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Abstract. Let A and B be two Banach algebras and let M be a Banach
B-bimodule. Suppose that σ : A → B is a linear mapping and d : A → M
is a σ-derivation. We prove several results about automatic continuity of σ-
derivations on Banach algebras. In addition, we define a notion for m-weakly
continuous linear mapping and show that, under certain conditions, d and σ
are m-weakly continuous. Moreover, we prove that if A is commutative and
σ : A → A is a continuous homomorphism such that σ2 = σ then σdσ(A) ⊆
σ(Q(A)) ⊆ rad(A).

1. Introduction and preliminaries

Let A and B be two algebras and let M be a B-bimodule. Suppose that
σ : A → B is a linear mapping. A linear mapping d : A → M is called a
σ-derivation if d(ab) = d(a)σ(b) + σ(a)d(b) for all a, b ∈ A. Clearly if A is a
subalgebra of B and σ = id, the identity mapping on A, then a σ-derivation
is an ordinary derivation. On the other hand, each homomorphism θ : A → B
is a θ

2
-derivation. Mirzavaziri and Moslehian [5] have presented several impor-

tant results of σ-derivations. Hosseini et al [3] defined generalized σ-derivation
on Banach algebras and presented some results about automatic continuity of
generalized σ-derivations and σ-derivations on Banach algebras. So far, numer-
ous derivations have been defined such as σ-derivation, generalized σ-derivation,
(σ, τ)-derivation and so on. In 2009, Mirzavaziri and Omidvar Tehrani [8] defined
(δ, ε)-double derivation and also the automatic continuity of the former derivation
on C∗-algebras was considered. Next, Hejazian et al [4] studied the automatic
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continuity of (δ, ε)-double derivations on Banach algebras. The investigation of
automatic continuity of (δ, ε)-double derivations and generalized σ-derivations in
detail, will result in some theorems about automatic continuity of derivations and
σ-derivations. Moreover, Mirzavaziri and Moslehian ([6] and [7]) acquired some
results about automatic continuity of σ-derivations. In this article the m-weakly
continuity of a linear mapping is defined as follows:
The linear mapping T : B → A is called m-weakly continuous if the linear map-
ping ϕT : B → C is continuous for all multiplicative linear functional ϕ from A
in to C. Suppose that A is unital and d : A → B is a σ-derivation such that
ϕd(1) 6= 0 for all ϕ ∈ ΦB, the set of all non-zero multiplicative linear functionals
from B in to C. If for all ϕ ∈ ΦB there exists an element aϕ ∈ A such that
aϕ /∈ ker(ϕd) and ϕd(a2

ϕ) = (ϕd(aϕ))2 then ϕd is a homomorphism. Moreover, d
and σ are m-weakly continuous. In particular, if A is semi-simple and commuta-
tive then d and σ are continuous.
Singer and Wermer (see Corollary 2.7.20 of [2]) proved that, when A is a commu-
tative Banach algebra and D : A → A is a continuous derivation, D(A) ⊆
rad(A), where rad(A) is the Jacobson radical of A. They conjectured that
D(A) ⊆ rad(A) for each (possibly discontinuous) derivation D on A. In 1988,
Thomas [9] proved this conjecture. We prove that if d : A → A is a σ-derivation
on a commutative Banach algebra A such that σ is a continuous homomorphism
and σ2 = σ then σdσ(A) ⊆ σ(Q(A)) ⊆ rad(A). In particular if d(A) ⊆ σdσ(A)
then d(A) ⊆ σ(Q(A)) ⊆ rad(A), where Q(A) is the set of all quasi-nilpotent
elements of A.

2. Main results

Throughout this paper A and B denote two Banach algebras. Moreover, M
denotes a Banach B-bimodule. Furthermore, if an algebra is unital then 1 will
show its unit element. Recall that if E is a subset of an algebra B, the right
annihilator ran(E ) of E (resp. the left annihilator lan(E ) of E ) is defined to
be {b ∈ B : Eb = {0}} (resp. {b ∈ B :bE = {0}}). The set ann(E ) := ran(E )⋂

lan(E ) is called the annihilator of E. Suppose S ⊆ M. The right annihilator
ran(S ) of S is defined to be {b ∈ B : Sb = {0}}. The left annihilator of S is
defined, similarly. Also, recall that if Y and Z are Banach spaces and T : Y→Z
is a linear mapping, then the set {z ∈ Z : ∃ {yn} ⊆ Y s.t yn → 0, T (yn) → z}
is called the separating space S (T ) of T. By the closed graph Theorem, T is
continuous if and only if S (T ) = {0}. The reader is referred to [2] for more about
separating spaces.

Definition 2.1. Suppose σ : A → B is a linear mapping. A linear mapping
d : A →M is called a σ-derivation if d(ab) = d(a)σ(b) +σ(a)d(b) for all a,b ∈ A.

It is clear that if A is a subalgebra of B and σ = id, the identity mapping on
A, then a σ-derivation is an ordinary derivation.

Theorem 2.2. Suppose that d : A → B is a linear mapping. We define d1 :
A1 → B1 by d1(a + α) = d(a) + α for all a + α ∈ A1, whenever A1 = A

⊕
C
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and B1 = B
⊕

C are the unitization of A and B, respectively. Then d1 is a
σ-derivation if and only if d is a homomorphism.

Proof. We denote the unit element ofA1 and B1 by 1. Clearly d1(1) = 1. Suppose
that d1 is a σ-derivation. We have 1 = d1(1) = d1(1)σ(1) +σ(1)d1(1). Therefore

σ(1) = 1
2

and d1((a + α)1) = d1(a + α)σ(1) + σ(a + α)d1(1) = d1(a+α)
2

+ σ(a

+ α). Hence σ(a + α) = d1(a+α)
2

for all a + α ∈ A1. Moreover, we have

d1((a+ α)(b+ β)) = d1(a+ α)σ(b+ β) + σ(a+ α)d1(b+ β)

= d1(a+ α)
d1(b+ β)

2
+
d1(a+ α)

2
d1(b+ β)

= d1(a+ α)d1(b+ β).

It means that d1 is a homomorphism. Hence d is a homomorphism. Conversely,
assume that d is a homomorphism, i.e. d(ab) = d(a)d(b) for all a,b ∈ A. We
have d(ab) + βd(a) + αd(b) + αβ = d(a)d(b) + βd(a) + αd(b) + αβ for all a
+ α, b + β ∈ A1. It means that d1 is a homomorphism. Put σ = d1

2
. Then

d1((a+ α)(b+ β)) = d1(a+ α)d1(b+ β)

= d1(a+ α)
d1(b+ β)

2
+
d1(a+ α)

2
d1(b+ β)

= d1(a+ α)σ(b+ β) + σ(a+ α)d1(b+ β).

Hence d1 is a σ-derivation. �

Corollary 2.3. Suppose B is commutative and semisimple and let d : A → B
be a linear mapping. If d1 : A1 → B1, defined by d1(a + α) = d(a) + α, is a
σ-derivation then d and d1 are continuous operators.

Proof. According to Theorem 2.2, d is a homomorphism. By Theorem 2.3.3 of
[2], d is continuous and so d1 is continuous. �

Theorem 2.4. Suppose that A is unital and d : A →M is a σ-derivation. If σ
is continuous and ‖σ(1)‖ < 1 then d is continuous.

Proof. Suppose d(1) = 0. Then for each a ∈ A, ‖d(a)‖ = ‖d(a)σ(1)‖ ≤
‖d(a)‖‖σ(1)‖. Thus ‖d(a)‖(1 − ‖σ(1)‖) ≤ 0. It follows that d(a) = 0. Since
a was arbitrary, d is identically zero and hence d is continuous. Now assume that
d(1) 6= 0 and a is an arbitrary element of A such that d(a) 6= 0. We have

‖d(a)‖ = ‖d(1)σ(a) + σ(1)d(a)‖
≤ ‖d(1)σ(a)‖+ ‖σ(1)d(a)‖
≤ ‖d(1)‖‖σ‖‖a‖+ ‖σ(1)‖‖d(a)‖.

Hence (1−‖σ(1)‖)‖d(a)‖ ≤ ‖d(1)‖‖σ‖‖a‖. This implies that d is continuous. �

Recall that an element a in a normed algebra A is called quasi-nilpotent if
limn→∞‖an‖

1
n = 0. The set of all quasi-nilpotent elements of A is denoted by

Q(A).
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Theorem 2.5. Suppose that A and B are unital and B has no zero divisors and
assume that d : A → B is a σ-derivation such that d(1) 6= 0. If there exists a
sequence {an} ⊆ A such that d(an) → a0 and σ(an) → a0, where a0 6= 0, then
d = σ. Moreover, if d is continuous then d(Q(A)) ⊆ Q(B).

Proof. We have d(an) = d(an)σ(1) + σ(an)d(1). Thus a0(σ(1) + d(1) − 1) = 0.
Since B has no zero divisors and a0 6= 0, d(1) + σ(1) = 1. We have d(1) 6= 1,
since if d(1) = 1 then σ(1) = 0. Thus d(1) = d(1)σ(1) + σ(1)d(1) = 0, which
is a contradiction. We have d(1) = (1 − σ(1))σ(1) + σ(1)(1 − σ(1)). Therefore
(1 − 2σ(1))d(1) = 0. Since d(1) 6= 0 and B has no zero divisors, σ(1) = 1

2
. It

follows that d(1) = 1
2
. Let a be an arbitrary element of A. We have

d(a) = d(a)σ(1) + σ(a)d(1) =
d(a)

2
+
σ(a)

2
,

and hence d = σ. By induction on n, we obtain

d(an) = 2n−1(d(a))n

therefore (d(a))n = d(an)
2n−1 . Assume that d is continuous and a ∈ Q(A). Then

‖(d(a))n‖
1
n = ‖d(an)

2n−1
‖

1
n ≤ (

1

2n−1
)

1
n‖d‖

1
n‖an‖

1
n → 0.

It means that d(a) ∈ Q(B). �

Remark 2.6. Suppose that σ : A → B is a continuous linear mapping and {σ(ab)−
σ(a)σ(b) | a, b ∈ A} ⊆ ann(M). Then Uσ = A

⊕
M is an algebra by the following

action: (a, x) • (b, y) = (ab, σ(a)y + xσ(b)) for all a, b ∈ A and x, y ∈ M. Put
m = max{1, ‖σ‖}. We define ‖|a‖| = m‖a‖ (a ∈ A), which is clearly a complete
norm on A. Then ‖|ab‖| = m‖ab‖ ≤ m2‖a‖‖b‖ = m‖a‖m‖b‖ = ‖|a‖|‖|b‖|. Let
d : A →M be a σ-derivation. Define two norms ‖.‖1 and ‖.‖2 on Uσ by ‖(a, x)‖1

= ‖|a‖| + ‖x‖, ‖(a, x)‖2 = ‖|a‖| + ‖d(a)− x‖.

Theorem 2.7. Suppose that Uσ,‖.‖1 and ‖.‖2 are as in the Remark 2.6. Then Uσ
is a Banach algebra with respect to ‖.‖1 and ‖.‖2. Furthermore, these two norms
are equivalent if and only if d is continuous.

Proof. Clearly (Uσ,‖.‖1) is a Banach algebra and ‖.‖2 is a norm on Uσ. We prove
that ‖.‖2 is a complete algebra norm on Uσ. Suppose {(an, xn)} is a Cauchy
sequence in (Uσ, ‖.‖2). Then {an} and {d(an) − xn} are Cauchy sequences in
A and M, respectively. Since A and M are Banach spaces, there exist a ∈ A
and x ∈ M such that an → a in A and d(an) − xn → x in M. Therefore
(an, xn)→ (a, d(a)− x) in ‖.‖2. Thus (Uσ,‖.‖2) is a Banach space. Assume that



SOME RESULTS ON σ-DERIVATIONS 79

(a,x ) and (b,y) are two arbitrary elements of Uσ. We have

‖(a, x) • (b, y)‖2 = ‖(ab, σ(a)y + xσ(b)‖2

= ‖|ab‖|+ ‖d(ab)− σ(a)y − xσ(b)‖
= ‖|ab‖|+ ‖d(a)σ(b) + σ(a)d(b)− σ(a)y − xσ(b)‖
≤ ‖|a‖| ‖|b‖|+ ‖d(a)− x‖‖σ‖‖b‖+ ‖σ‖‖a‖‖d(b)− y‖
≤ ‖|a‖| ‖|b‖|+ ‖d(a)− x‖ ‖|b‖|+ ‖|a‖| ‖d(b)− y‖
≤ (‖|a‖|+ ‖d(a)− x‖)(‖|b‖|+ ‖d(b)− y‖)
= ‖(a, x)‖2‖(b, y)‖2.

Therefore (Uσ,‖.‖2) is a Banach algebra. Suppose d is continuous. We have

‖(a, x)‖2 = ‖|a‖|+ ‖d(a)− x‖
≤ ‖|a‖|+ ‖d(a)‖+ ‖x‖
≤ ‖|a‖|+ ‖d‖‖a‖+ ‖x‖
≤ ‖|a‖|+ ‖d‖ m‖a‖+ ‖x‖
= ‖|a‖|+ ‖d‖ ‖|a‖|+ ‖x‖
≤ (1 + ‖d‖)(‖|a‖|+ ‖x‖)
= (1 + ‖d‖)‖(a, x)‖1

for all (a,x )∈Uσ. Applying the open mapping Theorem, we obtain that ‖.‖1 and
‖.‖2 are equivalent. Conversely, suppose that ‖.‖1 and ‖.‖2 are equivalent. Then
there exists a positive number c such that ‖(a, x)‖2 ≤ c‖(a, x)‖1 ((a, x) ∈ Uσ).
Thus ‖d(a)‖ ≤ ‖(a, 0)‖2 ≤ c‖(a, 0)‖1 = c‖|a‖|. It means that d is continuous. �

Suppose that d : A → M is a linear mapping. We define a linear mapping
Θ : Uσ → Uσ by Θ(a, x) = (a, d(a)− x) (a ∈ A, x ∈M). It is clear that Θ is an
endomorphism if and only if d is a σ-derivation.

Theorem 2.8. Suppose that σ : A → B is a continuous linear mapping such
that {σ(ab) − σ(a)σ(b) | a, b ∈ A} ⊆ ann(M) and assume that d : A →M is a
σ-derivation. Consider Uσ and ‖.‖2 as in Remark 2.6. Then d is continuous if
and only if Θ : (Uσ, ‖.‖2)→ (Uσ, ‖.‖2) is continuous.

Proof. We have ‖Θ(a, x)‖2 = ‖(a, d(a) − x)‖2 = ‖|a‖| + ‖x‖ = ‖(a, x)‖1. Let
d be continuous. By Theorem 2.7, ‖.‖1 and ‖.‖2 are equivalent. So there ex-
ists a positive number c such that ‖(a, x)‖1 ≤ c ‖(a, x)‖2. On the other hand,
‖Θ(a, x)‖2 = ‖(a, x)‖1 ≤ c ‖(a, x)‖2. It means that Θ is continuous. Now as-
sume that Θ is continuous. Then there exists a positive number c such that
‖Θ(a, x)‖2 ≤ c ‖(a, x)‖2. This implies that ‖(a, x)‖1 ≤ c ‖(a, x)‖2. It follows
from Theorem 2.7 that d is continuous. �

Suppose that A is a Banach algebra. We denote by ΦA, the set of all non-zero
multiplicative linear functionals from A into C. We know that each member of
ΦA is continuous. Since the case ΦA = φ makes every thing trivial, so we will
assume that ΦA is not equal to empty set.
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Definition 2.9. Let B and A be two Banach algebras and suppose that T : B →
A is a linear mapping. T is called m-weakly continuous if the linear mapping
ϕT : B → C is continuous for all ϕ ∈ ΦA.

It is clear that if a linear mapping is continuous then it is m-weakly continuous
but the converse is not true, in general. To see this, suppose that A is a Banach
algebra. Set B = C

⊕
A. Consider B as a commutative algebra with pointwise

addition and scalar multiplication and the product defined by (α, a).(β, b) =
(αβ, αb+ βa) (α, β ∈ C and a, b ∈ A). The algebra B with the norm ‖(α, a)‖ =
|α| + ‖a‖ is a Banach algebra. Hence rad(B) = Q(B) = {0}

⊕
A. On the

other hand, rad(B) =
⋂
ϕ∈ΦB

ker(ϕ). Note that ΦB 6= φ, since B is a unital
commutative Banach algebra. Assume that T : A → A is a discontinuous linear
mapping. Define D : B→ B by D(α, a) = (0, T (a)). Clearly D is discontinuous
and D(B) ⊆ {0}

⊕
A = rad(B) =

⋂
ϕ∈ΦB

ker(ϕ). So ϕ(D(B)) = {0} for all
ϕ ∈ ΦB and it cause that ϕD : B → C is continuous for all ϕ ∈ ΦB. Thus D
is m-weakly continuous but it is not continuous. In fact D is a discontinuous
derivation on B. Moreover, every derivation from a commutative Banach algebra
A into A is m-weakly continuous (see Theorem 4.4 of [9]).

Proposition 2.10. Suppose that A is a Banach algebra. Then A is commutative
and semi-simple if and only if

⋂
ϕ∈ΦA

ker(ϕ) = {0}.

Proof. Obviously if A is commutative and semi-simple then
⋂
ϕ∈ΦA

ker(ϕ) = {0}.
Conversely, suppose that

⋂
ϕ∈ΦA

ker(ϕ) = {0} and a,b are two arbitrary elements

of A. Then ϕ(ab) = ϕ(a)ϕ(b) = ϕ(b)ϕ(a) = ϕ(ba) for all ϕ ∈ ΦA. So ϕ(ab−ba) =
0. Since ϕ was arbitrary, we have ab − ba ∈

⋂
ϕ∈ΦA

ker(ϕ) = {0}. Hence A is

commutative. Since A is commutative and
⋂
ϕ∈ΦA

ker(ϕ) = {0}, rad(A) = {0}.
Thus A is semi-simple. �

Theorem 2.11. Suppose that B and A are two Banach algebras and assume that
T : B → A is an m-weakly continuous linear mapping. If

⋂
ϕ∈ΦA

ker(ϕ) = {0}
then T is continuous.

Proof. By part (ii) of Proposition 5.2.2 in [2], we have the result. �

Theorem 2.12. Suppose that d : A → B is a σ-derivation such that σ is m-
weakly continuous. If

⋂
ϕ∈ΦB

ker(ϕ) = {0} and S(ϕd) 6= {0} for all ϕ∈ΦB then
σ is a homomorphism.

Proof. Suppose that ϕ is an arbitrary element of ΦB. Put ϕd = d1 and ϕσ = σ1.
Obviously d1 is a σ1-derivation. Since σ1 is continuous, {σ1(ab)−σ1(a)σ1(b) | a, b ∈
A} ⊆ann(S(d1)) = {0} (see Lemma 2.3 of [6]). Therefore {σ(ab)−σ(a)σ(b) | a, b ∈
A} ⊆

⋂
ϕ∈ΦB

ker(ϕ) = {0}. So σ is a homomorphism. �

Theorem 2.13. Suppose that A is unital and d : A → B is a σ-derivation such
that ϕd(1) 6= 0 for all ϕ ∈ ΦB. If for all ϕ ∈ ΦB there exists an element aϕ ∈ A
such that aϕ /∈ ker(ϕd) and ϕd(a2

ϕ) = (ϕd(aϕ))2 then ϕd is a homomorphism.
Moreover, d and σ are m-weakly continuous.
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Proof. Suppose that ϕ is an arbitrary element of ΦB. Put ϕd = d1 and ϕσ = σ1.
At first we show that ker(d1) ⊆ ker(σ1). Let a ∈ ker(d1). We have

0 = d1(a)

= d1(a)σ1(1) + σ1(a)d1(1)

= σ1(a)d1(1).

Since d1(1) 6= 0, σ1(a) = 0 and hence a ∈ ker(σ1). It means that ker(d1) ⊆
ker(σ1). Therefore there exists a complex number λϕ such that σ1 = λϕd1. By
hypothesis, there exists aϕ /∈ ker(ϕd) such that ϕd(a2

ϕ) = (ϕd(aϕ))2. We have

(d1(aϕ))2 = d1(a2
ϕ)

= d1(aϕ)σ1(aϕ) + σ1(aϕ)d1(aϕ)

= d1(aϕ)λϕd1(aϕ) + λϕd1(aϕ)d1(aϕ)

= 2λϕ(d1(aϕ))2.

Since d1(aϕ) 6= 0, λϕ = 1
2
. This implies that σ1 = d1

2
. We have

d1(ab) = d1(a)σ1(b) + σ1(a)d1(b)

= d1(a)
d1(b)

2
+
d1(a)

2
d1(b)

= d1(a)d1(b)

for all a, b ∈ A. Hence d1 : A → C is a complex homomorphism. We know that
every complex homomorphism on a Banach algebra is continuous. Clearly σ1 is
also continuous. Since ϕ was arbitrary, d and σ are m-weakly continuous. �

Suppose that a ∈ A we define La : A → A by La(b) = ab for all b ∈ A. Set
LA = {La | a ∈ A}. It is clear that LA is a subalgebra of B(A), here B(A)
denotes the set of all continuous linear mapping from A into A. It is well known
that a ∈ Q(A) if and only if La ∈ Q(LA).

Theorem 2.14. Q(A) = lan(A) if and only if Q(LA) = {0}.

Proof. Suppose that Q(LA) = {0} and a ∈ Q(A). So La ∈ Q(LA) = {0}
and hence a ∈ lan(A). It means that Q(A) ⊆ lan(A). It is easy to see that
lan(A) ⊆ Q(A). Thus Q(A) = lan(A). Conversely, assume that Q(A) = lan(A).
Suppose that La ∈ Q(LA). So a ∈ Q(A) = lan(A). It follows that ab = 0 for all
b ∈ A. It means that La = 0. Hence Q(LA) = {0}. �

Theorem 2.15. Suppose that d : A → A is a σ-derivation such that σ is an
endomorphism and σ2 = σ. If σdσ is a continuous mapping and σ(a)σdσ(a) =
σdσ(a)σ(a) for all a ∈ A then σdσ(A) ⊆ σ(Q(A)) ⊆ Q(A). In particular if
d(A) ⊆ σdσ(A) then d(A) ⊆ σ(Q(A)).

Proof. First of all, we define another action on A by the following form: a • b =
σ(ab) for all a, b ∈ A. It is clear that A is an algebra by this action. We denote

this algebra by Ãσ . Put D = σdσ. It is clear that σD = Dσ = D and D is a
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σ-derivation on A. Moreover, D is a derivation on Ãσ. Because,

D(a • b) = D(σ(ab)) = D(σ(a)σ(b))

= D(σ(a))σ2(b) + σ2(a)D(σ(b))

= σ(D(a))σ(b) + σ(a)σ(D(b))

= D(a) • b+ a •D(b)

for all a, b ∈ Ãσ. Suppose that a ∈ A is a non-zero arbitrary element. We define

a linear mapping ∆La : B(Ãσ) → B(Ãσ) by ∆La(T ) = TLa − LaT for all T ∈
B(Ãσ). We have ∆La(D)(x) = (DLa−LaD)(x) = D(a•x)−a•D(x) = LD(a)(x)

for all x ∈ Ãσ. Therefore ∆2
La

(D) = ∆La(LD(a)) = LD(a)La−LaLD(a) = 0. Hence

∆La(D) ∈ Q(B(Ãσ)). This implies that LD(a) ∈ Q(LÃσ). So D(a) ∈ Q(Ãσ).
Since Dσ = σD = D, D(a) ∈ Q(A). It means that σdσ(A) ⊆ Q(A). Since
D(A) ⊆ Q(A), σD(A) ⊆ σ(Q(A)). Hence σdσ(A) ⊆ σ(Q(A)). Note that
σ(Q(A)) ⊆ Q(A). �

We know that if σ : A → A is an endomorphism such that σ2 = σ then we can

define Ãσ − algebra which introduced in 2.15. We want to define a norm on Ãσ
such that it is a Banach algebra. Suppose σ is continuous. Obviously ‖σ‖ ≥ 1.

We define ‖|a‖| = ‖σ‖‖a‖. Clearly Ãσ is a Banach algebra with respect to ‖|.‖|.

Theorem 2.16. Suppose that A is commutative and d : A → A is a σ-derivation
such that σ is a continuous endomorphism and σ2 = σ. Then σdσ(A) ⊆ σ(Q(A))
⊆ rad(A). In particular if d(A) ⊆ σdσ(A) then d(A) ⊆ σ(Q(A)) ⊆ rad(A).

Proof. Consider Ãσ-algebra with ‖|.‖|. Clearly it is a commutative Banach alge-

bra. We know that D = σdσ : Ãσ → Ãσ is a derivation. By Theorem 4.4 in [9],

D(Ãσ) ⊆ rad(Ãσ) = Q(Ãσ). Since Dσ = σD = D, D(A) ⊆ Q(A). A similar
argument to Theorem 2.15 gives the result. �

Definition 2.17. A Banach algebra A has the Cohen’s factorization property if
A2 = A, where A2 = {bc | b, c ∈ A}.

Corollary 2.18. Suppose that d : A → A is a σ-derivation such that all condi-
tions in Theorem 2.16 are hold and furthermore dσ = σd = d. If Q(LA) = {0}
and A has the Cohen’s factorization property then d is identically zero.

Proof. By Theorem 2.16, d(A) ⊆ Q(A). Since A is commutative and Q(LA) =
{0}, it follows from Theorem 2.14 that Q(A) = lan(A) = ann(A). Suppose that
a is an arbitrary element of A. Then there exist two elements b and c in A such
that a = bc. We have d(a) = d(bc) = d(b)σ(c) + σ(b)d(c) = 0. Since a was
arbitrary, d ≡ 0. �

Remark 2.19. Suppose that A is commutative and has the Cohen’s factorization
property and assume that d : A → A is a derivation. If Q(LA) = {0} then by
Theorem 4.4 of [9], we have d(A) ⊆ Q(A). It follows from Theorem 2.14 that
d ≡ 0.
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Theorem 2.20. Suppose B is commutative and d : A → B is a σ − derivation
such that σ is an isomorphism. Then d(A) ⊆ rad(B).

Proof. We define a map D : B → B by D(b) = dσ−1(b) for all b ∈ B. It is clear
that D is a derivation on B. According to Theorem 4.4 of [9], D(B) ⊆ rad(B).
Hence d(A) ⊆ rad(B). �

Proposition 2.21. Suppose that d : A → A is a σ−derivation such that σ2 = σ
and σ is an endomorphism. If dσ = σd then dn(σ(ab)) =

∑n
k=0(nk) dn−kσ(a) dkσ(b)

(n ∈ N and a, b ∈ A). With the convention that d0 = id, the identity operator
on A.

Proof. We consider Ãσ−algebra. Clearly d : Ãσ → Ãσ is a derivation. According
to part (i) of Proposition 18.4 of [1], we have dn(a • b) =

∑n
k=0(nk) dn−k(a) • dk(b)

for all a, b ∈ Ãσ. Therefore

dn(σ(ab)) =
n∑
k=0

(nk)σ(dn−k(a) dk(b))

=
n∑
k=0

(nk)σdn−k(a) σdk(b)

=
n∑
k=0

(nk)dn−kσ(a) dkσ(b).

�

Theorem 2.22. Suppose that d : A → A is a continuous σ − derivation such
that σ is an endomorphism and σ2 = σ. If dσ = σd and dσ is continuous then
edσ is a continuous endomorphism and ed is a continuous bijective mapping on
A.

Proof. First, we define a linear mapping d1 by the following form: d0
1 = σ and

d1 = dσ. Clearly dn1 = dnσ for all non-negative integer n. It follows from
Proposition 2.21 that dn1 (ab) =

∑n
k=0(nk)dn−k1 (a)dk1(b) for all a, b ∈ A. We have

ed1 =
∞∑
n=0

dn1
n!

= σ +
∞∑
n=1

dn1
n!

= σ +
∞∑
n=1

(dσ)n

n!

= σ +
∞∑
n=1

dnσ

n!

= (id+
∞∑
n=1

dn

n!
)σ

= edσ.

Since d1 is a continuous derivation, Proposition 18.7 of [1] implies that ed1(ab) =
ed1(a) ed1(b). Therefore edσ(ab) = edσ(a)edσ(b) for all a, b ∈ A. It means that
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ed1 = edσ is a continuous endomorphism on A. We know that d : Ãσ → Ãσ
is a continuous derivation. By Proposition 18.7 of [1], we obtain ed(a • b) =

ed(a) • ed(b), i.e. ed : Ãσ → Ãσ is a continuous automorphism. Hence ed is a
continuous bijective mapping on A. �
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