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Abstract. Based on some numerical calculations, S.M. Ulam has conjectured
that the ergodic theorem holds true for any quadratic stochastic operator acting
on the finite dimensional simplex. However, M.I. Zakharevich showed that
Ulam’s conjecture is false in general. Later, N.N. Ganikhodjaev and D.V. Zanin
have generalized Zakharevich’s example in the class of quadratic stochastic
Volterra operators acting on 2D simplex. In this paper, we provide a class of
Lotka–Volterra operators for which any order Cesàro mean diverges. This class
of Lotka–Volterra operators encompasses all previously presented operators in
this context.

1. Introduction

A mapping V : Sm−1 → Sm−1, V (x) = x′ such that

x′k =
m∑

i,j=1

pijkxixj, ∀ k = 1,m

is called a quadratic stochastic operator, where pijk = pjik ≥ 0,
m∑
k=1

pijk = 1 for all

i, j, k and Sm−1 = {x = (x1, · · · , xm) ∈ Rm : xi ≥ 0,
m∑
i=1

xi = 1} is the (m − 1)-

dimensional standard simplex. Based on some numerical calculations, S.M. Ulam
conjectured [7] that the ergodic theorem holds true for any quadratic stochastic
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operator V , that is the limit

lim
n→∞

1

n

n−1∑
i=0

V (i)(x) (1.1)

exists for any x ∈ Sm−1 where V (i+1) = V ◦ V (i). However, Zakharevich showed
[8] that Ulam’s conjecture is false in general. He showed that the limit (1.1) does
not exist for the following quadratic stochastic operator V : S2 → S2 for any
x ∈ IntS2 \ {(1

3
, 1

3
, 1

3
)} where V (x) = x′ and

x′1 = x2
1 + 2x1x2, x′2 = x2

2 + 2x2x3, x′3 = x2
3 + 2x1x3. (1.2)

Some years later, Ganikhodjaev and Zanin [2] have generalized Zakharevich’s
example in the class of quadratic stochastic Volterra operators acting on 2D
simplex. Namely they proved that the limit (1.1) does not exist for the following
quadratic stochastic operator Va,b,c : S2 → S2 for any x ∈ IntS2 \ {P0} where
Va,b,c(x) = x′

x′1 = x1(1 + ax2− bx3), x′2 = x2(1− ax1 + cx3), x′3 = x3(1 + bx1− cx2) (1.3)

and P0 = ( c
a+b+c

, b
a+b+c

, a
a+b+c

) with nonzero parameters a, b, c ∈ [−1, 1] having
the same sign. If one has that a = b = c = 1 then V1,1,1 is Zakharevich’s example
given by (1.2).

We define the k-th order Cesàro mean by the following formula

Ces
(n)
k (x, V ) =

1

n

n−1∑
i=0

Ces
(i)
k−1 (x, V ) , k ∈ N (1.4)

and Ces
(i)
0 (x, V ) = V (i)(x).

It is clear that the first order Cesàro mean Ces
(n)
1 (x, V ) is nothing but 1

n

n−1∑
i=0

V (i)(x).

Based on these notations, the previous results say that the first order Cesàro

mean
{
Ces

(n)
1 (x, Va,b,c)

}∞
n=0

of the operator Va,b,c given by (1.3) diverges for any

x ∈ IntS2 \ {P0}. Surprisingly, it was proven in [6] that any order Cesàro mean{
Ces

(n)
k (x, Va,b,c)

}∞
n=0

of the operator Va,b,c diverges for any x ∈ IntS2 \ {P0}.
The reader may refer to [3, 5] for the resent development of this subject.

A mapping VF : Sm−1 → Sm−1 VF(x) = x′ such that

x′k = xk(1 + fk(x)), k = 1,m

is called a Lotka–Volterra operator where the mapping F ≡ (f1, f2, . . . , fm) :
Sm−1 → Rm satisfies the following conditions:

10 The mapping F is continuous;
20 One has that fk(x) ≥ −1 for all x ∈ Sm−1 and k = 1,m;

30 One has that
m∑
k=1

xkfk(x) = 0 for all x ∈ Sm−1;

40 For every α ⊂ {1, 2, · · · ,m} one has that fk(x) > −1, ∀ x ∈ IntΓα, k ∈ α.
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where Γα = conv{ek}k∈α and {ek}mi=1 is the standard basis of Rm.
A Lotka–Volterra operator is a discrete analogy of a generalized predator-prey

model. It is worth of mentioning that a quadratic stochastic operator is the
Lotka–Volterra operator if and only if pijk = 0 whenever k 6∈ {i, j}.

In this paper, we present a new class of Lotka–Volterra operators (not quadratic
stochastic operator) defined on the two dimensional simplex for which the ergodic
theorem will fail.

2. Non-Ergodic Lotka–Volterra Operators

Let f : S2 → [−1, 1] be any C1−smooth functional (having the first order
continuous partial derivatives). We define the Lotka–Volterra operator Vf : S2 →
S2, Vf (x, y, z) = (x′, y′, z′) as follows

Vf :


x′ = x[1 + (ay − bz)f(x, y, z)]

y′ = y[1 + (cz − ax)f(x, y, z)]

z′ = z[1 + (bx− cy)f(x, y, z)]

(2.1)

where a, b, c ∈ [−1, 1].
It is clear that if f ≡ const then the Lotka–Volterra operator Vf is the quadratic

stochastic operator given by (1.3).
Throughout this paper, we always assume that the non-zero parameters a, b, c

have the same sign and f : S2 → [−1, 1] is a non-vanishing C1−smooth functional.
Moreover, we present the proofs of all results in the case a, b, c > 0 and f : S2 →
[m,M ] where 0 < m ≤M ≤ 1. In other cases, the proofs are similar.

It is easy to check that the fixed points of Vf are only points e1 = (1, 0, 0), e2 =
(0, 1, 0), e3 = (0, 0, 1), and P0 = ( c

a+b+c
, b
a+b+c

, a
a+b+c

). Moreover, P0 is repelling
and e1, e2, e3 are saddle points. The trajectory of Vf starting from any initial
point P ∈ ∂S2 \ {e1, e2, e3} moves along the boundary of the simplex as e1 →
e3 → e2 → e1.

Lemma 2.1. The omega limiting set ω(P ) of the trajectory of Vf starting from
any initial point P ∈ IntS2 \ {P0} is infinite and lies on the boundary ∂S2 of the
simplex S2.

Proof. We set P = (x, y, z), ϕ(P ) = xcybza and

ψ(P ) = [1 + (ay − bz)f(P )]c[1 + (cz − ax)f(P )]b[1 + (bx− cy)f(P )]a.

Due to Young’s inequality, we get that

ψ(P ) ≤
(

1 +
c(ay − bz)f(P ) + b(cz − ax)f(P ) + a(bx− cy)f(P )

a+ b+ c

)a+b+c

= 1.

On the other hand, we obtain that

ϕ
(
V

(n+1)
f (P )

)
= ϕ

(
V

(n)
f (P )

)
ψ
(
V

(n)
f (P )

)
≤ ϕ

(
V

(n)
f (P )

)
,

i.e.
{
ϕ
(
V

(n)
f (P )

)}∞
n=0

is a decreasing sequence and converges to some limit λ.

Since P 6= P0, we have that 0 ≤ λ < ϕ(P ) < ϕ(P0).
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If λ > 0 then 1 = lim
n→∞

ϕ
(
V

(n+1)
f (P )

)
ϕ
(
V

(n)
f (P )

) = lim
n→∞

ψ
(
V

(n)
f (P )

)
≤ 1. Consequently, for

any P ∗ ∈ ω(P ), one has that 1 = ψ(P ∗) = maxψ(P ), i.e, P ∗ = P0. However, this
contradicts to ϕ(P ∗) = λ < ϕ(P0). It shows that λ = 0, i.e.,

ω(P ) ⊂ ∂S2 = {x ∈ S2 : x1x2x3 = 0}.

Obviously, ω(P ) 6= {e1, e2, e3}. Since Vf (ω(P )) = ω(P ), the set {V (n)
f (P ∗)}∞n=0 ⊂

ω(P ) for P ∗ ∈ ω(P ) \ {e1, e2, e3} is infinite and so is also ω(P ). This completes
the proof. �

Let us introduce the following subsets of the simplex: G1 = {x
c
≥ y

b
≥ z

a
},

G2 = {x
c
≥ z

a
≥ y

b
}, G3 = { z

a
≥ x

c
≥ y

b
}, G4 = { z

a
≥ y

b
≥ x

c
}, G5 = {y

b
≥ z

a
≥ x

c
},

G6 = {y
b
≥ x

c
≥ z

a
}. The notation Gi ↪→ Gj stands for Vf (Gi) ⊂ Gi ∪Gj.

Lemma 2.2. In a long run time, the trajectory of Vf moves along the periodic
itinerary G1 ↪→ G2 ↪→ G3 ↪→ G4 ↪→ G5 ↪→ G6 ↪→ G1.

Proof. Let us show that G1 ↪→ G2. The rest is similar to this case. Since ω(P ) ⊂
∂S2 for any P ∈ IntS2 \ {P0}, in a long run time, one has that V

(n)
f (P ) ∈ ∂S2

ε =

{P ∈ S2 : dist(P, ∂S2) < ε} for sufficiently small ε. So, we want to show that
Vf (G1 ∩ ∂S2

ε ) ⊂ G1 ∪G2.
Obviously, for P = (x, y, z) ∈ G1 ∩ ∂S2

ε , one has that z < ε. Since ay ≥ bz and

ax ≥ cz, one has that x′

c
≥ x

c
≥ y

b
≥ y′

b
. On the other side, we have that

z′

a
≤ 2z

a
≤ 2ε

a
≤ min{a, b, c}

(a+ b+ c)c
≤ x

c
≤ x′

c

here, ε is sufficiently small, say ε < min{a,b,c}
2(a+b+c)

min{a
b
, b
a
, a
c
, c
a
, b
c
, c
b
}, which is suitable

for all cases. This means that x′

c
≥ max{y′

b
, z
′

a
}, i.e., Vf (P ) = P ′ ∈ G1 ∪G2. This

completes the proof. �

Let us choose a neighborhood U0 of P0 such that U0 ⊂ IntS2 and U1 = (G1 ∪
G2) \ U0, U2 = (G3 ∪G4) \ U0, U3 = (G5 ∪G6) \ U0 are convex sets which satisfy
U1 ∩ U2 ∩ U3 = ∅.

Lemma 2.3. Let P /∈ U , V
(k)
f (P ) ∈ U for all k = 1, n and V

(n+1)
f (P ) /∈ U , where

U is one of the sets Ui, i = 1, 2, 3 and P0 6= P ∈ IntS2. Then, n > A log B
ϕ(Vf (P ))

where A,B are some positive constants.

Proof. Let P = (x, y, z) and V
(k)
f (P ) = (xk, yk, zk). Without loss of generality,

we suppose that U = U1. Since P /∈ U1, one has that P ∈ G6, or equivalently,
y
b
≥ x

c
≥ z

a
. Since Vf (P ) ∈ U1, one has that Vf (P ) ∈ G1, or equivalently, x1

c
≥

y1
b
≥ z1

a
. Since V

(n+1)
f (P ) /∈ U1, one has that V

(n+1)
f (P ) ∈ G3, or equivalently,

zn+1

a
≥ xn+1

c
≥ yn+1

b
. Therefore, y ≥ α, x1 ≥ α, and zn+1 ≥ α where α = min{a,b,c}

a+b+c
.

We then obtain that

(i) y1 = y[1+(cz−ax)f(P )] = (1−af(P ))xy+y2 +(1+cf(P ))yz ≥ y2 ≥ α2;

(ii)
zn+1

z1

=
n∏
k=1

zk+1

zk
=

n∏
k=1

[1 + (bxk − cyk)f(xk, yk, xk)] ≤ 2n;
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(iii)
zn+1

z1

≥ α

z1

=

(
αa

za1

)1/a

=

(
xc1y

b
1α

a

ϕ(Vf (P ))

)1/a

≥
(
αa+2b+c

ϕ(Vf (P ))

)1/a

;

(iv) 2n ≥
(
αa+2b+c

ϕ(Vf (P ))

)1/a

, or equivalently, n > A log
B

ϕ(Vf (P ))
for some con-

stants A,B. This completes the proof.

�

Lemma 2.4. Let U be one of the sets Ui, i = 1, 2, 3 and P0 6= P ∈ IntS2. Let

(ni,mi)
∞
i=1 be a sequence of natural numbers such that V

(ni)
f (P ) /∈ U, V (ni+k)

f (P ) ∈
U for k = 1,mi, and V

(ni+mi+1)
f (P ) /∈ U . Then there exists a constant c such that

mi > cni.

Proof. Due to Lemma 2.1 and 2.2, one has that ni → ∞. Let ρ = max
P∈S2\U0

ψ(P ).

It is clear that ρ < 1. Then, ϕ(Vf (P )) = ϕ(P )ψ(P ) < ρϕ(P ) for any P ∈ S2 \U0.
Due to Lemma 2.3, we have that mi > A log B

ϕ(V
(ni)

f (P ))
> A′ log B

ρniϕ(P0)
> cni �

Corollary 2.5. Let U1ε, U2ε, U3ε be a sufficiently small disjoint neighborhoods of

the vertices of the simplex S2 and Uε = U1ε∪U2ε∪U3ε. Let Λn = Uε
⋂{

V
(k)
f (x)

}n
k=0

and #(Λn) be a number of elements of Λn. Then one has that lim
n→∞

#(Λn)
n

= 1.

Let Υ(x, Vf : U) be a function such that

Υ(x, Vf : U) =

{
1 if Vf (x) ∈ U,
0 if Vf (x) 6∈ U.

Let U1ε, U2ε, U3ε be a sufficiently small disjoint neighborhoods of the vertices
of the simplex S2 and U be one of the sets Uiε, i = 1, 2, 3. Suppose that x ∈ U .

We define the following sequence
{

Υ
(
x, V

(n)
f : U

)}∞
n=0

, i.e.,

1, 1, · · · , 1︸ ︷︷ ︸
p1

, 0, 0, · · · , 0︸ ︷︷ ︸
q1

, 1, 1, · · · , 1︸ ︷︷ ︸
p2

, 0, 0, · · · , 0︸ ︷︷ ︸
q2

, · · · (2.2)

Corollary 2.6. Let {pn, qn}∞n=1 be a sequence defined above. There exists a con-
stant c mentioned in Lemma 2.4 such that for any n ≥ 2 one has that

pn > c
n−1∑
i=1

(pi + qi), qn > c

(
n−1∑
i=1

(pi + qi) + pn

)
. (2.3)

Theorem 2.7. Let Vf : S2 → S2 be the Lotka–Volterra operator given by (2.1).
If non-zero parameters a, b, c have the same sign and f : S2 → [−1, 1] is a
non-vanishing C1−smooth functional then the limit (1.1) does not exist for any
x ∈ IntS2 \ {P0}.

Proof. Let us assume that lim
n→∞

1

n

n−1∑
k=0

V
(k)
f (P ) = P ∗ for any P ∈ IntS2 such

that P 6= P0. Suppose that P ∗ /∈ U1 and (ni,mi) are as in Lemma 2.4. Let
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δ = dist (P ∗, U1) and λi =
mi

ni
. Then λi > c and dist

(
1

n

n−1∑
k=0

V
(k)
f (P ), P ∗

)
<

δ

K
for sufficiently large K. We let

P ′ =
1

1 + λi

(
1

ni

ni−1∑
k=0

V
(k)
f (P )

)
+

λi
1 + λi

(
1

mi

ni+mi−1∑
k=ni

V
(k)
f (P )

)
.

Then, we have that

dist(P ′, P ∗) ≥ dist

(
1

ni

ni−1∑
k=0

V
(k)
f (P ), P ′

)
− δ

K

=
λi

1 + λi
dist

(
1

ni

ni−1∑
k=0

V
(k)
f (P ),

1

mi

ni+mi−1∑
k=ni

V
(k)
f (P )

)
− δ

K

≥ c

1 + c
dist

(
1

ni

ni−1∑
k=0

V
(k)
f (P ), U1

)
− δ

K

≥ c

1 + c

(
dist(P ∗, U1)− δ

K

)
− δ

K

≥
(

c

1 + c
− 1

K

2 + c

1 + c

)
δ >

δ

K

for sufficiently large n. This is a contradiction. This completes the proof �

It turns out that any order Cesàro mean
{
Ces

(n)
k (x, Vf )

}∞
n=0

of the Lotka–

Volterra operator Vf diverges for any x ∈ IntS2 \ {P0}. For that purpose, we
need one auxiliary result which was proven in [6].

Lemma 2.8. Let {1pn0qn}∞n=1 be a sequence defined by (2.2) in which pn, qn satisfy
the inequality (2.3). Then any order Cesàro mean of the sequence {1pn0qn}∞n=1

diverges.

Proof. For the sake of completeness, we present the proof of this technical lemma
in the case when the sequence {pn, qn}∞n=1 generates a geometric progression
{qn}∞n=0 for some integer q. In the general case, the technique is the same.

Consequently, we want to show that any (say k) order Cesàro mean of the

sequence {an}∞n=0 = {1qn0q
n+1}∞n=0 diverges. To do so, it is enough to show that

the sequence {γ(k)
n }∞n=0 diverges (see [1, 4]), where

γ(k)
n =

Ck−1
n+k−1a0 + Ck−1

n+k−2a1 + · · ·+ Ck−1
k−1an

Ck
n+k

and Cm
n = n!

m!(n−m)!
is the binomial coefficient. It is worth of mentioning that

Ck
n+k = Ck−1

n+k−1 + Ck−1
n+k−2 + · · ·+ Ck−1

k−1 .

We shall consider two subsequences of the sequence {γ(k)
n }∞n=0.
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Case I. Let n = 1 + q + · · ·+ q2m−1 = q2m−1
q−1

. We then obtain that

γ(k)
n =

Ck−1
n+k−1 +

m−1∑
i=1

[
Ck

n+k− q2i−1
q−1

− Ck

n+k− q2i+1−1
q−1

]
Ck
n+k

=
Ck−1
n+k−1

Ck
n+k

+ β(k)
n

Since lim
n→∞

Ck−1
n+k−1

Ck
n+k

= 0, it is enough to study the sequence {β(k)
n }∞n=0.

Let ri = q2i−1
q−1

and r′i = q2i+1−1
q−1

. It is easy to check that

β(k)
n =

m−1∑
i=1

[(n− ri + 1) · · · (n− ri + k)− (n− r′i + 1) · · · (n− r′i + k)]

(n+ 1) · · · (n+ k)

Let pi = q2i and δj = n− ri + j for j = 1, k. Since r′i = ri + pi, we get that

(n− ri + 1) · · · (n− ri + k)− (n− r′i + 1) · · · (n− r′i + k) =

= (−1)k+1

pki −
(∑

j

δj

)
pk−1
i + · · ·+ (−1)k−1

 ∑
j1...jk−1

δj1 · · · δjk−1

 pi


We know that

lim
m→∞

1

nk

m−1∑
i=1

pki =
(q − 1)k

q2k − 1
, lim

m→∞

1

nl+r

m−1∑
i=1

pli = 0.

Moreover, it is easy to check that∑
j1...jt

δj1 · · · δjt = Ct
k(n− ri)t + o(nt).

Consequently, after some algebraic manipulations, we obtain that

lim
m→∞

γ(k)
n = Γ

(k)
1 ≡ (−1)k+1

k−1∑
t=0

(−1)tCt
k

qk−t + 1
.

Case II. Let n = 1+ q+ · · ·+ q2m = q2m+1−1
q−1

. In the similar manner, we obtain

that

lim
m→∞

γ(k)
n = Γ

(k)
2 ≡ (−1)k+1

k−1∑
t=0

(−1)tqk−tCt
k

qk−t + 1
.

It is clear that Γ
(k)
1 +Γ

(k)
2 = 1 for any k. Moreover, it is easy to check that Γ

(k)
1 6= 1

2

and Γ
(k)
2 6= 1

2
. Therefore, Γ

(k)
1 6= Γ

(k)
2 for any k. This completes the proof. �

Lemma 2.8 immediately implies the following result which is the generalization
of Theorem 2.7.

Theorem 2.9. Let Vf : S2 → S2 be the Lotka–Volterra operator given by (2.1).
If non-zero parameters a, b, c have the same sign and f : S2 → [−1, 1] is a non-
vanishing C1−smooth functional then any order Cesàro mean defined by (1.4) of
the Lotka–Volterra operator Vf diverges for any x ∈ IntS2 \ {P0}.
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