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Abstract. Recently, Suzuki [Nonlinear Anal. 71 (2009), no. 11, 5313–5317.]
published a paper on which Edelstein’s fixed theorem was generalized. In this
manuscript, we give some theorems which are the generalization of the fixed
theorem of Suzuki’s Theorems and thus Edelstein’s result [J. London Math.
Soc. 37 (1962), 74-79].

1. Introduction and Preliminaries

A self-mapping T on a metric space X is called contraction if for each x, y ∈ X,
there exists a constant k ∈ [0, 1) such that

d(Tx, Ty) ≤ d(x, y).

Due to Banach [1], we know that every contraction on a complete metric space has
a unique fixed point. This theorem, known as the Banach contraction mapping
principle, is formulated in his thesis in 1920 and published in 1922. The Ba-
nach contraction mapping principle has preserved its importance in Fixed Point
Theory. This crucial result of Banach has many applications not only in several
branches of mathematics but also in economics.

After Banach, many authors attempt to generalize the Banach contraction
mapping principle such as Kannan [6], Reich [11], Hardy and Rogers [5], Ćirić
[2] and many others.

Very recently, Suzuki proved the following fixed point theorem:

Theorem 1.1. (Suzuki [14].) Let (X, d) be a compact metric space and let T be
a mapping on X. Assume 1

2
d(x, Tx) < d(x, y) implies d(Tx, Ty) < d(x, y) for all

x, y ∈ X. Then T has a unique fixed point.
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This result is based on the following two theorems:

Theorem 1.2. (Edelstein [4].) Let (X, d) be a compact metric space and let T
be a mapping on X. Assume d(Tx, Ty) < d(x, y) for all x, y ∈ X with x 6= y.
Then T has a unique fixed point.

Suzuki also suggest the following fixed point theorem:

Theorem 1.3. (Suzuki [15].) Define a non-increasing function θ from [0,1) onto
(1/2,1] by

θ(r) =

 1 if 0 ≤ r ≤ (
√

5− 1)/2,

(1− r)r−2 if (
√

5− 1)/2 ≤ r ≤ 2−1/2,
(1 + r)−1 if 2−1/2 ≤ r < 1.

Then for a metric space (X, d), the following are equivalent:

(1) X is complete.
(2) Every mapping T on X satisfying the following has a fixed point: There

exists r ∈ [0, 1) such that θ(r)d(x, Tx) ≤ d(x, y) implies d(Tx, Ty) ≤
rd(x, y) for all x, y ∈ X.

The author [7] suggests some theorems which generalize the result of Suzuki
[14] which was also considered by many authors (see e.g. [3, 8, 9, 10, 12]). In this
manuscript, main theorem is on the form of Edelstein’s fixed point theorem and
generalizes the results of both [7] and Suzuki [14].

2. Main Results

We prove the following theorems:

Theorem 2.1. Let T be a self mapping on a compact metric space (X, d). Assume
that

1

2
d(x, Tx) < d(x, y)⇒ d(Tx, Ty) < M(x, y) for all x, y ∈ X, (2.1)

where M(x, y) = max{d(x, y), d(Tx, x), d(y, Ty), 1
2
d(Tx, y), 1

2
d(x, Ty)}. Then, T

has a unique fixed point z ∈ X, that is, Tz = z.

Proof. Set θ = inf{d(x, Tx) : x ∈ X} and choose a sequence {xn} in X such that
lim
n→∞

d(xn, Txn) = θ. Regarding that X is compact, without loss of generality,

assume that {xn} and {Txn} converge to some points z and w in X, respectively.
Claim that θ is equal to zero. Assume θ > 0. Notice that

lim
n→∞

d(xn, w) = d(z, w) = lim
n→∞

d(xn, Txn) = θ.

One can choose k ∈ N in a way that

2

3
θ < d(xn, w) and d(xn, Txn) <

4

3
θ,

for each n ≥ k. Consequently, 1
2
d(xn, Txn) < d(xn, w) for each n ≥ k. By

(2.1), one can get d(Txn, Tw) < M(xn, w) for each n ≥ k, where M(xn, w) =
max{d(xn, w), d(Txn, xn), d(w, Tw), 1

2
d(Txn, w), 1

2
d(xn, Tw)}. Thus we have

d(w, Tw) = lim
n→∞

d(Txn, Tw) < lim
n→∞

M(xn, w). (2.2)



EDELSTEIN TYPE FIXED POINT THEOREMS 53

where

limn→∞M(xn, w) = max{d(z, w), d(w, z), d(w, Tw), 1
2
d(w,w), 1

2
d(z, Tw)}

= max{d(z, w), d(w, Tw), 1
2
d(z, Tw)}

If limn→∞M(xn, w) = d(w, Tw) then the expression (2.2) turns into

d(w, Tw) = lim
n→∞

d(Txn, Tw) < lim
n→∞

M(xn, w) = d(Tw,w).

which is impossible.
If limn→∞M(xn, w) = 1

2
d(Tw, z) then the expression (2.2) turns into

d(w, Tw) = limn→∞ d(Txn, Tw) < limn→∞M(xn, w)
= limn→∞

1
2
d(Tw, z) ≤ 1

2
[d(z, w) + d(w, Tw)].

Thus, d(w, Tw) < d(z, w) = θ.
If limn→∞M(xn, w) = d(w, z) then the expression (2.2) turns into

d(w, Tw) = lim
n→∞

d(Txn, Tw) < lim
n→∞

M(xn, w) = d(w, z) = θ..

In any case, (2.2)

d(w, Tw) < d(w, z) = θ.

On account of the definition of θ, one can conclude that d(w, Tw) = θ. Notice
that we always have the inequality 1

2
d(w, Tw) < d(w, Tw). Again by applying

(2.1), one can obtain

d(Tw, T 2w) < M(w, Tw) (2.3)

where

M(w, Tw) = max{d(w, Tw), d(Tw,w), d(Tw, T 2w), 1
2
d(Tw, Tw), 1

2
d(w, T 2w)}

= max{d(w, Tw), d(Tw, T 2w), 1
2
d(w, T 2w)}

Clearly, the case M(w, Tw) = d(Tw, T 2w) contradicts (2.3). If we consider
the case M(w, Tw) = d(w, Tw) by considering (2.3), we get d(Tw, T 2w) <
d(Tw,w) = θ. For the last case M(w, Tw) = 1

2
d(w, T 2w), by (2.3), we have

d(Tw, T 2w) < 1
2
d(w, T 2w) ≤ 1

2
[d(w, Tw) + d(Tw, T 2w)] which is equivalent to

d(Tw, T 2w) < d(Tw,w) = θ.
In any case, this is a contradiction with the definition of θ. Hence θ = 0.
We assert that T has a fixed point. To show this, we use the method of Reductio

ad absurdum. Suppose T has no fixed point. Since 0 < 1
2
d(Txn, xn) < d(Txn, xn)

is true for each n, the inequality d(Txn, T
2xn) < M(xn, Txn) holds for every

n ∈ N, where

M(xn, Txn) = max{d(xn, Txn), d(Txn, xn), d(Txn, T
2xn),

1
2
d(Txn, Txn), 1

2
d(xn, T

2xn)}
= max{d(xn, Txn), d(Txn, T

2xn), 1
2
d(xn, T

2xn)}.
Hence, simple calculations yield that

d(Txn, T
2xn) < d(Txn, xn) (2.4)

holds for each n ∈ N and

lim
n→∞

d(z, Txn) = d(z, w) = lim
n→∞

d(Txn, xn) = θ = 0.



54 E. KARAPINAR

Thus, z = w. In other words, {xn} and {Txn} converge to the same point. Due
to triangular inequality and considering (2.4), one can obtain that

limn→∞ d(z, T 2xn) ≤ limn→∞ [d(z, Txn) + d(Txn, T
2xn)]

< limn→∞ [d(z, Txn) + d(xn, Txn)] = 2d(z, z) = 2θ = 0.

Hence, {T 2xn} converges to z, either.
Suppose that

d(xn, z) ≤
1

2
d(xn, Txn), and d(Txn, z) ≤

1

2
d(Txn, T

2xn) (2.5)

holds. Consequently, applying (2.4), (2.5) and using triangular inequality, we
have

d(xn, Txn) ≤ d(xn, z) + d(Txn, z) ≤ 1
2
d(xn, Txn) + 1

2
d(Txn, T

2xn)
< 1

2
d(xn, Txn) + 1

2
d(xn, Txn) = d(xn, Txn)

This is a contradiction. Thus, either

d(xn, z) >
1

2
d(xn, Txn), or d(Txn, z) >

1

2
d(Txn, T

2xn)

holds for each n ∈ N. Regarding (2.1), one of them holds:

d(Txn, T z) < M(xn, z), (2.6)

where

M(xn, z) = max{d(xn, z), d(Txn, xn), d(z, Tz),
1

2
d(Txn, z),

1

2
d(xn, T z)}.

d(T 2xn, T z) < M(Txn, z), (2.7)

where

M(Txn, z) = max{d(Txn, z), d(T 2xn, Txn), d(z, Tz),
1

2
d(T 2xn, z),

1

2
d(Txn, T z)}.

It is equivalent to saying that either

(i) There is an infinite subset I of N so that d(Txn, T z) < M(xn, z) for all
n ∈ I, or

(ii) There is an infinite subset J of N so that d(T 2xn, T z) < M(Txn, z) for all
n ∈ J ,

holds.
Consider the case (2.6):

d(z, Tz) = lim
n∈I,n→∞

d(Txn, T z) < lim
n∈I,n→∞

M(xn, z),

where

M(xn, z) = max{d(xn, z), d(Txn, xn), d(z, Tz),
1

2
d(Txn, z),

1

2
d(xn, T z)}.

For the case M(xn, z) = d(z, Tz) we have

d(z, Tz) = limn∈I,n→∞ d(Txn, T z) < limn∈I,n→∞M(xn, z)
= limn∈I,n→∞ d(z, Tz) = d(z, Tz),
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which is a contradiction. For the case M(xn, z) = 1
2
d(Tz, xn) we have

d(z, Tz) = limn∈I,n→∞ d(Txn, T z) < limn∈I,n→∞M(xn, z)
= limn∈I,n→∞

1
2
d(Tz, xn) = 1

2
d(Tz, z),

which is also a contradiction. For the other cases, by simple calculation, one can
obtain that

d(z, Tz) < d(z, z) = 0.

Thus, one can conclude that Tz = z.
For the other case (2.7):

d(z, Tz) = d(T 2xn, T z) < lim
n∈J,n→∞

1

2
M(Txn, z) where

M(Txn, z) = max{d(Txn, z), d(T 2xn, Txn), d(z, Tz),
1

2
d(T 2xn, z),

1

2
d(Txn, T z)}.

For the case M(Txn, z) = d(z, Tz) we have

d(z, Tz) = limn∈J,n→∞ d(T 2xn, T z) < limn∈J,n→∞
1
2
M(Txn, z)

= limn∈J,n→∞ d(z, Tz) = d(z, Tz),

which is a contradiction. For the case M(Txn, z) = 1
2
d(Tz, Txn) we have

d(z, Tz) = limn∈J,n→∞ d(T 2xn, T z) < limn∈J,n→∞
1
2
M(Txn, z)

= limn∈J,n→∞
1
2
d(Tz, Txn) = 1

2
d(Tz, z),

which is also a contradiction. For the other cases, by simple calculation, one can
obtain that

d(z, Tz) < d(z, z) = 0.

Thus, (2.6) and (2.7) imply the same conclusion, that is, Tz = z. This is a
contradiction with assumption. Hence, T has a fixed point. In other words, there
exists z ∈ X such that Tz = z.

To show z ∈ X is the unique fixed point of T , take y ∈ X where y 6= z and
Ty = y. Thus, d(y, z) > 0 and 0 = 1

2
d(z, Tz) < d(z, y) are satisfied. By (2.1), we

have

d(z, y) = d(Tz, Ty) < M(z, y)

where

M(z, y) = max{d(z, y), d(Tz, z), d(y, Ty),
1

2
d(z, Ty),

1

2
d(Tz, y)} = d(z, y)

which implies that d(z, y) < d(z, y) which is a contradiction. Hence, z is the
unique fixed point of T . �

Regarding the very recent paper of Singh and Mishra [13], we state the following
theorem:

Theorem 2.2. Let S, T : Y → X be such that S(Y ) ⊂ T (Y ) and T (Y ) is a
compact subspace of a metric space (X, d). Assume that

Tx = Ty ⇒ Sx = Sy for all x, y ∈ Y,
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and
1

2
d(Tx, Sx) < d(Tx, Ty)⇒ d(Sx, Sy) < M(Tx, Ty) for all x, y ∈ Y,

where M(Tx, Ty) = max{d(Tx, Ty), d(Sx, Tx), d(Ty, Sy), 1
2
d(Sx, Ty), 1

2
d(Tx, Sy)}.

Then, S and T have a coincidence point z ∈ Y , that is, Tz = Sz. Further, if
Y = X, then S and T have a unique common fixed point provided that S and T
commute at z.

Proof. Set F : T (Y )→ T (Y ) by Fα = S(T−1α) for each α ∈ T (Y ). The map F
is well-defined. Indeed, take x ∈ T−1α, then Fα = Sx. Recall that S(Y ) ⊂ T (Y ),
thus, Fα ⊂ T (Y ). Now, take x, y ∈ T−1α such that β = Sx and γ = Sy. Notice
that Tx = Ty, thus, β = γ and F is well-defined.

Take α, β ∈ T (Y ) with α 6= β, so T−1α∩T−1β = ∅. Assume that 1
2
d(α, Fα) <

d(α, β) for distinct α, β ∈ T (Y ). Thus, for x ∈ T−1α and y ∈ T−1β, one can
observe that

1

2
d(Tx, Sx) =

1

2
d(α, Fα) < d(α, β) = d(Tx, Ty).

By assumption of the theorem, this inequality implies that d(Sx, Sy) < M(Tx, Ty)
and thus d(Fα, Fβ) < M(α, β) where

M(Tx, Ty) = M(α, β) = max{d(α, β), d(Fα, α), d(β, Fβ),
1

2
d(Fα, β),

1

2
d(α, Fβ)}.

Due to Theorem 2.1, F has a unique fixed point ω, that is Fω = ω. Thus, for
any z ∈ T−1ω, we have Sz = Fω = ω = Tz, that is, z is a coincidence point of
S and T .

If S and T are commuting at z, then Sz = Tz implies that SSz = STz =
TSz = TTz and Sω = Tω. If Sz 6= SSz, then 1

2
d(Tz, Sz) = 0 < d(Tz, TTz) =

d(Tz, TSz) and it implies that

d(ω, Sω) = d(Sz, SSz) < M(Tz, TSz) (2.8)

where

M(Tz, TSz) = max{d(Tz, TSz), d(Tz, Sz), d(TSz, SSz),
1
2
d(Tz, SSz), 1

2
d(TSz, Sz)}

= max{d(Tz, TSz) = d(Tz, STz), 1
2
d(Tz, SSz) = 1

2
d(TSz, Sz)}

= max{d(ω, Sω), 1
2
d(ω, Sω)} = d(ω, Sω)

Thus, the expression (2.8) turns into

d(ω, Sω) = d(Sz, SSz) < M(Tz, TSz) = d(ω, Sω)

which is a contradiction. Thus, ω is a common fixed point.
Now, we claim that the common fixed point is a unique. Assume the contrary,

that is, there is υ 6= ω and Sυ = υ = Tυ. Since 1
2
d(Tω, Sω) = 0 < d(Tω, Tυ),

we have
d(υ, ω) = d(Sυ, Sω) < M(Tυ, Tω) (2.9)

where

M(Tυ, Tω) = max{d(Tυ, Tω), d(Tυ, Sυ), d(Tω, Sω), 1
2
d(Tυ, Sω), 1

2
d(Tω, Sυ)}

= d(υ, ω).
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Thus, the expression (2.9) turns into

d(υ, ω) = d(Sυ, Sω) < M(Tυ, Tω) = d(υ, ω)

which is a contradiction. Thus, ω is the unique common fixed point of S and
T . �

Regarding the analogy, we omit the proofs of the following theorems:

Theorem 2.3. Let T be a self mapping on a compact metric space (X, d). Assume
that

1

2
d(x, Tx) < d(x, y)⇒ d(Tx, Ty) < M(x, y) for all x, y ∈ X,

where M(x, y) = max{d(x, y), d(Tx, x), d(y, Ty), 1
2

[d(Tx, y) + d(x, Ty)]}. Then,
T has a unique fixed point z ∈ X, that is, Tz = z.

Theorem 2.4. Let S, T : Y → X be such that S(Y ) ⊂ T (Y ) and T (Y ) is a
compact subspace of a metric space (X, d). Assume that

Tx = Ty ⇒ Sx = Sy for all x, y ∈ Y,

and

1

2
d(Tx, Sx) < d(Tx, Ty)⇒ d(Sx, Sy) < M(Tx, Ty) for all x, y ∈ Y,

where

M(Tx, Ty) = max{d(Tx, Ty), d(Sx, Tx), d(Ty, Sy),
1

2
[d(Sx, Ty) + d(Tx, Sy)]}.

Then, S and T have a coincidence point z ∈ Y , that is, Tz = Sz. Further, if
Y = X, then S and T have a unique common fixed point provided that S and T
commutes at z.

Theorem 2.5. Let T be a self mapping on a compact metric space (X, d). Assume
that

1

2
d(x, Tx) < d(x, y)⇒ d(Tx, Ty) < M(x, y) for all x, y ∈ X,

where M(x, y) ∈ {d(x, y), d(Tx, x), d(y, Ty), 1
2

[d(Tx, y) + d(x, Ty)]}. Then, T
has a unique fixed point z ∈ X, that is, Tz = z.

Theorem 2.6. Let S, T : Y → X be such that S(Y ) ⊂ T (Y ) and T (Y ) is a
compact subspace of a metric space (X, d). Assume that

Tx = Ty ⇒ Sx = Sy for all x, y ∈ Y,

and

1

2
d(Tx, Sx) < d(Tx, Ty)⇒ d(Sx, Sy) < M(Tx, Ty) for all x, y ∈ Y,

where M(Tx, Ty) ∈ {d(Tx, Ty), d(Sx, Tx), d(Ty, Sy), 1
2

[d(Sx, Ty) + d(Tx, Sy)]}.
Then, S and T have a coincidence point z ∈ Y , that is, Tz = Sz. Further, if
Y = X, then S and T have a unique common fixed point provided that S and T
commutes at z.
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