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Abstract. It is shown that, in a non-necessarily Hausdorff real topological
vector space, if a subset is a countable disjoint union of convex sets closed in the
subset, then those convex sets must be its convex components. On the other
hand, by means of convex components we extend the notion of extreme point
to non-convex sets, which entails a new equivalent reformulation of the Krein–
Milman property (involving drops among other objects). Finally, we study the
nature of convex functions and provide some results on their support in order
to introduce the concept of multi-slice, that is, slices determined by convex
functions (instead of by linear functions). Among other things, we prove that
the boundary of a closed convex set with non-empty interior can be obtained
as the set of support points of a certain lower semi-continuous convex function
on that convex set.

1. Introduction and preliminaries

The theory of (arc-)connected components plays a fundamental role in general
topology with numerous applications to other fields of mathematics like geometry
or analysis. In this sense, in [13] this trend is followed by introducing the convex
components of a non-empty set in a real vector space. As an application of this
relatively new theory of convex components we extend the concept of extreme
point to non-convex sets, which will allow us to equivalently reformulate the
Krein–Milman property. We remind the reader that a Hausdorff locally convex
topological vector space is said to have the Krein–Milman property provided that
every bounded, closed, and convex subset has extreme points (see [9]).
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On the other hand, the study of slices has always had a crucial impact on
the theory of vector measures. We remind the reader that a slice of a convex
set in a real vector space is the intersection of that convex set with the upper
half-plane determined by a linear function. Actually, the slices serve as a bridge
between vector measures and the geometry of Banach spaces. One of the most
representative examples of such connection is given by the Phelps’ characteri-
zation of the Radon–Nikodym property in terms of strongly exposed points, in
other words, a Banach space has the Radon–Nikodym property if and only if
every bounded, closed, and convex subset is the closed convex hull of its strongly
exposed points (see [11, 3]). As a consequence of this interesting result we have
that the Radon–Nikodym property implies the Krein–Milman property (since ev-
ery strongly exposed point is trivially an extreme point). We remind the reader
that a strongly exposed point of a convex set is a point of the boundary of that set
on which the set is supported by a continuous linear functional in such a way that
every open set containing that point also contains a slice of that set determined
by the linear functional. Another application of slices appears in a very recent
paper (see [6]) and its aimed, amid other things, at finding a proper equivalent
renorming of weakly compactly generated Banach spaces in such a way that the
set of non-norm-attaining functionals is nowhere dense.

The final part of this manuscript is devoted to study the algebraic nature
of convex functions in order to define the concept of multi-slice, that is, slices
determined by convex functions (instead of just by linear functions). We call
them multi-slices because in many cases these multi-slices have many convex
components (as opposed to slices which typically are convex). As an application
of this we show that the boundary of a closed convex set with non-empty interior
can be obtained as the set of support points of a convenient lower semi-continuous
convex function on that convex set.

2. Convex components

This section is devoted to continue the study of the convex components of a
non-empty subset of a real vector space already initiated in [13] and successive
manuscripts. The reader may observe that there will be some sort of similarity
with the theory of connected components of a topological space. However, many
properties verified by the connected components are not shared by the convex
components.

Definition 2.1 (Valentine, 1964; [13]). Let X be a real vector space. Let M be
a non-empty subset of X. A subset C of M is said to be a convex component of
M if C is a maximal element of the set

{D ⊆M : D is convex}

partially ordered by the inclusion.

The first result we present here assures that every convex subset of a given set
is contained in a convex component.
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Theorem 2.2. Let X be a real vector space. Let M be a non-empty subset of X.
Every convex subset C of M is contained in a convex component of M .

Proof. Consider the non-empty inductive set

{D ⊆M : D is convex and C ⊆ D}
partially ordered by the inclusion. If (Di)i∈I is a chain of the previous set, then
C ⊆

⋃
i∈I Di and

⋃
i∈I Di is clearly convex, therefore it is an upper bound for the

previous chain. In virtue of the Zorn’s Lemma, the previous set has a maximal
element. It is not difficult to see that any maximal element of the above set must
be a convex component of M . �

As an immediate consequence of this result we have that the convex components
form a covering of the corresponding set. Later we will determine the cases where
the convex components form a partition. Now we will show that the convex
components of a closed subset of a topological vector space are also closed (this
result along with its proof can be found in [13] although we prefer to state it and
prove it here for the sake of completeness).

Theorem 2.3. Let X be a real topological vector space. If M is a non-empty
closed subset of X, then every convex component of M is also closed.

Proof. Let C be a convex component of M . It is well known that cl (C) is convex.
On the other hand, C ⊆ cl (C) ⊆ M . Therefore, by the maximality of C we
deduce that C = cl (C). �

Observe that this result cannot be generalized to the fact that the convex
components are always closed in the corresponding set, as the next example
shows.

Example 2.4. Consider in R2 the set

M := U`2∞ ∪ {(1, 1) , (1,−1)} ,
where U`2∞ denotes the open unit ball of `2∞. Every point in U`2∞ is contained in
two different convex components, none of them is closed in M .

An immediate consequence of Theorem 2.3 is the fact that in any real vector
space if a non-empty set is linearly closed, then its convex components are also
linearly closed. We remind the reader that in a real vector space a set is said to
be linearly closed provided that its complementary is linearly open, i.e., all of its
points are internal points (see [2]).

Corollary 2.5. Let X be a real vector space. If M is a non-empty linearly closed
subset of X, then every convex component of M is also linearly closed.

Proof. It is sufficient to realize that in any real vector space a set is linearly closed
if and only if it is closed when the vector space is endowed with the finest locally
convex vector topology. �

Notice that the set M in Example 2.4 has two convex components which are
not disjoint. This was never the case with the connected components. The
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next observation details in what cases a set is the disjoint union of its convex
components.

Fact 2.6. Let X be a real vector space. Let M be a non-empty subset of X. The
following conditions are equivalent:

(1) For every m ∈M there exists only one convex component of M containing
m.

(2) M is the disjoint union of its convex components.

The final result in this section is a sufficient condition for the convex compo-
nents to be pairwise disjoint. This sufficient condition involves closedness and
countability, so we will strongly rely on Sierpinski’s Theorem (see [4, p. 173]),
which states that no continuum (compact, connected, and Hausdorff) can be writ-
ten as a non-trivial countable union of pairwise disjoint closed subsets. However,
we first need some preliminary results that we will rely on.

Theorem 2.7 (Armario, Garćıa-Pacheco, and Pérez-Fernández, [1]). Let X be a
real topological vector space. The set

XT := {x ∈ X : x belongs to any neighborhood of 0}
is a closed bounded vector subspace of X whose induced topology is the trivial
topology.

Lemma 2.8. Let X be a real topological vector space. Let a 6= b ∈ X. The
following conditions are equivalent:

(1) There are a neighborhood of a and a neighborhood of b which are disjoint.
(2) a− b /∈ XT .

Proof.

(1)⇒(2) Let U and V be balanced and absorbing neighborhoods of 0 such that
(a+ U) ∩ (b+ V ) = ∅. Then a− b /∈ V − U . It is clear that V − U is a
balanced and absorbing neighborhood of 0. Therefore a− b /∈ XT .

(2)⇒(1) By hypothesis there exists a balanced and absorbing neighborhood V of
0 such that a− b /∈ V . Take another balanced an absorbing neighborhood
of 0 such that U + U ⊆ V . Finally, (a+ U) ∩ (b+ U) = ∅.

�

Lemma 2.9. Let X be a real topological vector space. Let c 6= d ∈ X. Then [c, d]
is Hausdorff if and only if [c, d] * x+XT for every x ∈ X.

Proof.

⇒ If [c, d] ⊆ x + XT for some x ∈ X, then [c, d] has the trivial topology in
virtue of Theorem 2.7 and thus it cannot be Hausdorff.

⇐ Suppose that [c, d] * x + XT for every x ∈ X. Let a 6= b ∈ [c, d]. Notice
that a − b /∈ XT . Indeed, if a − b ∈ XT , then [c, d] ⊆ b + XT which
contradicts the hypothesis. As a consequence, a− b /∈ XT and by Lemma
2.8 there are a neighborhood of a and a neighborhood of b which are
disjoint. The arbitrariness of a and b shows that [c, d] is Hausdorff.

�
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Now we are in the right position to prove a sufficient condition for the convex
components to be pairwise disjoint.

Theorem 2.10. Let X be a real topological vector space. Let M be a countable
disjoint union of convex subsets of X which are closed in M . Then the convex
components of M are exactly those closed convex sets.

Proof. Let us write

M =
⋃̇

i∈I
Ci

where I is countable and each Ci is a non-empty convex subset of X which is
closed in M . We will follow two steps:

• First, we will show that each Ci is a convex component of M . So, fix an
arbitrary j ∈ I. It is easy to understand, by bearing in mind Theorem
2.2, that Cj is contained in a convex component D of M . Assume to the
contrary that there exists d ∈ D \ Cj and consider any c ∈ Cj. Consider
the segment [c, d]. We will distinguish two possibilities to end up reaching
a contradiction:
(1) [c, d] is Hausdorff. In this case, [c, d] is homeomorphic to the closed

interval [0, 1] and thus it is a continuum. Now we can write

[c, d] =
⋃̇

i∈I
(Ci ∩ [c, d]) ,

where each Ci ∩ [c, d] is closed in [c, d] due to the fact that Ci is
closed in M and [c, d] is contained in M . However, this contradicts
that [c, d] is a continuum in virtue of Sierpinski’s Theorem (see [4, p.
173]).

(2) [c, d] is not Hausdorff. In this case we have that [c, d] ⊆ x + XT for
some x ∈ X in virtue of Lemma 2.9. As a consequence, [c, d] has the
trivial topology in accordance to Theorem 2.7. On the other hand,
Cj∩[c, d] is non-empty and closed in [c, d], therefore Cj∩[c, d] = [c, d],
which contradicts the fact that d /∈ Cj.

• In the second and final place, we will show that if D is a convex component
of M , then D = Cj for some j ∈ I. There must exist j ∈ I such that
D ∩Cj 6= ∅. If D \Cj 6= ∅, then we can use a similar argument as above
to reach a contradiction. As a consequence, D ⊆ Cj and by maximality
we have that D = Cj.

�

The next example shows that the hypotheses of countability and closedness in
the previous result are vital.

Example 2.11.

• Theorem 2.10 does not hold if we eliminate the hypothesis of countability
(even keeping the hypothesis of closedness). Indeed,

[0, 1] =
⋃̇

x∈[0,1]
{x} .
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• Theorem 2.10 does not hold if we eliminate the hypothesis of closedness
(even keeping the hypothesis of countability). Indeed, consider in R2 the
set

M := B`22
((−1, 0) , 1) ∪ U`22

((1, 0) , 1) ,

where B`22
and U`22

denote the closed and open unit ball of `22, respectively.

Notice that M is the disjoint union of two convex sets (one of which
is not closed in M). However, there are three different convex compo-
nents of M containing (0, 0): B`22

((−1, 0) , 1), {(0, 0)}∪U`22
((1, 0) , 1), and

[(−2, 0) , (2, 0)].

3. Extreme points of non-convex sets

This section is devoted to extend the notion of extreme point to the scope
of non-convex sets, which will allow us to equivalently reformulate the Krein–
Milman property. In this sense, we will generalize a result proven in [1, Theorem
4.1].

We would like to refer the reader to [8] wherein extreme points for non-convex
sets are shown to exist if the ambient space has the Radon–Nikodym property.

Definition 3.1. Let X be a real vector space. Let M be a non-empty subset of
X. An element m ∈ M is said to be an extreme point of M provided that the
following conditions holds: if C is a segment of M containing m, then m is an
extreme of C. The set of extreme points of M is usually denoted by ext (M).

The reader may immediately notice that the notion of extreme point previously
defined coincides with the classical notion of extreme point for convex sets. The
first result we present here on this topic relates the extreme points of a general
non-necessarily convex set with the extreme points of its convex components

Theorem 3.2. Let X be a real vector space. Let M be a non-empty subset of X
and let {Ci}i∈I be the set of convex components of X.

(1) ext (M) ⊆
⋃

i∈I ext (Ci).
(2) If Ci ∩ Cj = ∅ for all i 6= j ∈ I, then ext (M) =

⋃
i∈I ext (Ci).

Proof.

(1) Obvious since Ci ⊆M for every i ∈ I.
(2) Let x ∈ ext (Ci) for some i ∈ I. Let C be a segment of M containing

x. In accordance to Theorem 2.2 there exists j ∈ I such that C ⊆ Cj.
Therefore x ∈ Ci ∩ Cj which means by hypothesis that Ci = Cj. Since
x ∈ ext (Ci), we deduce that x is an extreme of C.

�

Notice that the converse to (2) of Theorem 3.2 does not hold true as shown in
the next example.

Example 3.3. Consider the 2-dimensional real Euclidean space, that is, `22. Take
M := 2B`22

\ U`22
, where B`22

and U`22
denote the closed and open unit ball of `22,
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respectively. It is not difficult to observe that the convex components of M are
the sets

Cf := M ∩ f−1 ([1,+∞))

where f ∈ S(`22)
∗ . Finally, it can be checked that

ext (M) =
⋃

f∈S
(`22)

∗

ext (Cf ) .

However, the convex components of M are not pairwise disjoint.

Our next aim is at providing an equivalent reformulation of the Krein–Milman
property. In order for this, we first remind the reader that given a vector space
X and a non-empty subset A of X, then:

• The balanced hull of A is defined as the intersection of all balanced subsets
of X containing A and denoted by bl (A). Furthermore,

bl (A) = {λa : λ ∈ BK, a ∈ A} .

• The convex hull of A is defined as the intersection of all convex subsets of
X containing A and denoted by co (A). Furthermore,

co (A) =

{
n∑

i=1

tiai : ti ∈ [0, 1] , ai ∈ A,
n∑

i=1

ti = 1

}
.

• The absolutely convex hull of A is defined as the intersection of all ab-
solutely convex (convex and balanced) subsets of X containing A and
denoted by aco (A). Furthermore,

aco (A) =

{
n∑

i=1

tiai : ti ∈ K, ai ∈ A,
n∑

i=1

|ti| ≤ 1

}
.

The reader may not forget that the convex hull of a balanced set is absolutely
convex but the balanced hull of a convex set may not be convex. On the other
hand, we remind the reader about the Krein–Milman property:

Definition 3.4 (Krein and Milman, 1940). Let X be a real topological vector
space:

(1) A closed bounded convex subset M of X is said to have the Krein–Milman
property exactly when ext (M) 6= ∅.

(2) X is said to have the Krein–Milmam property exactly when every closed
bounded and convex subset of X enjoys the Krein–Milman property.

This definition finds its birth in the very well known Krein–Milmam Theorem
(see [9]).

Theorem 3.5 (Krein and Milman, 1940). Let X be a Hausdorff locally convex
real topological vector space. Let M be a compact convex subset of X. Then M
has the Krein–Milman Property.
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The Krein–Milmam property was originally defined for Hausdorff locally convex
real topological vector spaces in the following way: A closed bounded convex
subset M of a Hausdorff locally convex real topological vector space X is said
to have the Krein–Milman property exactly when M = co (ext (M)). Essentially,
it can be shown that in a Hausdorff locally convex real topological vector space
the fact that every closed bounded convex subset is the closed convex hull of its
extreme points is equivalent to the fact that every closed bounded convex subset
has an extreme point. However, this equivalence does not hold in general for
real topological vector spaces. This is the reason for Definition 3.4. Examples
of real topological vector spaces verifying the Krein–Milman property include
all Banach spaces with the Radon–Nikodym property (in particular, all reflexive
Banach spaces). We will characterize the Krein–Milman property using drops
and the balanced hull of convex sets (which, as mentioned earlier, need not be
convex). We remind the reader that a drop in a real vector space X is a set of the
form co (M ∪ {x}) where M is a convex subset of X and x ∈ X \M . Obviously,
it turns out to be that x ∈ ext (co (M ∪ {x})). We refer the reader to [12, 10, 7]
for a wider perspective on drops in Banach spaces. Our equivalent reformulation
starts off with the following lemma:

Lemma 3.6. Let X be a real vector space. Let M be a convex subset of X.

(1) If x ∈ X \M , then ext (co (M ∪ {x})) \ {x} ⊆ ext (M).
(2) If 0 /∈M , then bl (M) = co (M ∪ {0}) ∪ co (−M ∪ {0}).
(3) If 0 /∈M , then ext (bl (M)) = (ext (co (M ∪ {0})) ∪ ext (co (−M ∪ {0})))\
{0}.

(4) ext (bl (M)) ⊆ ext (M) ∪ ext (−M).

Proof.

(1) Let tm+ (1− t)x ∈ ext (co (M ∪ {x})) \ {x} where m ∈M and t ∈ [0, 1].
Observe that t > 0 since tm + (1− t)x 6= x. On the other hand, t = 1
since tm+ (1− t)x ∈ ext (co (M ∪ {x})).

(2) It suffices to notice that co (M ∪ {0}) ∪ co (−M ∪ {0}) is the smallest
balanced set containing M .

(3) It is a direct consequence of (1) and (2).
(4) It is a direct consequence of (1) and (3).

�

Now we are in the right position to state and prove the main theorem in this
section.

Theorem 3.7. Let X be a Hausdorff locally convex real topological vector space.
The following conditions are equivalent:

(1) X has the Krein–Milmam property.
(2) If M ⊆ X is closed, bounded, and convex and x ∈ X \M , then

ext (co (M ∪ {x})) \ {x} 6= ∅.

(3) If M ⊆ X is closed, bounded, and convex and 0 /∈M , then ext (bl (M)) 6=
∅.
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Proof.

(1)⇒(2) Assume that X has the Krein–Milmam property. Let M ⊆ X be closed,
bounded, and convex and consider x ∈ X \M . Since X is Hausdorff and
locally convex and due to the fact that co (M ∪ {x}) is closed, bounded,
and convex, we have that

co (M ∪ {x}) = co (ext (co (M ∪ {x}))) .
If ext (co (M ∪ {x})) = {x}, then

co (M ∪ {x}) = co (ext (co (M ∪ {x}))) = {x} ,
which is impossible since x /∈M . As a consequence,

ext (co (M ∪ {x})) \ {x} 6= ∅.
(2)⇒(3) Let M be a closed, bounded, and convex subset of X not containing 0. In

accordance to (2) of Lemma 3.6, we have that

bl (M) = co (M ∪ {0}) ∪ co (−M ∪ {0}) .
By hypothesis,

ext (co (M ∪ {0})) \ {0} 6= ∅.
At this point it only remains to apply (3) of Lemma 3.6.

(3)⇒(1) Let M be a closed, bounded, and convex subset of X. By making a
translation if necessary, we can assume without any loss of generality that
0 /∈ M . By hypothesis we have that ext (bl (M)) 6= ∅. Finally, in virtue
of (4) in Lemma 3.6, we deduce that ext (M) 6= ∅.

�

4. Multi-slices determined by convex functions

In this final section we will define multi-slices by means of a convex function.
We can think of this as follows: linear functions are to slices what convex func-
tions are to multi-slices. The most representative example of a multi-slice is the
bi-slice, that is, the multi-slice determined by the absolute value of a linear func-
tion. These bi-slices are called like that because they have two convex components
(each of them a slice) when the convex set is balanced. Bi-slices appeared for the
first time in the literature of Banach spaces in [5] in order to show that if a real
Banach space admits an equivalent Féchet smooth norm, then it admits an equiv-
alent renorming in such a way that the set of non-norm-attaining functionals is
nowhere dense. Other examples of multi-slices will be given in the further subsec-
tions of this section. In particular, we will show that there is a convex function
determining a multi-slice with uncountably many convex components. Finally,
we will prove that, in Hausdorff locally convex real topological vector spaces, the
boundary of a closed convex subset with non-empty interior can be obtained via
a multi-slice determined by a convenient lower semi-continuous convex function
(this result is the analogue for convex functions of the one that states that every
maximal face of a closed convex subset with non-empty interior is an exposed
face).
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4.1. Convex functions and their support. We recall the reader that a real
valued function f : C → R defined on a convex subset C of a real vector space
X is called convex if, for any two points c1 and c2 in C and any t ∈ [0, 1],

f (tc1 + (1− t) c2) ≤ tf (c1) + (1− t) f (c2) .

Or, equivalently, the set

{(c, s) ∈ C × R : f (c) ≤ s}
is convex in X ×R. A function f is said to be concave if −f is convex. Observe
that if f1, . . . , fn are convex functions and λ1, . . . , λn ≥ 0, then both λ1f1 +
· · · + λnfn and max {f1, . . . , fn} are also convex functions. Our first result in
this subsection is a very basic but fundamental theorem which determines what
convex sets coincide with the upper part of the graph of a convex function.

Theorem 4.1. Let X be a real vector space. Let D be a convex subset of X ×R.
The following conditions are equivalent:

(1) There exist a convex subset C of X and a convex function f : C → R
such that

D = {(c, s) ∈ C × R : f (c) ≤ s} .
(2) The following two assertions hold:

(a) For every (c, s) ∈ D we have that {(c, t) ∈ X × R : s ≤ t} ⊆ D.
(b) For every c ∈ πX (D) there exists min {s ∈ R : (c, s) ∈ D}.

Proof.

(1)⇒(2) If (c, s) ∈ D and t ≥ s, then t ≥ s ≥ f (c) and by hypothesis (c, t) ∈ D.
On the other hand, if c ∈ πX (D), then

f (c) = min {s ∈ R : (c, s) ∈ D} .
(2)⇒(1) Take C := πX (D) and define the following function:

f : C → R
c 7→ f (c) := min {s ∈ R : (c, s) ∈ D} .

In order to finish the proof it suffices to show that

D = {(c, s) ∈ C × R : f (c) ≤ s} ,
which is immediate by bearing in mind the assertions in (a) and in (b).

�

The final part of this subsection is aimed at studying the internal structure of
the support of convex functions. We begin with the following result, which relies
on the concept of “internal point” (see [2]). Given a real vector space E and a
non-empty subset A of E, we say that a ∈ E is an internal point of A when every
straight line passing through a has a small interval around a entirely contained in
A. More precisely, a ∈ E is an internal point of A when, for every x ∈ E, there
exists δx > 0 such that a + λx ∈ A for all λ ∈ [0, δx]. The set of internal points
of A is denoted by inter (A). Well known facts about internal points, which can
be found in [2], include the following:
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• In any topological vector space if a subset A is (absolutely) convex and
inter (A) 6= ∅, then inter (A) is also (absolutely) convex and cl (inter (A)) =
cl (A) .
• Every open set of any topological vector space is composed only of internal

points.
• The finest locally convex vector topology on a given vector space is the

one whose open sets are exactly the convex sets composed only of internal
points.

Theorem 4.2. Let X be a real vector space. Let f : X → R be a convex function.
If inter (f−1 (0)) 6= ∅, then f ≥ 0 and hence f−1 (0) is convex.

Proof. Suppose to the contrary that there exists y ∈ X such that f (y) < 0.
Take any x ∈ inter (f−1 (0)). There exists t > 0 sufficiently small such that
ty + (1− t)x ∈ f−1 (0). Now

0 = f (ty + (1− t)x) ≤ tf (y) < 0,

which is a contradiction. Finally, since f is a positive convex function we have
that

co
(
f−1 (0)

)
⊆ f−1 ((−∞, 0]) = f−1 (0) .

�

4.2. Slices, bi-slices, and multi-slices. Recall that a slice of a convex subset
M of a real vector space X is a set of the form

slc (M, f, δ) := f−1 ([δ,+∞)) ∩M,

where f : X → R is a linear function and δ is a real number. The reader may
notice that slc (M, f, δ) is always a convex set as long as it is non-empty. However,
sometimes in the literature of Banach spaces and topological vector spaces slices
determined by the absolute value of linear functions are also considered. We call
bi-slices to this type of slices. Trivially the absolute value of a linear function is
not linear but convex. This motivates us to introduce the following definition.

Definition 4.3. Let X be a real vector space. Let M be a convex subset of X.
The multi-slice of M determined by a convex function f : X → R and a real
number δ is defined by

slc (M, f, δ) := f−1 ([δ,+∞)) ∩M.

Our aim in this section is at determining the convex components of multi-slices.
We will begin by the bi-slices.

Theorem 4.4. Let X be a real vector space. Let M be a convex subset of X.
Consider a linear function f : X → R and a real number δ.

(1) If δ ≤ 0, then slc (M, |f | , δ) = M and thus it has only one convex compo-
nent.

(2) If δ > 0, then

slc (M, |f | , δ) = slc (M, f, δ) ∪̇ slc (M,−f, δ) ,
and thus it has at most two convex components.
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Proof. If δ ≤ 0, then there is really nothing to prove so let us suppose that δ > 0.
Now observe that if X is endowed with the finest locally convex vector topology,
then f is continuous and thus slc (M, f, δ) and slc (M,−f, δ) are both closed in
M . Finally, Theorem 2.10 assures that slc (M, f, δ) and slc (M,−f, δ) are the
only convex components of slc (M, f, δ) (provided they are non-empty). �

The next result shows why bi-slices are called like that.

Theorem 4.5. Let X be a real vector space. Let M be a convex subset of X with
inter (M) 6= ∅. The following conditions are equivalent:

(1) M is absolutely convex.
(2) If f : X → R is linear, δ > 0, and slc (M, |f | , δ) 6= ∅, then slc (M, |f | , δ)

has exactly two convex components.

Proof.

(1)⇒(2) Let m ∈ slc (M, |f | , δ). Note that we may assume without loss of gener-
ality that m ∈ slc (M, f, δ). Since M is symmetric it is easy to see that
−m ∈ slc (M,−f, δ). By (2) in Theorem 4.4 we have that slc (M, |f | , δ)
has two convex components.

(2)⇒(1) Suppose to the contrary that M is not symmetric. There exists m ∈ M
such that −m /∈ M . Now consider X endowed with the finest locally
convex vector topology. With this topology X turns out to be Hausdorff
and locally convex, so the Hahn–Banach Separation Theorem allows us
to deduce the existence of an element f ∈ X∗ such that

1 = f (−m) > sup f (M) .

Finally observe that slc (M, f, 1) = ∅ whereas slc (M,−f, 1) 6= ∅, there-
fore slc (M, |f | , 1) is convex and thus it only has one convex component.

�

Remark 4.6. Let X be a real vector space. Let M be a convex subset of X.

• Consider a linear function f : X → R and a real number δ. We can now
form a new convex function g := λf+ + γf− with λ, γ > 0.
(1) If δ ≤ 0, then slc (M, g, δ) = M and thus it has only one convex

component.
(2) If δ > 0, then

slc (M, g, δ) = slc

(
M, f,

δ

λ

)
∪̇ slc

(
M,−f, δ

γ

)
,

and thus it has at most two convex components.
• More generally, let f1, . . . , fn : X → R be positive convex functions with

disjoint support and λ1, . . . , λn, δ > 0. Then

slc (M,λ1f1 + · · ·+ λnfn, δ) =
n⋃

i=1

slc

(
M, fi,

δ

λi

)
,

and thus it has at most n convex components.
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4.3. A convex function determining a connected multi-slice with un-
countably many convex components. Consider the convex function

f : R2 → R
(x, y) 7→ f (x, y) := x2 + y2

and the convex set M := B`22
. For every 0 < δ < 1, the multi-slice

slc (M, f, δ) = M \ δU`22

is a connected set with uncountably many convex components.

4.4. Multi-slices which determine the boundary of a closed convex set
with non-empty interior. In the theory of Banach spaces or (Hausdorff locally
convex) topological vector spaces it is well known that any maximal convex subset
of the boundary of a closed convex set with non-empty interior is supported on
the convex set by a continuous linear functional. The analogue to this statement
for convex functions is the following result.

Theorem 4.7. Let X be a Hausdorff locally convex real topological vector space.
Let M be a non-empty closed convex subset of X with non-empty interior. There
exists a lower semi-continuous convex function f : X → R and a number δ > 0
such that slc (M, f, δ) = bd (M).

Proof. By making a translation if necessary we may assume without any loss
of generality that 0 ∈ int (M). In accordance to the Hahn–Banach Theorem,
for every m in the boundary of M we can find a continuous linear functional
m∗ : X → R such that

1 = m∗ (m) = supm∗ (M) .

Define
f : X → R

x 7→ f (x) := sup {m∗ (x) : m ∈M} .
Notice the following:

• f is well defined. Indeed, it is a direct consequence of the fact that M is
absorbing (because 0 is an interior point of M).
• f is convex. Indeed, it is a direct consequence of the fact that m∗ is convex

for every m ∈M .
• f is lower semi-continuous. Indeed, it is a direct consequence of the fact

that m∗ is lower semi-continuous for every m ∈M .
• slc (M, f, 1) = bd (M). Indeed, it is a direct consequence of the definition

of f .

�
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