. H. Jeon et
al. But we will give a proof for the sake of completeness.

Theorem 2.5. Let T or T ∗ be a class A operator and S be an operator satisfying
0 /∈ W (S) such that ST = T ∗S. Then T is self-adjoint.

To prove Theorem 2.5 the following lemmas are needful.

Lemma 2.6. [34] Let T ∈ B(H) be a operator such that S−1TS = T ∗, where S

is an operator satisfying 0 /∈ W (S). Then σ(T ) ⊆ R.

Lemma 2.7. [21] Let T ∈ B(H) be a class A operator, then the following in-
equality holds:

‖ |T 2| − |T |2 ‖≤‖ |T̃1,1| − |T̃ ∗
1,1| ‖≤

1

π
meas σ(T ),

where T = U |T | is the polar decomposition of T , T̃1,1 = |T |U |T | and measσ(T ) is
the planar Lebesgue measure of the spectrum of T . Moreover, if measσ(T ) = 0,
then T is normal.

Proof of Theorem 2.5. Assume that T or T ∗ is a class A operator. Since
0 /∈ W (S) and σ(S) ⊆ W (S), we have that S is invertible and 0 /∈ W (S−1).
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Hence (S−1)−1TS−1 = T ∗ holds by ST = T ∗S. Hence we have σ(T ) ⊆ R by

implying Lemma 2.6. Thus σ(T ∗) = σ(T ) ⊆ R. So we have that measσ(T ) =
measσ(T ∗) = 0 for the planar Lebesgue measure. So we have that T or T ∗ is
normal by Lemma 2.7. Hence T is self-adjoint since σ(T ) = σ(T ∗) ⊆ R.

It is well known that p-hyponormal operator with real spectrum is self-adjoint.
More generally, from the proof of Theorem 2.5 we have that

Corollary 2.8. Let T be a class A operator, and σ(T ) ⊆ R, then T is self-adjoint.

We recall the following lemma which summarizes some basic properties of quasi-
class (A, k) operators.

Lemma 2.9. [29, 12] Let T ∈ B(H) be a quasi-class (A, k) operator for a positive

integer k and T =

(
T1 T2
0 T3

)
on H = ran(T k)

⊕
kerT ∗k be 2 × 2 matrix

expression. Assume that ranT k is not dense, then T1 is a class A operator on
ran(T k) and T k3 = 0. Furthermore, σ(T ) = σ(T1) ∪ {0}.

The following theorem is about Putnam’s inequality for quasi-class (A, k) op-
erators.

Theorem 2.10. Let T be a quasi-class (A, k) operator for a positive integer k.
Then

‖ P (|T 2| − |T |2|)P ‖≤ 1

π
meas σ(T ),

where P is the orthogonal projection of H onto ran(T k) and measσ(T ) is the
planar Lebesgue measure of the spectrum of T .

Proof. Consider the matrix representation of T with respect to the decomposition

H = ran(T k)
⊕

kerT ∗k: T =

(
T1 T2
0 T3

)
. Let P be the orthogonal projection

of H onto ran(T k). Then T1 = TP = PTP . Since T is a quasi-class (A, k)
operator, we have

P (|T 2| − |T |2)P ≥ 0.

Then

|T 2
1 | = (PT ∗PT ∗TPTP )

1
2 = (PT ∗T ∗TTP )

1
2 = (P |T 2|2P )

1
2 ≥ P |T 2|P

by Hansen’s inequality [13]. On the other hand

|T1|2 = T ∗
1 T1 = PT ∗TP = P |T |2P ≤ P |T 2|P.

So we have
|T1|2 = P |T |2P ≤ P |T 2|P ≤ |T 2

1 |.
Hence

0 ≤ P (|T 2| − |T |2|)P ≤ |T 2
1 | − |T1|2.

Since T1 is a class A operator by Lemma 2.9, we have

‖ P (|T 2| − |T |2|)P ‖≤‖ |T 2
1 | − |T1|2 ‖≤

1

π
meas σ(T1) =

1

π
meas σ(T ),
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by Lemmas 2.7 and 2.9. This completes the proof. �

Theorem 2.11. Let T be a injective quasi-class (A, k) operator for a positive

integer k and S be a operator satisfying 0 /∈ W (S) such that ST = T ∗S. Then T
is direct sum of a self-adjoint and nilpotent operator.

Proof. Since T is a quasi-class (A, k) operator, we have the following matrix

expression by Lemma 2.9: T =

(
T1 T2
0 T3

)
onH = ran(T k)

⊕
kerT ∗k, where T1

is a class A operator on ran(T k) and T k3 = 0. Since ST = T ∗S and 0 /∈ W (S), we
have that σ(T ) ⊆ R by Lemma 2.6. Hence σ(T1) ⊆ R because σ(T ) = σ(T1)∪{0}.
So we have that T1 is self-adjoint by Corollary 2.8 since T1 is a class A operator
on ran(T k). Let P be the orthogonal projection of H onto ran(T k). By Hansen’s
inequality [13] we have(
|T 2

1 | 0
0 0

)
= (P |T 2|2P )

1
2 ≥ P |T 2|P ≥ P |T |2P = PT ∗TP =

(
|T1|2 0
0 0

)
.

Since T1 is self-adjoint, hence we can write

|T 2| =
(
T 2
1 A
A∗ B

)
.

So we have(
T 4
1 0

0 0

)
= P |T 2||T 2|P

=

(
1 0
0 0

) (
T 2
1 A
A∗ B

) (
T 2
1 A
A∗ B

) (
1 0
0 0

)

=

(
T 4
1 + AA∗ 0

0 0

)
.

This implies A = 0 and |T 2|2 =

(
T 4
1 0

0 B2

)
. On the other hand,

|T 2|2 = T ∗T ∗TT

=

(
T1 0
T ∗
2 T ∗

3

) (
T1 0
T ∗
2 T ∗

3

) (
T1 T2
0 T3

) (
T1 T2
0 T3

)

=

(
T 4
1 T 2

1 (T1T2 + T2T3)
(T1T2 + T2T3)

∗T 2
1 |T1T2 + T2T3|2 + |T 2

3 |2
)
.

Since T is injective and kerT1 ⊆ kerT , we have that T1 is injective. Hence
T1T2 +T2T3 = 0 and B = |T 2

3 |. Since T is a quasi-class (A, k) operator, by simple
calculation we have

0 ≤ T ∗k(|T 2| − |T |2)T k

=

(
0 (−1)k+1T 2k+1

1 T2
(−1)k+1T ∗

2 T
2k+1
1 (−1)k+1T ∗

2 T
2k
1 T2 + T ∗k

3 |T 2
3 |T k3 − |T k+1

3 |2
)

.
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Recall that

(
X Y
Y ∗ Z

)
≥ 0 if and only if X,Z ≥ 0 and Y = X

1
2WZ

1
2 for some

contraction W . Thus we have T2 = 0. This completes the proof. �

Recall that an operator X ∈ B(H) is called a quasiaffinity if X is injective and
has dense range. For T , S ∈ B(H), if there exist quasiaffinities X and Y ∈ B(H)
such that TX = XS and Y T = SY , then we say that T and S are quasisimi-
lar. It is well-known that in finite dimensional spaces quasiaffinity coincides with
similarity; but in infinite dimensional spaces quasiaffinity is a much weaker rela-
tion than similarity. Similarity preserves the spectrum and essential spectrum,
but this is not true for quasiaffinity. Many researchers have studied what con-
ditions can insure two quasisimilar operators have equal spectrum and essential
spectrum. For instance, R. Yingbin and Y. Zikun [35] proved that quasisimilar
p-hyponormal operators have equal spectrum and essential spectrum; I. H. Jeon
et al. [17] proved that quasisimilar injective p-quasihyponormal operators have
equal spectrum and essential spectrum; A. H. Kim [19] proved that quasisimilar
(p, k)-quasihyponormal operators have equal spectrum and essential spectrum re-
spectively. Recently, I. H. Jeon et al. [16] proved that quasisimilar quasi-class A
operators have equal spectrum and essential spectrum. In the following, we point
out that quasisimilar quasi-class (A, k) operators also have equal spectrum and
essential spectrum.

An operator T has the (Bishop’s) property (β) at λ ∈ C if for every open
neighborhood D ⊂ C of λ and every vector-valued analytic functions fn: D → H
(n=1, 2,· · · ) for which (T − µ)fn(µ)→ 0 uniformly on every compact subset of
D, fn(µ) → 0 uniformly in norm on every compact subset of D. When T has
property (β) for every λ ∈ C, we say that T has property (β). The property (β)
plays an important role in the study of spectral properties of operators.

Lemma 2.12. [29] Let T be a quasi-class (A, k) operator. Then T has Bishop’s
property (β).

Lemma 2.13. [22] If both T and S have Bishop’s property (β) and if they are
quasisimilar, then σ(T ) = σ(S) and σe(T ) = σe(S) hold.

Remark 2.14. By Lemmas 2.12 and 2.13, we have that quasisimilar quasi-class
(A, k) operators also have equal spectrum and essential spectrum.
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