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Abstract. Let (X , d, µ) be a geometrically doubling metric space and assume
that the measure µ satisfies the upper doubling condition. In this paper, the
authors, by invoking a Cotlar type inequality, show that the maximal bilinear
Calderón–Zygmund operators of type ω(t) is bounded from Lp1(µ) × Lp2(µ)
into Lp(µ) for any pi ∈ (1,∞] and bounded from Lp1(µ)×Lp2(µ) into Lp,∞(µ)
for p1 = 1 or p2 = 1, where p ∈ [1/2,∞), 1/p1 + 1/p2 = 1/p. Moreover,
if ~w = (w1, w2) belongs to the weight class Aρ~p(µ), using the John-strömberg
maximal operator and the John-strömberg sharp maximal operator, the au-
thors obtain a weighted weak type estimate Lp1(w1) × Lp2(w2) → Lp,∞(v~w)
for the maximal bilinear Calderón–Zygmund operators of type ω(t). By weak-
ening the assumption of ω ∈ Dini(1/2) into ω ∈ Dini(1), the results obtained
in this paper are substantial improvements and extensions of some known re-
sults, even on Euclidean spaces Rn.

1. Introduction and main results

As we all know, the Calderón–Zygmund theory has played an important role
in harmonic analysis. We may note that the underlying measure of these works
possess the measure doubling property,

µ(B(x, 2r)) ≤ Cµ(B(x, r)), (1.1)

where µ is a Borel measure, the ball B denotes B(x, r) = {y ∈ X : d(x, y) < r},
which is equipped with a fixed center x ∈ X and radius r > 0. A metric space
(X , d) equipped with such a measure µ is called a space of homogeneous type.
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However, recently, considerable attention has been paid to the study of when
the underlying measure only satisfies the polynomial growth condition, namely,
there exist positive C0 and n such that, for all x ∈ X and r ∈ (0,∞),

µ(B(x, r)) ≤ C0r
n. (1.2)

Although such a measure does not satisfy the doubling condition, many results
on the classical Calderón–Zygmund theory have been proved to still hold; see, for
example, [8, 16, 17] and some references therein.

We may also notice that the underlying measure satisfying the polynomial
growth condition (1.2) are different from, not more general than satisfying (1.1).
Recently, Hytönen [9] gave a new class of metric measure spaces (X , d, µ), which
are called non-homogeneous spaces. The new class of metric measure spaces are
sufficiently general to include in a natural way both the space of homogeneous
type and a metric space with polynomial growth condition, where the measure µ
satisfies the upper doubling condition (see Definition 1.2). The following notions
of geometrically doubling and upper doubling measures µ are originally from
Hytönen [9].

Definition 1.1. A metric space (X , d) is called geometrically doubling if there
exists a number N ∈ N such that any open ball B(x, r) ⊂ X can be covered by
at most N balls B(xi,

r
2
).

Definition 1.2. A Borel measure µ in the metric space (X , d, µ) is said to be an
upper doubling measure if there exists a dominating function λ: X × R+ → R+

and a constant Cλ such that:

(1) For any fixed x ∈ X , r 7−→ λ(x, r) is increasing.
(2) λ(x, 2r) ≤ Cλλ(x, r).
(3) The inequality µ(B(x, r)) ≤ λ(x, r) ≤ Cλλ(x, r/2) holds for all x ∈ X , 0 <

r <∞.
(4) λ(x, r) ≈ λ(y, r) for all r > 0, x, y ∈ X and d(x, y) ≤ r.

When λ(x, r) = µ(B(x, r)), the measure doubling is a special case of upper
doubling. If we take λ(x, r) equal to C0r

n, the measure µ as in (1.2) on Rn is also
an upper doubling measure.

In this paper, we assume that (X , d, µ) is a geometrically doubling metric space
and the measure µ is an upper doubling measure.

Bui and Doung [2] established a Calderón–Zygmund decomposition on (X , d, µ)
and obtained some properties about the boundedness of Calderón–Zygmund op-
erator on various function spaces. In the form of a Cotlar inequality, they also
obtain the boundedness of maximal Calderón–Zygmund operator.

We also note that multilinear Calderón–Zygmund theory has been studied by
many researchers, we can see [3, 5, 7, 11, 13]. Grafakos and Torres [6] investigated
the boundedness of maximal multilinear Calderón–Zygmund operator on product
of Lebesgue spaces. Moreover, some weighted norm inequalities are also obtained
for this maximal operator. Recently, Maldonado and Naibo [13] developed a
theory of the bilinear Calderón–Zygmund operator of type ω(t) on Euclidean
Rn and applied them to the investigation of para-products and bilinear pseudo-
differential operators with mild regularity. They obtained some properties of
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the maximal bilinear Calderón–Zygmund operator of type ω(t), as well as some
weighted estimates, where ω ∈ Dini(1/2) (see (1.3)).

However, there are few topics about multilinear singular integral on (X , d, µ).
Hu, Meng and Yang [7] established some weighted norm inequalities for the mul-
tilinear Calderón–Zygmund operators on the non-homogeneous spaces. Zheng
et al.[19] extended the bilinear Calderón–Zygmund operator of type ω(t) on
the non-homogeneous spaces and weakened the assumption of ω ∈ Dini(1/2)
to ω ∈ Dini(1).

Inspired by [7, 13, 19], it is natural to raise the following question:
How to establish corresponding results about maximal bilinear Calderón–Zygmund
operator of type ω(t) on non-homogeneous spaces (X , d, µ)?

The question is not motivated only by a mere quest to extend the bilinear
Calderón–Zygmund operators of type ω(t) from the classical Calderón–Zygmund
theory, but rather by their natural appearance in analysis (see [5, 13, 18]).

To state the main results, we now give the definition of bilinear Calderón–
Zygmund operator of type ω(t) and the corresponding maximal bilinear operators
of type ω(t) on (X , d, µ).

For a > 0, we write ω ∈ Dini(a) if ω : [0,∞) → [0,∞), ω is nondecreasing
and

|ω|Dini(a) :=

∫ 1

0

ωa(t)
dt

t
<∞. (1.3)

It is obvious that∫ 1

0

ω(t)
dt

t
=

∫ 1

0

ω
1
2 (t)ω

1
2 (t)

dt

t
≤ ω

1
2 (1)

∫ 1

0

ω
1
2 (t)

dt

t
.

Denote
1

λ(x, d(x, ỹ))
= min

i∈{1,2}

{
1

λ(x, d(x, yi))

}
.

Definition 1.3. Let K(x, y1, y2) be a locally integrable function defined away
from the diagonal x = y1 = y2 in (X )3 and ω : [0,∞)→ [0,∞) be a nondecreasing
function. We say that K(x, y1, y2) is a bilinear Calderón–Zygmund kernel of type
ω(t) if it satisfies the following size estimate

|K(x, y1, y2)| ≤
A

[λ(x, d(x, ỹ))]2
(1.4)

for some A > 0 and (x, y1, y2) ∈ (X )3 with x 6= yi for some i. Furthermore, we
have the smoothness estimates

|K(x, y1, y2)−K(x′, y1, y2)| ≤
A

[λ(x, d(x, ỹ))]2
ω

(
d(x, x′)∑2
i=1 d(x, yi)

)
(1.5)

whenever d(x, x′) ≤ 1
2

maxi∈{1,2} d(x, yi) and also that

|K(x, y1, y2)−K(x, y′1, y2)| ≤
A

[λ(x, d(x, ỹ))]2
ω

(
d(y1, y

′
1)∑2

i=1 d(x, yi)

)
, (1.6)
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|K(x, y1, y2)−K(x, y1, y
′
2)| ≤

A

[λ(x, d(x, ỹ))]2
ω

(
d(y2, y

′
2)∑2

i=1 d(x, yi)

)
(1.7)

whenever d(yi, y
′
i) ≤ 1

2
maxi∈{1,2} d(x, yi).

A bilinear operator T is said to be associated with a bilinear Calderón–Zygmund
kernel of type ω(t), if for f1, f2 are L∞ function with compact support and
x 6∈ ∩2i=1supp fi.

T (f1, f2)(x) =

∫
(X )2

K(x, y1, y2)f1(y1)f2(y2)dµ(y1)dµ(y2). (1.8)

If the bilinear operator T is associated with K(x, y1, y2) and can be extended
from Lr1(µ)×Lr2(µ) into Lr,∞(µ) for some 1 < ri <∞ (i = 1, 2) and r > 1 with∑2

i=1
1
ri

= 1
r
, or from Lr1(µ) × Lr2(µ) into L1(µ) for some 1 < ri < ∞ (i = 1, 2)

and
∑2

i=1
1
ri

= 1, then T is said to be a bilinear Calderón–Zygmund operator of

type ω(t).
Throughout this paper, the bilinear operator T associated kernel K(x, y1, y2)

is assumed to be that
L1(µ)× L1(µ)→ L1/2,∞(µ) (1.9)

and to satisfy that for all bounded functions f1, f2 with bounded support and
µ-almost every x ∈ X \ (

⋂2
j=1 supp(fj)). Let W be the norm of T in (1.9).

For ε > 0, define the truncated operator Tε by setting, for all x ∈ X ,

Tε(f1, f2)(x) =

∫
max{d(x,y1),d(x,y2)}>ε

K(x, y1, y2)f1(y1)f2(y2)dµ(y1)dµ(y2).

The maximal bilinear Calderón–Zygmund operator of type ω(t) is defined by
setting, for all x ∈ X ,

T ?(f1, f2)(x) = sup
ε>0
|Tε(f1, f2)(x)|. (1.10)

The classical Calderón–Zygmund operator of type ω(t) was studied by Yabuta
[18]. Our first goal in this paper is to obtain the boundedness of the maximal bi-
linear Calderón–Zygmund operators of type ω(t) on the non-homogeneous spaces
(X , d, µ).

Theorem 1.4. Consider ω ∈ Dini(1). Let K be a µ-locally integrable function
defined away from the diagonal x = y1 = y2 in (X )3, which satisfies (1.4), (1.5),
(1.6) and (1.7) . T ? is the maximal bilinear Calderón–Zygmund operators of type
ω(t) defined as in (1.10). Assume 1/p1 + 1/p2 = 1/p, then

(i) T ? can be extended to a bounded operator from Lp1(µ) × Lp2(µ) into Lp(µ)
for 1 < p1, p2 ≤ ∞, 1/2 ≤ p <∞.

(ii) T ? can also be extended to a bounded operator from Lp1(µ) × Lp2(µ) into
Lp,∞(µ) for p1 = 1 or p2 = 1.

Remark 1.5. Our conclusions improved the corresponding results in [13] by re-
ducing the condition of ω ∈ Dini(1/2) to ω ∈ Dini(1), even when (X , d, µ) =
(Rn, | · |, dx). On the other hand, since the concavity of ω implies the doubling
property of ω, which is not needed in Theorem 1.4, we can remove the concavity.
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Definition 1.6. [7] Let ρ ∈ [1,∞), ~p = (p1, p2) with p1, p2 ∈ [1,∞) and 1/p1 +
1/p2 = 1/p. A map ~w = (w1, w2) is said to belong to Aρ~p(µ) if w1 and w2 are
negative µ-measurable functions and there exists a positive constant C such that
for all balls B ⊂ X ,{

1

µ(ρB)

∫
B

v~w(x)dµ(x)

} 2∏
i=1

{
1

µ(ρB)

∫
B

[wi(x)]1−p
′
idµ(x)

}p/p′i
≤ C,

where, for all x ∈ X , v~w(x) =
∏2

i=1[wi(x)]p/p
′
i and, when pi = 1,{

1

µ(ρB)

∫
B

[wi(x)]1−p
′
idµ(x)

}p/p′i
is understood as (infBwi)

−1 for i ∈ {1, 2}. For a > 0, the notation aB :=
B(x, arB) stands for the concentric dilation of B, where the radius of B are
denoted by rB.

When ρ = 1 and (X , d, µ) = (Rn, | · |, dx), the weight class Aρ~p(µ) is introduced

by Lerner et al. in [11].
The second goal is to obtain a weighted estimate for the maximal bilinear

Calderón–Zygmund operator of type ω(t) on (X , d, µ). As pointed out by Orobitg
and Pérez [15], without the additional assumption that the faces of any ball have
µ measure zero, it is still unclear whether the reverse Hölder’s inequality holds
for u ∈ Aρ~p(µ), so we can only obtain the weighted weak type estimate under the
given conditions.

Theorem 1.7. Consider ω ∈ Dini(1). Let K(x, y1, y2) be a locally integrable
function defined away from the diagonal x = y1 = y2 in (X )3, which satisfies (1.4),
(1.5), (1.6) and (1.7). Let T ? be defined as in (1.10). Then for any p1, p2 ∈ [1,∞)
with 1/p = 1/p1 + 1/p2 and ~w = (w1, w2) ∈ Aρ~p(µ), there exists a constant C such

that for all f1 ∈ Lp1(w1) and f2 ∈ Lp2(w2),

‖T ?(f1, f2)‖Lp,∞(v~w) ≤ C‖f1‖Lp1 (w1)‖f2‖Lp2 (w2).

Remark 1.8. Lu and Zhang [12] established the end-point weak type estimate for
the bilinear Calderón–Zygmund operator T of type ω(t) on Euclidean Rn, as well
as some weighted estimates. We may notice that in their results the underlying
measure µ is the Lebesgue measure which satisfies (1.1). However, in our case µ
satisfies only the upper doubling condition, the estimates may become even more
complicated and many extra difficulties might raise, due to a weak structure of
the space (X , d, µ). For example, how to establish a bilinear Calderón–Zygmund
decomposition on (X , d, µ) and how to prove the end-point weak type estimate
(1.9) for the bilinear Calderón–Zygmund operator. To our best knowledge, these
problems have not been solved so far. We also want to point out that although
we state our results on the bilinear case, all results are valid in the multilinear
case without any essential difference and difficulty in the proof. With our results,
one can establish some estimates on multilinear para product and multilinear
pseudo-differential operators on the space (X , d, µ) (see [12] for this easy fact).
These works are related to results in [1, 4, 10, 14].
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Finally, we fix some notations and define some terminologies. For α, β > 1,
a ball B ⊂ X is said (α, β)-doubling if µ(αB) ≤ βµ(B). Hytönen [9] pointed

out that for any α ∈ (1,∞), β ∈ (C
log2 α
λ ,∞) and any ball B ⊂ X , there there

exists some j ∈ Z+ such that αjB is (α, β)-doubling. In what follows, for a fixed
ρ ∈ [1,∞), by a doubling ball B, we always mean that B is a (30ρ, β30ρ)-doubling
ball with

β30ρ > max
{

(30ρ)3n, C
3 log2 (30ρ)
λ

}
.

For any ρ ∈ [1,∞) and ball B ⊂ X , B̃ denotes the smallest (30ρ, β30ρ)-doubling

ball of the form (30ρ)jB with j ∈ Z+. For any two balls B ⊂ S, we define

KB,S =

∫
2S\B

1

λ(xB, d(x, xB))
dµ(x).

For all balls B ⊂ R ⊂ S, we have KB,R ≤ KB,S and for ρ ∈ [1,∞), there exists a
positive constant C, depending on ρ, such that for all balls B ⊂ S with rS < ρrB,
KB,S ≤ C.

We denote Lp(X , µ) by Lp(µ) for brevity. For p ≥ 1, p′ = p/(p−1) denotes the
dual exponent of p. The letter C always denotes a positive constant that may
vary at each occurrence, but is independent of all essential variables. The symbol
f . g means that there exists a positive constant C such that f ≤ Cg.

2. Cotlar type inequality and proof of Theorem 1.4

In this section, we will establish a lemma and a Cotlar type inequality. From
these, it is easy to deduce the desired result in Theorem 1.4.

Lemma 2.1. Suppose K is a µ-locally integrable function, which satisfies (1.4),
(1.5), (1.6) and (1.7). The bilinear operator T is defined as in (1.8). Assume
ω ∈ Dini(1), 1/2 ≤ p < ∞, 1/p1 + 1/p2 = 1/p, f1 ∈ Lp1(µ) and f2 ∈ Lp2(µ).
Then T extends boundedness from Lp1(µ) × Lp2(µ) into Lp(µ) for any p1, p2 ∈
(1,∞] and from Lp1(µ)× Lp2(µ) into Lp,∞(µ) for p1 = 1 or p2 = 1.

Lemma 2.1 can be proved by modifying the Theorem 1.5 in [19], we omit the
details of proof for brevity.

Next, we will introduce some maximal operator associated with the Cotlar type
inequality, which plays an important role in the proof of Theorem 1.4.

Let p ∈ (1,∞), s ∈ (0,∞) and τ ∈ (0,∞). The following maximal operators
are defined by setting for all f ∈ Lp(µ) and x ∈ X ,

M(τ),sf(x) = sup
B3x

{
1

µ(τB)

∫
B

|f(y)|sdµ(y)

} 1
s

,

M(τ)f(x) = sup
B3x

1

µ(τB)

∫
B

|f(y)|dµ(y).

If s = 1, M(τ),s is M(τ). It was pointed out by Hytönen [9] that M(τ),s and M(τ)

are bounded from Lp(µ) into itself with p ∈ (1,∞) and from L1(µ) into L1,∞(µ)
for τ ≥ 5.
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We also need the multilinear maximal operator M(η) (η > 1),

M(η)(f1, f2)(x) = sup
B3x

2∏
i=1

1

µ(ηB)

∫
B

|fi(yi)|dµ(yi). (2.1)

which is introduced by Lerner [11] when µ is Lebesgue measure and η = 1. It
is obvious that the operator M(η) is strictly controlled by the 2-fold product of
M(η).

Using the boundedness of M(30ρ),s and M(5ρ), it is easy to see that Theorem
1.4 can be deduced from Lemma 2.1 and the following theorem.

Theorem 2.2. Consider ω ∈ Dini(1), and let T be a bilinear Calderón–Zygmund
operator of type ω(t). The maximal bilinear operator T ? is defined as in (1.10).
Then, for all s > 0, ρ ∈ [1,∞), there exists a constant C such that

T ?(f1, f2)(x) ≤ C
{
M(30ρ),s[T (f1, f2)](x) +M(5ρ)(f1, f2)(x)

}
.

Proof of Theorem 2.2. Let x ∈ X be a point such that |T (f1, f2)(x)| <∞ and
Bx be the biggest (30ρ, β30ρ)-doubling ball centered at x of the form (30ρ)−kε,
k ≥ 1. Without loss of generality, we assume that Bx := B(x, (30ρ)−k0ε), k0 ≥ 1
is a fixed number. Split fi = f 0

i + f∞i , where f 0
i = fχ6Bx and f∞i = fχX\6Bx

(i = 1, 2).
We claim that for any z ∈ Bx,

|Tε(f1, f2)(x)| .M(5ρ)(f1, f2)(x) + |T (f1, f2)(z)− T (f 0
1 , f

0
2 )(z)|. (2.2)

We postpone the proof for (2.2) at the end of this section. First, let us describe
how we can complete the proof for Theorem 2.2 by virtue of (2.2). It is obvious
that

|Tε(f1, f2)(x)| .M(5ρ)(f1, f2)(x) + |T (f1, f2)(z)|+ |T (f 0
1 , f

0
2 )(z)|,

for all z ∈ Bx. Fix now 0 < s < 1
2
, taking the Ls

(
Bx,

dµ(x)
µ(Bx)

)
- norm with respect

to z, we have

|Tε(f1, f2)(x)| .M(5ρ)(f1, f2)(x) +

(
1

µ(Bx)

∫
Bx

|T (f1, f2)(z)|sdµ(z)

) 1
s

+

(
1

µ(Bx)

∫
Bx

|T (f 0
1 , f

0
2 )(z)|sdµ(z)

) 1
s

.

(2.3)

The assumption of boundedness in (1.9) leads to that∫
Bx

|T (f 0
1 , f

0
2 )(z)|sdµ(z)

= 2s

∫ ∞
0

λ2s−1|{z ∈ Bx : |T (f 0
1 , f

0
2 )(z)|

1
2 > λ}|dλ

. 2s

∫ ∞
0

λ2s−1 min

µ(Bx),
W

1
2

λ

(
2∏
i=1

‖fiχ6Bx‖L1

) 1
2

 dλ.
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Letting R = W
1
2

(∏2
i=1 ‖fiχ6Bx‖L1

) 1
2 . We have∫

Bx

|T (f 0
1 , f

0
2 )(z)|sdµ(z) . 2s

∫ R/µ(Bx)

0

λ2s−1µ(Bx)dλ+ 2s

∫ ∞
R/µ(Bx)

λ2s−2Rdλ

. CsR
2sµ(Bx)

1−2s.

Since Bx is (30ρ, β30ρ)-doubling ball, it follows that(
1

µ(Bx)

∫
Bx

|T (f 0
1 , f

0
2 )(z)|sdµ(z)

)1/s

. CsW
1

(µ(Bx))2

2∏
i=1

‖fiχ6Bx‖L1

. CsW

[
µ(5ρ× 6Bx)

µ(Bx)

1

µ(5ρ× 6Bx)

]2 ∫
6Bx

|f1(y1)|dµ(y1)

∫
6Bx

|f2(y2)|dµ(y2)

.M(5ρ)(f1, f2)(x).
(2.4)

Furthermore, (
1

µ(Bx)

∫
Bx

|T (f1, f2)(z)|sdµ(z)

)1/s

=

(
µ(30ρBx)

µ(Bx)

1

µ(30ρBx)

∫
Bx

|T (f1, f2)(z)|sdµ(z)

)1/s

.M(30ρ),s[T (f1, f2)](x).

(2.5)

According to the estimates of (2.3), (2.4), (2.5), we have

T ?(f1, f2)(x) .M(30ρ),s[T (f1, f2)](x) +M(5ρ)(f1, f2)(x).

Now we turn our attention to the proof of (2.2). Since

T (f1, f2)(z)− T (f 0
1 , f

0
2 )(z)

=

∫
max{d(x,y1),d(x,y2)}>6×(30ρ)−k0ε

K(z, y1, y2)f1(y1)f2(y2)dµ(y1)dµ(y2),

we only need to show that∣∣∣∣Tε(f1, f2)(x)−
∫
max{d(x,y1),d(x,y2)}>6×(30ρ)−k0ε

K(z, y1, y2)f1(y1)f2(y2)dµ(y1)dµ(y2)

∣∣∣∣
.M(5ρ)(f1, f2)(x).

(2.6)

Denoting B(x, ε) by B0, the corresponding estimate on the left of (2.6) is as
below,∣∣∣∣Tε(f1, f2)(x)−

∫
max{d(x,y1),d(x,y2)}>6×(30ρ)−k0ε

K(z, y1, y2)f1(y1)f2(y2)dµ(y1)dµ(y2)

∣∣∣∣
.

∣∣∣∣∫
max{d(x,y1),d(x,y2)}>ε

(K(x, y1, y2)−K(z, y1, y2))f1(y1)f2(y2)dµ(y1)dµ(y2)

∣∣∣∣
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+

∣∣∣∣∫
max{d(x,y1),d(x,y2)}>ε

K(z, y1, y2)f1(y1)f2(y2)dµ(y1)dµ(y2)

−
∫
max{d(x,y1),d(x,y2)}>6×(30ρ)−k0ε

K(z, y1, y2)f1(y1)f2(y2)dµ(y1)dµ(y2)

∣∣∣∣
:= φ1 + φ2.

We deal with the first term φ1, using the condition (1.5) and dividing the integral
as follows,

φ1 .
∫
d(x,y1)>ε
d(x,y2)>ε

f1(y1)f2(y2)

[λ(x, d(x, ỹ))]2
ω

(
d(x, z)∑2
i=1 d(x, yi)

)
dµ(y1)dµ(y2)

+

∫
d(x,y1)>ε
d(x,y2)<ε

+

∫
d(x,y1)<ε
d(x,y2)>ε

f1(y1)f2(y2)

[λ(x, d(x, ỹ))]2
ω

(
d(x, z)∑2
i=1 d(x, yi)

)
dµ(y1)dµ(y2)

:= I + II + III.
(2.7)

For term I, it will be that

I .
∞∑
k=1

k−1∑
j=1

∫
(30ρ)j−1ε<d(x,y2)≤(30ρ)jε

|f2(y2)|
∫
(30ρ)k−1ε<d(x,y1)≤(30ρ)kε

|f1(y1)|
[λ(x, d(x, y1))]2

×ω

(
d(x, z)

d(x, y1)

)
dµ(y1)dµ(y2)

+
∞∑
k=1

∞∑
j=k

∫
(30ρ)j−1ε<d(x,y2)≤(30ρ)jε

|f2(y2)|
[λ(x, d(x, y2))]2

ω

(
d(x, z)

d(x, y2)

)
×
∫
(30ρ)k−1ε<d(x,y1)≤(30ρ)kε

|f1(y1)|dµ(y1)dµ(y2)

:= I1 + I2.

Note that z ∈ Bx = B(x, (30ρ)−k0ε), we have d(x, y) < (30ρ)−k0ε,

I1 .
∞∑
k=1

1

[λ(x, (30ρ)kε)]2

∫
(30ρ)kB0

|f1(y1)|dµ(y1)ω

(
(30ρ)−k0ε

(30ρ)k−1ε

)

×
k−1∑
j=1

∫
(30ρ)j−1ε<d(x,y2)≤(30ρ)jε

|f2(y2)|dµ(y2)

.
∞∑
k=1

1

[λ(x, (30ρ)kε)]2

∫
(30ρ)kB0

|f1(y1)|dµ(y1)ω

(
(30ρ)−1ε

(30ρ)k−1ε

)
×
∫
(30ρ)k−1B0\B0

|f2(y2)|dµ(y2)

.
∞∑
k=1

[µ(5ρ(30ρ)kB0)]
2

[λ(x, (30ρ)kε)]2
1

[µ(5ρ(30ρ)kB0)]2

∫
(30ρ)kB0

|f1(y1)|dµ(y1)
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×
∫
(30ρ)kB0

|f2(y2)|dµ(y2) ω
(
(30ρ)−k

)
.M(5ρ)(f1, f2)(x)

∞∑
k=1

ω
(
(30ρ)−k

)
.M(5ρ)(f1, f2)(x).

Here the series
∑∞

k=1ω
(
(30ρ)−k

)
is equivalent to

∫ 1

0
ω(t)dt

t
, where ω ∈ Dini(1).

Next, we will deal with I2.

I2 .
∞∑
j=1

∫
(30ρ)j−1ε<d(x,y2)≤(30ρ)jε

|f2(y2)|
[λ(x, d(x, y2))]2

ω

(
d(x, z)

d(x, y2)

)
dµ(y2)

×
j∑

k=1

∫
(30ρ)k−1ε<d(x,y1)≤(30ρ)kε

|f1(y1)|dµ(y1)

.
∞∑
j=1

[µ(5ρ(30ρ)jB0)]
2

[λ(x, (30ρ)jε)]2
1

[µ(5ρ(30ρ)jB0)]2

∫
(30ρ)jB0

|f2(y2)|dµ(y2)

×
∫
(30ρ)jB0

|f1(y1)|dµ(y1) ω

(
(30ρ)−1ε

(30ρ)j−1ε

)
.M(5ρ)(f1, f2)(x)

∞∑
j=1

ω
(
(30ρ)−j

)
.M(5ρ)(f1, f2)(x).

The estimates of I1 and I2 lead to that I .M(5ρ)(f1, f2)(x) for z ∈ Bx.
In light of the symmetry of II and III, we only need to estimate II.

II .
∞∑
k=1

∫
(30ρ)k−1ε<d(x,y1)≤(30ρ)kε

|f1(y1)|
[λ(x, d(x, y1))]2

ω

(
d(x, z)

d(x, y1)

)
dµ(y1)

×
∫
d(x,y2)<ε

|f2(y2)|dµ(y2)

.
∞∑
k=1

1

[λ(x, (30ρ)kε)]2

∫
(30ρ)kB0

|f1(y1)|dµ(y1)ω

(
(30ρ)−k0ε

(30ρ)k−1ε

)
×
∫
B0

|f2(y2)|dµ(y2)

.M(5ρ)(f1, f2)(x)
∞∑
k=1

ω
(
(30ρ)−k

)
.M(5ρ)(f1, f2)(x).

According to the estimate of I, II and III, we get φ1 .M(5ρ)(f1, f2)(x).
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It remains to deal with φ2. Noticing the range of integration, we have

φ2 .
∫
6×(30ρ)−k0ε<d(x,y2)≤ε
6×(30ρ)−k0ε<d(x,y1)≤ε

|K(z, y1, y2)f1(y1)f2(y2)|dµ(y1)dµ(y2)

+

∫
6×(30ρ)−k0ε<d(x,y2)≤ε
d(x,y1)≤6×(30ρ)−k0ε

|K(z, y1, y2)f1(y1)f2(y2)|dµ(y1)dµ(y2)

+

∫
d(x,y2)≤6×(30ρ)−k0ε

6×(30ρ)−k0ε<d(x,y1)≤ε

|K(z, y1, y2)f1(y1)f2(y2)|dµ(y1)dµ(y2)

:= IV1 + IV2 + IV3.

(2.8)

Denote 6
− 1
k0 ×30ρ by %k0 . For term IV1, using the size condition (1.4), we have

IV1 .
k0−1∑
k=0

k0−1∑
j=k

∫
B(x,(%k0 )

k+1−k0ε)\B(x,(%k0 )
k−k0ε)

∫
B(x,(%k0 )

j+1−k0ε)\B(x,(%k0 )
j−k0ε)

× 1

[λ(z, d(z, ỹ))]2
|f1(y1)f2(y2)|dµ(y1)dµ(y2)

+

k0−1∑
k=0

k−1∑
j=0

∫
B(x,(%k0 )

k+1−k0ε)\B(x,(%k0 )
k−k0ε)

∫
B(x,(%k0 )

j+1−k0ε)\B(x,(%k0 )
j−k0ε)

× 1

[λ(z, d(z, ỹ))]2
|f1(y1)f2(y2)|dµ(y1)dµ(y2)

:= IV11 + IV12.

For z ∈ Bx, using the property (4) of λ ( see Definition 1.2), we have

IV11 .
k0−1∑
j=0

∫
B(x,(%k0 )

j+1−k0ε)\B(x,(%k0 )
j−k0ε)

1

[λ(z, d(z, y1))]2
|f1(y1)|dµ(y1)

×
j∑

k=0

∫
B(x,(%k0 )

k+1−k0ε)\B(x,(%k0 )
k−k0ε)

|f2(y2)|dµ(y2)

.
k0−1∑
j=0

[µ(B(x, 5ρ(%k0)
j+1−k0ε))]2

[λ(x, (%k0)
j+1−k0ε)]2

1

[µ(B(x, 5ρ(%k0)
j+1−k0ε))]2

×
∫
B(x,(%k0 )

j+1−k0ε)

|f1(y1)|dµ(y1)

∫
B(x,(%k0 )

j+1−k0ε)

|f2(y2)|dµ(y2).

By the similar methods used in [2], we get

k0−1∑
j=0

[µ(B(x, 5ρ(%k0)
j+1−k0ε))]2

[λ(x, (%k0)
j+1−k0ε)]2

. C,

thus,

IV11 .M(5ρ)(f1, f2)(x).
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An analogous argument with IV11 lead to that

IV12 .
k0−1∑
k=0

1

[λ(x, (%k0)
k+1−k0ε)]2

∫
B(x,(%k0 )

k+1−k0ε)\B(x,(%k0 )
k−k0ε)

|f2(y2)|dµ(y2)

×
∫
B(x,(%k0 )

k−k0ε)\B(x,(%k0 )
−k0ε)

|f1(y1)|dµ(y1)

.M(5ρ)(f1, f2)(x).

Furthermore,
IV1 . IV11 + IV12 .M(5ρ)(f1, f2)(x).

For term IV2, considering the size condition (1.4) and it follows that

IV2 .
∫
(%k0 )

−k0ε<d(x,y1)<ε

d(x,y2)<(%k0 )
−k0ε

1

[λ(z, d(z, ỹ))]2
|f1(y1)f2(y2)|dµ(y1)dµ(y2)

.
k0−1∑
k=0

∫
B(x,(%k0 )

−k0ε)

|f2(y2)|
∫
B(x,(%k0 )

k+1−k0ε)\B(x,(%k0 )
k−k0ε)

1

[λ(z, d(z, y1))]2

× |f1(y1)|dµ(y1)dµ(y2)

.
k0−1∑
k=0

[µ(x, 5ρ(%k0)
k+1−k0ε)]2

[λ(x, (%k0)
k+1−k0ε)]2

1

[µ(x, 5ρ(%k0)
k+1−k0ε)]2

∫
B(x,(%k0 )

k+1−k0ε)

|f1(y1)|

×
∫
B(x,(%k0 )

k+1−k0ε)

|f2(y2)|dµ(y1)dµ(y2)

.M(5ρ)(f1, f2)(x).

Analogously, we have

IV3 .M(5ρ)(f1, f2)(x).

The estimates of IV1, IV2 and IV3 imply that φ2 .M(5ρ)(f1, f2)(x). Collecting
the estimates of φ1 and φ2 , we get (2.6), then (2.2) holds obviously.

3. Some weighted estimates for T ?

3.1. Proof of Theorem 1.7. Firstly, we will introduce the weight class Aρp(µ)
and recall a lemma from [7]. In order to prove Theorem 1.7, we also need the
following Theorem 3.3.

Definition 3.1. Let ρ ∈ [1,∞), p ∈ (1,∞). A nonnegative µ-measurable func-
tion u is said to belong to Aρp(µ) weight if there exists a positive constant C such
that for all balls B ⊂ X ,{

1

µ(ρB)

∫
B

u(x)dµ(x)

}{
1

µ(ρB)

∫
B

[u(x)]1−p
′
dµ(x)

}p−1
. C.

A weight u is called an Aρ1(µ) weight if there exists a positive constant C such
that for all balls B ⊂ X ,

1

µ(ρB)

∫
B

u(x)dµ(x) ≤ C inf
y∈B

u(y),
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let Aρ∞(µ) =
⋃∞
p=1A

ρ
p(µ).

Lemma 3.2. [7] Let ρ ∈ [1,∞), M(η) be defined as in (2.1), for any p1, p2 ∈
[1,∞) with 1/p = 1/p1 + 1/p2 and ~w = (w1, w2) ∈ Aρ~p(µ), the operator M(η) is

bounded from Lp1(w1)× Lp2(w2) into Lp,∞(v~w).

Theorem 3.3. Consider ω ∈ Dini(1). Suppose K is a µ-locally integrable func-
tion, which satisfies (1.4), (1.5), (1.6) and (1.7). Let T ? be defined as in (1.10).
For any ρ ∈ [1,∞), u ∈ Aρ2p(µ) with p ∈ [1/2,∞), there exists a constant C such
that for all bounded functions f1, f2 with bounded support and x ∈ X ,

‖T ?(f1, f2)‖Lp,∞(u) ≤ C‖M(5ρ)(f1, f2)‖Lp,∞(u).

We postpone the proof for Theorem 3.3 at the end of this section.
Now we give the proof of Theorem 1.7. If ~w ∈ Aρ~p(µ), noticing that

v~w(x) =
∏2

i=1[wi(x)]p/p
′
i , using Hölder’s inequality with 1 = (p1−1)p

(2p−1)p1 + (p2−1)p
(2p−1)p2 , we

have {
1

µ(ρB)

∫
B

v~w(x)dµ(x)

}{
1

µ(ρB)

∫
B

[v~w(x)]1−(2p)
′
dµ(x)

}2p−1

.

{
1

µ(ρB)

∫
B

v~w(x)dµ(x)

}{∫
B

[w−11 (x)]
((2p)′−1)p

p1

(2p−1)p1
(p1−1)p dµ(x)

} (p1−1)p
p1

×
{∫

B

[w−12 (x)]
((2p)′−1)p

p2

(2p−1)p2
(p2−1)p dµ(x)

} (p2−1)p
p2

(
1

µ(ρB)

)2p−1

=

{
1

µ(ρB)

∫
B

v~w(x)dµ(x)

} 2∏
i=1

{
1

µ(ρB)

∫
B

[wi(x)]1−p
′
idµ(x)

}p/p′i
. C,

which means that v~w ∈ Aρ2p(µ). Taking u = v~w in Theorem 3.3 and using Lemma
3.2, it is easy to see that

‖T ?(f1, f2)‖Lp,∞(v~w) . ‖M(5ρ)(f1, f2)‖Lp,∞(v~w)

. ‖f1‖Lp1 (w1)‖f2‖Lp2 (w2),

that is, Theorem 1.7 has been proved.

Before the proof of Theorem 3.3, we will introduce some maximal operators
and give more lemmas. Denote by mBf the mean value of f on B, namely,
mBf = 1

µ(B)

∫
B
f(x)dµ. Let s ∈ (0, 1), ρ ∈ [1,∞). For any fixed ball B and

µ-measurable function f , define Mρ
0,s;B by setting

Mρ
0,s;B(f) = inf{t > 0 : µ({y ∈ B : |f(y) > t|}) < sµ(30ρB)},

when µ(B) > 0, and setting Mρ
0,s;B(f) = 0 when µ(B) = 0.

For any µ-measurable function f , the John–strömberg maximal operator Mρ
0,s

is defined by setting, for all x ∈ X ,

Mρ
0,sf(x) = sup

B3x
B is (30ρ, β30ρ)−doubling

Mρ
0,s;B(f),
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and the John–strömberg sharp maximal operator Mρ,]
0,s is defined by

Mρ,]
0,sf(x) = sup

B3x
Mρ

0,s;B[f −mB̃(f)] + sup
x∈B⊂S

B,S are (30ρ, β30ρ)−doubling

|mB(f)−mS(f)|
1 +KB,S

.

Let r ∈ (0,∞), ρ ∈ [1,∞). Define the operator Mρ,]
r by setting, for all f ∈

Lrloc(µ) and x ∈ X ,

Mρ,]
r f(x) = sup

B3x

[
1

µ(30ρB)

∫
B

|f(y)−mB̃(f)|rdµ(y)

] 1
r

+ sup
x∈B⊂S

B,S are (30ρ, β30ρ)−doubling

|mB(f)−mS(f)|
1 +KB,S

.

It is easy to show that for all f ∈ Lrloc(µ) and x ∈ X ,

Mρ,]
0,sf(x) ≤ s−1/rMρ,]

r f(x). (3.1)

These operators can be referred in [8]. In order to prove Theorem 3.3, we also
need the following lemmas about the above maximal operators.

Lemma 3.4. [7] Let ρ ∈ [1,∞), s ∈ (0, β−130ρ/4) and B be a (30ρ, β30ρ)-doubling
ball. Then for all µ−measurable functions f ,

|mB(f)| ≤Mρ
0,s;B(f).

Lemma 3.5. [7] Let ρ, p ∈ [1,∞), s ∈ (0, β−130ρ). Then for all µ-measurable func-
tion f and t ∈ (0,∞),

(i) {x ∈ X : |f(x)| > t} ⊂ {x ∈ X : Mρ
0,s(f)(x) ≥ t} ∪ E with µ(E) = 0.

(ii) For u ∈ Aρp(µ), there exists a positive constant C, independent of f and
t, such that

u({x ∈ X : Mρ
0,s(f)(x) > t}) ≤ Cs−pu({x ∈ X : |f(x)| > t}).

Lemma 3.6. [7] Let ρ ∈ [1,∞), s1 ∈ (0, β−130ρ/4), 0 < p <∞, u ∈ Aρ∞(µ). There
exists a constant C1 ∈ (0, 1), depending on s1 and u, and a positive constant C
such that for any s2 ∈ (0, C1s1),

(i) if µ(X ) =∞, f ∈ Lp0,∞(µ) for some p0 ∈ (0,∞) and, for all R ∈ (0,∞),

sup
t∈(0,R)

tpu({x ∈ X : |T ?(f1, f2)(x)| > t}) <∞,

then

‖Mρ
0,s1

(f)‖Lp,∞(u) ≤ C‖Mρ,]
0,s2

(f)‖Lp,∞(u).

(ii) If µ(X ) <∞, f ∈ Lp0,∞(µ) with p0 ∈ (0,∞), then

‖Mρ
0,s1

(f)‖Lp,∞(u) ≤ C‖Mρ,]
0,s2

(f)‖Lp,∞(u) + Cu(X )[s1µ(X )]−p/p0‖f‖pLp0,∞(µ).

Next, we should establish a pointwise estimate for the operator Mρ,]
r , combining

the above lemmas, we will deduce the main result in Theorem 3.3.
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Theorem 3.7. Let ω ∈ Dini(1), K(x, y1, y2) be a locally integrable function
defined away from the diagonal x = y1 = y2 in (X )3 and satisfies (1.4), (1.5),
(1.6) and (1.7). Let T ? be defined as in (1.10), for any ρ ∈ [1,∞), there exists
a constant C such that for all bounded functions f1, f2 with bounded support and
x ∈ X ,

Mρ,]
r [T ?(f1, f2)](x) .M(5ρ)(f1, f2)(x). (3.2)

In order to prove (3.2), as in the proof of Theorem 9.1 in [17], it suffices to
prove that(

1

µ(30ρB)

∫
B

|T ?(f1, f2)(y)− hB|δdµ(y)

) 1
δ

.M(5ρ)(f1, f2)(x) (3.3)

and

|hB − hS| . KB,SM(5ρ)(f1, f2)(x) (3.4)

hold for any balls B ⊂ S with x ∈ B := B(x, r), where S is a (30ρ, β30ρ)-doubling
ball, 0 < δ < 1. hB, hS will be chosen later. At the end of this subsection, we
will explain how to deduce (3.2) from (3.3) and (3.4).

Split each fi as fi = f 0
i + f∞i , f 0

i = fiχ6B and f∞i = fi− f 0
i , i = 1, 2. It follows

that

|T ?(f1, f2)(y)| .
∣∣T ?(f 0

1 , f
0
2 )(y)

∣∣+
∣∣T ? (f 0

1 , f
∞
2

)
(y)
∣∣

+
∣∣T ? (f∞1 , f 0

2

)
(y)
∣∣+ |T ?(f∞1 , f∞2 )(y)| .

Now we set

hB = mB

(
T ?
(
f 0
1 , f

∞
2

)
+ T ?

(
f∞1 , f

0
2

)
+ T ? (f∞1 , f

∞
2 )
)
,

hS = mS

(
T ?
(
f 0
1 , f

∞
2

)
+ T ?

(
f∞1 , f

0
2

)
+ T ? (f∞1 , f

∞
2 )
)
.

In the following, we prove (3.3) first.

1

µ(30ρB)

∫
B

|T ?(f1, f2)(y)− hB|δdµ(y)

.
1

µ(30ρB)

∫
B

|T ?(f 0
1 , f

0
2 )(y)|δdµ(y)

+
1

µ(30ρB)

1

µ(B)

∫
B

∫
B

∣∣∣∣ sup
ε>0

[
Tε
(
f∞1 , f

0
2

)
(y)− Tε

(
f∞1 , f

0
2

)
(z)
]

+ sup
ε>0

[
Tε
(
f 0
1 , f

∞
2

)
(y)− Tε

(
f 0
1 , f

∞
2

)
(z)
] ∣∣∣∣δdµ(z)dµ(y)

+
1

µ(30ρB)

1

µ(B)

∫
B

∫
B

sup
ε>0
|Tε(f∞1 , f∞2 )(y)− Tε(f∞1 , f∞2 )(z)|δ dµ(z)dµ(y)

:= D + E + F.
(3.5)

For the first term D, the estimate only involves the size condition (1.4). Kol-
mogorov’s inequality and the assumption of end-point boundedness (1.9) tell us
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that

D
1
δ .

(
µ(B)

µ(30ρB)

) 1
δ

‖T (f1χ6B, f2χ6B)‖L1/2,∞(B, dµµ(B))

.

(
µ(B)

µ(30ρB)

) 1
δ
[
µ(5ρ× 6B)

µ(B)

1

µ(5ρ× 6B)

]2 2∏
i=1

∫
6B

|fi(yi)|dµ(yi)

.

(
µ(B)

µ(30ρB)

) 1
δ
−2

M(5ρ)(f1, f2)(x) .M(5ρ)(f1, f2)(x).

Both E and F involve the regularity condition (1.5), we only give the estimate
of E, in the same way, we can get the similar result of F . We consider the
following two cases.
Case 1: 0 < ε < 5rB. For any y1 ∈ X \ 6B, y2 ∈ 6B and any t ∈ B(x, r), it is
easy to see that max{d(t, y1), d(t, y2)} = d(t, y1) > ε. So using condition (1.5) for
any y, z ∈ B(x, r), we have

|Tε
(
f∞1 , f

0
2

)
(y)− Tε

(
f∞1 , f

0
2

)
(z)|

.
∫
6B

∫
X\6B

|K(y, y1, y2)−K(z, y1, y2)||f1(y1)f2(y2)|dµ(y1)dµ(y2)

.
∫
6B

∫
X\6B

1

[λ(y, d(y, ỹ))]2
ω

(
d(z, y)∑2
i=1 d(y, yi)

)
|f1(y1)||f2(y2)|dµ(y1)dµ(y2)

.
∫
6B

|f2(y2)|
λ(y, d(y, y2))

dµ(y2)
∞∑
k=1

∫
6k+1B\6kB

|f1(y1)|
λ(y, d(y, y1))

ω

(
d(z, y)

d(y, y1)

)
dµ(y1)

.
µ(5ρ× 6B)

λ(xB, 6rB)

1

µ(5ρ× 6B)

∫
6B

|f2(y2)|dµ(y2)

×
∞∑
k=1

ω
(
6−k
) µ(5ρ× 6k+1B)

λ(xB, 6k+1rB)

1

µ(5ρ× 6k+1B)

∫
6k+1B

|f1(y1)|dµ(y1)

.M(5ρ)(f1, f2)(x)
∞∑
k=1

ω
(
6−k
)
.M(5ρ)(f1, f2)(x).

Case 2: ε ≥ 5rB. For y, z ∈ B(x, r), y1 ∈ X \ 6B, y2 ∈ 6B, we have the
following estimates:

|Tε
(
f∞1 , f

0
2

)
(y)− Tε

(
f∞1 , f

0
2

)
(z)|

.

∣∣∣∣∫
max{d(y,y1),d(y,y2)}>ε

K(y, y1, y2)f
∞
1 (y1)f

0
2 (y2)dµ(y1)dµ(y2)

−
∫
max{d(z,y1),d(z,y2)}>ε

K(y, y1, y2)f
∞
1 (y1)f

0
2 (y2)dµ(y1)dµ(y2)

∣∣∣∣
+

∣∣∣∣∫
max{d(z,y1),d(z,y2)}>ε

(K(y, y1, y2)−K(z, y1, y2))f
∞
1 (y1)f

0
2 (y2)dµ(y1)dµ(y2)

∣∣∣∣ .
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On the basis of the estimates of φ1 and φ2 in section 2, it is easy to obtain

|Tε
(
f∞1 , f

0
2

)
(y)− Tε

(
f∞1 , f

0
2

)
(z)| .M(5ρ)(f1, f2)(x),

|Tε
(
f 0
1 , f

∞
2

)
(y)− Tε

(
f 0
1 , f

∞
2

)
(z)| .M(5ρ)(f1, f2)(x).

So we have E .M(5ρ)(f1, f2)(x).
As a consequence of the estimates of D, E, F , we can get (3.3).
Next, we should prove (3.4) for chosen hB and hS. For any balls B ⊂ S with

x ∈ B, S is a (30ρ, β30ρ) doubling ball. Noting that S is a doubling ball, we

have S = S̃. Denote the smallest positive integer N such that 6S ⊂ (30ρ)NB by
NB,S. Let f 0

i = fiχ6B, fNi = fiχ(30ρ)NB, fBNi = fiχ(30ρ)NB\6B, f∞i = fiχX\(30ρ)NB,

fSi = fiχ6S and fSNi = fiχ(30ρ)NB\6S, write the difference hB−hS in the following
way:

|hB − hS| ≤

∣∣∣∣∣mB

(
T ?(fBN1 , f 0

2 )
) ∣∣∣∣∣+

∣∣∣∣∣mB

(
T ?(f 0

1 , f
BN
2 )

) ∣∣∣∣∣+

∣∣∣∣∣mB

(
T ?(fBN1 , fBN2 )

) ∣∣∣∣∣
+

∣∣∣∣∣mB (T ?(f∞1 , f
∞
2 ))−mS (T ?(f∞1 , f

∞
2 ))

∣∣∣∣∣
+

∣∣∣∣∣mB

(
T ?(f∞1 , f

N
2 )
)
−mS

(
T ?(f∞1 , f

N
2 )
) ∣∣∣∣∣

+

∣∣∣∣∣mB

(
T ?(fN1 , f

∞
2 )
)
−mS

(
T ?(fN1 , f

∞
2 )
) ∣∣∣∣∣

+

∣∣∣∣∣mS

(
T ?(fS1 , f

SN
2 )
) ∣∣∣∣∣+

∣∣∣∣∣mS

(
T ?(fSN1 , fS2 )

) ∣∣∣∣∣+

∣∣∣∣∣mS

(
T ?(fSN1 , fSN2 )

) ∣∣∣∣∣
=

9∑
i=1

Gi.

Firstly, for term G1, we deal with T ?(fBN1 , f 0
2 ), it follows from the size of kernel

(1.4), for all y ∈ B,

|T ?(fBN1 , f 0
2 )(y)|

.
∫
(30ρ)NB\6B

∫
6B

|f1(y1)||f2(y2)|
[λ(y, d(y, ỹ))]2

dµ(y2)dµ(y1)

.

NB,S−1∑
k=1

∫
(30ρ)k+1B\(30ρ)kB

|f1(y1)|
λ(y, d(y, y1))

dµ(y1) +

∫
30ρB\6B

|f1(y1)|
λ(y, d(y, y1))

dµ(y1)


×
∫
6B

|f2(y2)|
λ(y, d(y, y2))

dµ(y2)

.

NB,S−1∑
k=1

µ(5ρ× (30ρ)k+1B)

λ(xB, (30ρ)k+1rB)

1

µ(5ρ× (30ρ)k+1B)

∫
(30ρ)k+1B

|f1(y1)|dµ(y1)
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+
µ(5ρ× (30ρ)B)

λ(xB, (30ρ)rB)

1

µ(5ρ× (30ρ)B)

∫
(30ρ)B

|f1(y1)|dµ(y1)

]
× µ(5ρ× 6B)

λ(xB, 6rB)

1

µ(5ρ× 6B)

∫
6B

|f2(y2)|dµ(y2)

. (1 +KB,S)M(5ρ)(f1, f2)(x).

Thus,
G1 . (1 +KB,S)M(5ρ)(f1, f2)(x).

Using the similar method, we get

G2 . (1 +KB,S)M(5ρ)(f1, f2)(x).

Analogously,
G7 +G8 . KB,SM(5ρ)(f1, f2)(x).

Next, we consider T ?(fBN1 , fBN2 ). For y ∈ B, according to the size condition
(1.4), we have

|T ?(fBN1 , fBN2 )(y)|

.
∫
(30ρ)NB\6B

∫
(30ρ)NB\6B

|f1(y1)||f2(y2)|
[λ(y, d(y, ỹ))]2

dµ(y1)dµ(y2)

.
∫
30ρB\6B

∫
30ρB\6B

|f1(y1)||f2(y2)|
[λ(y, d(y, ỹ))]2

dµ(y1)dµ(y2)

+

NB,S−1∑
k=1

NB,S−1∑
j=1

∫
(30ρ)k+1B\(30ρ)kB

∫
(30ρ)j+1B\(30ρ)jB

|f1(y1)||f2(y2)|
[λ(y, d(y, ỹ))]2

dµ(y1)dµ(y2)

:= H1 +H2.

Noticing that y1, y2 ∈ 30ρB \ 6B, y ∈ B, it is obvious that d(y, yi) ≥ 5rB (i =
1, 2). The properties (4) of λ implies that

H1 .

[
µ((5ρ× 30ρ)B)

λ(xB, 5rB)

]2 2∏
i=1

1

µ((5ρ× 30ρ)B)

∫
30ρB

|fi(yi)|dµ(yi)

.M(5ρ)(f1, f2)(x).

Taking advantage of the similar methods that used in the estimates of IV1 in
(2.8), we get

H2 ≤M(5ρ)(f1, f2)(x).

The estimates of H1 and H2 give us that

G3 .M(5ρ)(f1, f2)(x).

Analogously,
G9 . KB,SM(5ρ)(f1, f2)(x).

For G4, G5, G6, involving the kernel condition (1.5), similar argument as that of
F and E in (3.5) yields

G4 +G5 +G6 .M(5ρ)(f1, f2)(x).
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Combining all the estimates for Gi with i ∈ {1, . . . , 9}, we get (3.4).

Finally, let us see how from (3.3) and (3.4) one gets (3.2). By the definition of
Mρ,]

r , for 0 < δ < 1, we have

1

µ(30ρB)

∫
B

∣∣T ?(f1, f2)(y)−mB̃(T ?(f1, f2))
∣∣δ dµ(y)

.
1

µ(30ρB)

∫
B

|T ?(f1, f2)(y)− hB|δ dµ(y) + |hB − hB̃|
δ + |mB̃(T ?(f1, f2))− hB̃|

δ.

Noting that mB(h)− c = mB(h− c), so |mB̃(T ?(f1, f2))− hB̃| . mB̃[T ?(f1, f2)−
hB̃]. Lemma 3.4 and (3.1) tell us that

|mB̃(T ?(f1, f2))− hB̃|
δ . |Mρ

0,s;B̃
[T ?(f1, f2)− hB̃]|δ

.
1

µ(B̃)

∫
B̃

∣∣T ?(f1, f2)(y)− hB̃
∣∣δ dµ(y).

Furthermore, for any two (30ρ, β30ρ)-doubling balls B ⊂ S,

|mB(T ?(f1, f2))−mS(T ?(f1, f2))|
. |mB[T ?(f1, f2)− hB]|+ |hB − hS|+ |mS[T ?(f1, f2)− hS]|
.Mρ

0,s;B[T ?(f1, f2)− hB] + |hB − hS|+Mρ
0,s;S[T ?(f1, f2)− hS]

.

(
1

µ(30ρB)

∫
B

|T ?(f1, f2)(y)− hB|δ dµ(y)

) 1
δ

+ |hB − hS|

+

(
1

µ(30ρS)

∫
S

|T ?(f1, f2)(y)− hS|δ dµ(y)

) 1
δ

.

Since (3.3) and (3.4) have been proved, (3.2) follows directly.

3.2. Proof of Theorem 3.3. We invoke the idea from [7, 8]. Considering the
following two cases.

Case I: µ(X ) =∞. We claim that for all R ∈ (0,∞),

sup
t∈(0,R)

tpu({x ∈ X : |T ?(f1, f2)(x)| > t}) <∞.

The above estimate can be obtained by employing the similar method used in
dealing with (3.9) of [7], we omit the details. Now we conclude the proof of
Theorem 3.3 in this case. Using Lemma 3.5 (i), Lemma 3.6(i), (3.1) and (3.2),
we have

‖T ?(f1, f2)‖Lp,∞(u) . ‖Mρ
0,s1

[T ?(f1, f2)]‖Lp,∞(u)

. ‖Mρ,]
0,s2

[T ?(f1, f2)]‖Lp,∞(u)

. ‖s−
1
δ

2 Mρ,]
δ [T ?(f1, f2)]‖Lp,∞(u)

. ‖M(5ρ)(f1, f2)‖Lp,∞(u).
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Case II: µ(X ) <∞. We choose p0 = 1/2 in Lemma 3.6. Then by the assump-
tion of the end-point boundedness of T : L1(µ)×L1(µ)→ L1/2,∞(µ), we see that
for u ∈ Aρ2p(µ),

u(X )[µ(X )]−2p‖T ?(f1, f2)‖pL1/2,∞(µ)
. u(X )[µ(X )]−2p

2∏
i=1

‖fi‖pL1(µ)

= u(X )

(
lim
rB→∞

2∏
i=1

1

µ(5ρB)

∫
B

|fi(y)|dµ(y)

)p

. u(X )
(
M(5ρ)(f1, f2)(x)

)p
. sup

t>0
tpu({x ∈ X :M(5ρ)(f1, f2) > t}),

The main result of Theorem 3.3 again follows from Lemma 3.5 (i), Lemma 3.6(ii),
(3.1) and (3.2). This completes the proof of the theorem.
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