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Abstract. The closed range and Fredholm properties of the upper-triangular
operator matrix M = ( A C

0 B ) ∈ B(H1 ⊕H2) are studied, where H1 and H2 are
Hilbert spaces. It is shown that the range R(M) of M is closed if and only if
the following statements hold:

(i) R(PR(A)⊥C|N (B)) is closed,

(ii) R(A) +R(PR(A)
C|N (PR(A)⊥C|N(B))) = R(A),

(iii) R(B∗) +R(PN (B)⊥C
∗|R(PR(A)⊥C|N(B))⊥) = R(B∗),

where PG denotes the orthogonal projection onto G along G⊥. Moreover, the
analogues for the Fredholmness of M are further presented.

1. Introduction and preliminaries

The closedness of the range of a linear operator is one of the most basic problems
in operator theory, and was shown to be very useful in various areas of mathemat-
ics and its applications. For example, many practical problems can be described
as the equation Tx = y with T being a linear operator between normed linear
spaces; while the stability of the underlying systems is closely connected with the
closedness of the range of T (see, e.g., [16]).

Let H1 and H2 be separable infinite dimensional complex Hilbert spaces. We
use B(H1,H2) to denote the set of all bounded linear operators from H1 into H2,
and abbreviate B(H1,H2) by B(H1) when H1 = H2. For A ∈ B(H1), B ∈ B(H2)
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and C ∈ B(H2,H1), the upper-triangular operator matrix

M =

(
A C
0 B

)
(1.1)

has been extensively studied. The spectrum and related problems of M were
considered, for example, in [2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 17] and the references
therein. In [10], the authors discussed the closedness of the partial operator
matrix MC = ( A C

0 B ) ∈ B(H1 ⊕H2), when the diagonal elements A ∈ B(H1) and
B ∈ B(H2) are given. The similar results⋂
C∈B(H2,H1)σm(MC)={λ∈σm(A) : n(B − λ)<∞} ∪ {λ∈σm(B) : d(A− λ)<∞},

⋃
C∈B(H2,H1)σm(MC) = σm(A) ∪ σm(B) ∪ {λ ∈ C : n(B − λ) =∞ = d(A− λ)}

are independently and almost simultaneously considered in [11]. In [7], the per-
turbations of left and right essential spectra of MC are given by⋂

C∈B(H2,H1)σle(MC) = σle(A) ∪ {λ ∈ σm(B) : d(A− λ) <∞}
∪{λ ∈ ρm(B) : d(A− λ) <∞, n(B − λ) =∞},⋂

C∈B(H2,H1)σre(MC) = σre(A) ∪ {λ ∈ σm(A) : n(B − λ) <∞}
∪{λ ∈ ρm(B) : n(B − λ) <∞, d(A− λ) =∞}.

The purpose of this paper is to characterize the closed range and Fredholm
properties of the upper-triangular operator matrix M defined as in (1.1). We
describe these properties using the particular block structure of M and the prop-
erties of its operator entries. It should be mentioned that every bounded linear
operator between two Hilbert spaces can be rewritten as an operator matrix form
based on the orthogonal decomposition of Hilbert spaces, and one way to study
an operator is to see it as an operator matrix with simpler operator entries.

Finally, we introduce some notations and terminologies. Let T ∈ B(H1,H2),
and let G be a linear subspace of a Hilbert space. Then, the closure and orthog-
onal complement of G are denoted by G and G⊥, respectively. Write PG for the
orthogonal projection onto G along G⊥ (when G is closed) and T |G for the restric-
tion of T to G. Also, we use N (T ) and R(T ) to denote the null space and range
of T , respectively. The symbol n(T ) represents the nullity of T which is equal to
dimN (T ), and d(T ) stands for the deficiency of T which is equal to dimR(T )⊥.

As usual, we say T is left (resp. right) invertible if there exists an operator
S ∈ B(H2,H1) such that ST = IH1 (resp. TS = IH2), and its left (resp. right)
inverse is denoted by T−1

l (resp. T−1
r ). If T is both left invertible and right

invertible, then T is invertible, and in this case its inverse T−1 clearly satisfies the
relation T−1

l = T−1 = T−1
r . It is well known that T is left invertible if and only if

T is bounded below, and if and only if N (T ) = {0} and R(T ) is closed; T is right
invertible if and only if T is surjective, i.e., R(T ) = H2 (see [14]). In particular,
if T is left (resp. right) invertible, then the operator PR(T )T : H1 → R(T ) (resp.
T |N (T )⊥ : N (T )⊥ → H2) is invertible. Also, T is left invertible if and only if its
adjoint T ∗ is right invertible.
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Recall that we say the operator T+ is a Moore-Penrose inverse of T in B(H2,H1),
if it solves the following system of operator equations

TT+T = T, T+TT+ = T+,
(TT+)∗ = TT+, (T+T )∗ = T+T.

Note that T is Moore-Penrose invertible if and only if its range R(T ) is closed,
and its Moore-Penrose inverse T+ can be determined uniquely (see [4]). For
T ∈ B(H1), the Moore-Penrose spectrum σm(T ) of T is then defined by

σm(T ) = {λ ∈ C : R(T − λ) is not closed}.
The set ρm(T ) consists of the complex numbers λ such that R(T − λ) is closed.
Clearly, ρm(T ) = C \ σm(T ). By the Banach closed range theorem (see [14]), we
know that λ ∈ σm(T ) if and only if λ̄ ∈ σm(T ∗).

Let R(T ) be closed. Then, the operator T is said to be left Fredholm (or upper
semi-Fredholm), if n(T ) <∞; while if d(T ) <∞, we say T is a right Fredholm (or
lower semi-Fredholm) operator. If T is both left Fredholm and right Fredholm,
then it is Fredholm. For T ∈ B(H1), the sets

σle(T ) = {λ ∈ C : T − λ is not left Fredholm},
σre(T ) = {λ ∈ C : T − λ is not right Fredholm},

σe(T ) = {λ ∈ C : T − λ is not Fredholm}
are called the left essential spectrum, right essential spectrum and essential spec-
trum, respectively. In view of the Fredholm alternative theorem, we have that
λ ∈ σre(T ) if and only if λ̄ ∈ σle(T ∗) (see [15]).

2. Closedness of range

In this section, we consider the closedness of the range of upper-triangular
operator matrices. We first review some basic results.

Lemma 2.1. (see [15]) For A ∈ B(H1,H2), the following statements hold.
(i) Let T ∈ B(H1,H2) be of finite rank. Then, R(A+ T ) is closed if and only

if R(A) is closed.
(ii) Let S ∈ B(H3,H4) with n(S) < ∞ and let T ∈ B(H2,H3) be invertible,

where H3 and H4 are Hilbert spaces. If R(STA) is closed, then R(A) is also
closed.

Lemma 2.2. (see [1]) Let A ∈ B(H1), B ∈ B(H2) and C ∈ B(H2,H1) with

R(A) = H1. If the range R(M) of the upper-triangular operator matrix M is
closed, then R(B) is closed.

Theorem 2.3. Let A ∈ B(H1), B ∈ B(H2) and C ∈ B(H2,H1). Then, the
range R(M) of the upper-triangular operator matrix M is closed if and only if
the following statements are fulfilled:

(i) R(PR(A)⊥C|N (B)) is closed;

(ii) R(A) +R(PR(A)C|N (PR(A)⊥C|N (B))) = R(A);

(iii) R(B∗) +R(PN (B)⊥C
∗|R(PR(A)⊥C|N (B))

⊥) = R(B∗).
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Proof. For notational convenience, we write

C4 = PR(A)⊥C|N (B),
C22 = PR(A)C|N (C4), C32 = PR(C4)⊥C|N (B)⊥ .

(2.1)

Under the orthogonal decompositions

N (A)⊥⊕N (A) = H1 = R(A)⊕R(A)⊥, N (B)⊥⊕N (B) = H2 = R(B)⊕R(B)⊥,

the upper-triangular operator matrixM ∈ B(H1 ⊕H2) admits the following block
representation:

M =


A1 0 C1 C2

0 0 C3 C4

0 0 B1 0
0 0 0 0

 :


N (A)⊥

N (A)
N (B)⊥

N (B)

→

R(A)
R(A)⊥

R(B)
R(B)⊥

 ,

where

A1 = PR(A)A|N (A)⊥ , B1 = PR(B)B|N (B)⊥ ,

C1 = PR(A)C|N (B)⊥ , C2 = PR(A)C|N (B), C3 = PR(A)⊥C|N (B)⊥ .
(2.2)

Evidently, R(M) is closed if and only if R(M1) is closed, where

M1 =

 A1 C1 C2

0 C3 C4

0 B1 0

 :

 N (A)⊥

N (B)⊥

N (B)

→
 R(A)
R(A)⊥

R(B)

 .

To complete the proof, it suffices to show that R(M1) is closed if and only if the
conditions (i), (ii) and (iii) hold.

Assume that R(M1) is closed. By Lemma 2.2, we know that R(M2) is closed,
where

M2 =

(
C4 C3

0 B1

)
:

(
N (B)
N (B)⊥

)
→
(
R(A)⊥

R(B)

)
.

From the factorization

M2 =

(
IR(A)⊥ 0

0 B1

)(
IR(A)⊥ C3

0 IN (B)⊥

)(
C4 0
0 IN (B)⊥

)
and Lemma 2.1, it follows that the range of

(
C4 0
0 IN (B)⊥

)
is closed. This implies

that R(C4) is closed, i.e., (i) is proven. In view of

N (C4)⊕N (C4)⊥ = N (B), R(A)⊥ = R(C4)⊕R(C4)⊥,

we may further write Mi (i = 1, 2) as the following new block forms:

M1 =


A1 C1 C21 C22

0 C31 C41 0
0 C32 0 0
0 B1 0 0

 :


N (A)⊥

N (B)⊥

N (C4)⊥

N (C4)

→

R(A)
R(C4)
R(C4)⊥

R(B)

 , (2.3)

M2 =

 C41 0 C31

0 0 C32

0 0 B1

 :

 N (C4)⊥

N (C4)
N (B)⊥

→
 R(C4)
R(C4)⊥

R(B)

 , (2.4)
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where

C21 = C2|N (C4)⊥ , C31 = PR(C4)C3, C41 = PR(C4)C4|N (C4)⊥ . (2.5)

Clearly, C41 is invertible. Applying Lemma 2.2 to (2.4), we see that R(
(
C32
B1

)
)

is closed, which together with the injectiveness of B1 shows that the column
operator

(
C32
B1

)
is left invertible. Thus, the following factorization

EFM1 = M3 (2.6)

holds, where

M3 =


A1 0 0 C22

0 0 C41 0
0 C32 0 0
0 B1 0 0

 ,

E =

IR(A) −C21C
−1
41 0

0 IR(C4) 0
0 0 IR(C4)⊥⊕R(B)

 , F =

IR(A) 0 −C1

(
C32
B1

)−1

l

0 IR(C4) −C31

(
C32
B1

)−1

l
0 0 IR(C4)⊥⊕R(B)

 .

Since E and F are both invertible on R(A) ⊕ R(C4) ⊕ R(C4)⊥ ⊕ R(B), the
closedness of R(M1) is equivalent to that of R(M3). The fact that

R(M3) = R((A1 C22))⊕R(C41)⊕R(
(
C32
B1

)
) (2.7)

is closed indicates that R((A1 C22)), R(C41) and R(
(
C32
B1

)
) are all closed. Since

R((A1 C22)) = R(A)+R(C22) and R(A) is dense in R(A), we immediately have

R(A) +R(C22) = R(A), i.e., (ii) is valid. By the Banach closed range theorem,
R(
(
C32
B1

)
) is closed if and only if R((C∗32 B∗1)) is closed. Since B∗ =

(
B1 0
0 0

)∗
=(

B∗1 0
0 0

)
, we have R(B∗1) = R(B∗). This together with

R((C∗32 B∗1)) = R(C∗32) +R(B∗1) = R(B∗1) +R(PN (B)⊥C
∗|R(PR(A)⊥C|N (B))

⊥)

implies the desired relation (iii).
Conversely, assume that (i), (ii) and (iii) are valid. By (i), the operator matrix

M1 possesses the block expression (2.3). The condition (iii) and the relation
R(B∗1) = R(B∗) imply that R((C∗32 B∗1)) is closed, which shows that R(

(
C32
B1

)
)

is also closed. While the condition (ii) ensure that the row operator (A1 C22)
is surjective, and its range R((A1 C22)) is naturally closed. Note that C41 is
invertible and the column operator

(
C32
B1

)
is left invertible. Thus, we still have

the factorization (2.6). Therefore, we need only prove the closedness of R(M3)
to accomplish the proof, which is trivial by the relation (2.7). �

In what follows, we adopt the notations defined as in the proof of Theorem 2.3,
i.e., in (2.1), (2.2) and (2.5). We now give an example illustrating Theorem 2.3.

Example 2.4. Let H1 = H2 = `2. Define the operators A ∈ B(`2), B ∈ B(`2)
and C ∈ B(`2) by Ax = (x1, 0,

x2

2
, 0, x3

3
, 0, · · · ), Bx = (x1, x3, x5, · · · ), Cx =

(0, x2, x4, 0, x6, 0, x8, 0, · · · ) for x = (x1, x2, x3, · · · ) ∈ `2. Consider M = ( A C
0 B ) ∈

B(`2 ⊕ `2).
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Obviously, R(A) is not closed and R(B) is closed. A direct calculation shows
that

R(A) = {x = (x1, 0, x3, 0, x5, 0, · · · ) :
∞∑
k=1

|x2k−1|2 <∞},

R(A)⊥ = N (B) = {x = (0, x2, 0, x4, 0, x6, · · · ) :
∞∑
k=1

|x2k|2 <∞}.

Then, we have that C4x = (0, x2, 0, 0, · · · ) for x = (0, x2, 0, x4, 0, x6, · · · ) ∈
N (B) and C22x = (0, 0, x4, 0, x6, 0, x8, 0, · · · ) for x = (0, 0, 0, x4, 0, x6, 0, x8, · · · ) ∈
N (C4). Clearly, R(A) +R(C22) = R(A), R(C4) and R(B∗) are closed. Thus, by
Theorem 2.3, the range R(M) of M is closed.

In [10], the authors considered the closedness of the range R(MC) of the partial
operator matrix MC . Using Theorem 2.3, we shall give two slightly different
statements.

Corollary 2.5. Let A ∈ B(H1) and B ∈ B(H2). Then, there exists an operator
C ∈ B(H2,H1) such that the range R(MC) of the partial operator matrix MC is
closed if and only if the following statements are fulfilled: n(B) =∞, if R(A) is not closed and R(B) is closed;

d(A) =∞, if R(A) is closed and R(B) is not closed;
n(B) =∞ = d(A), if none of R(A) and R(B) is closed.

Proof. Taking C = 0 will immediately yield that the range of MC is closed, if both
R(A) and R(B) are closed. Thus, to complete the proof, it suffices to consider
the other three incompatible cases. Without loss of generality, we only prove the
case when R(A) is not closed and R(B) is closed.

If there exists an operator C ∈ B(H2,H1) such that R(MC) is closed, then

R(A) +R(C22) = R(A) by Theorem 2.3. This immediately implies that R(C22)

is an infinite dimensional subspace of R(A), since R(A) is not closed. Obviously,
n(B) = ∞. Conversely, let n(B) = ∞. In view of the closedness of R(B),

it suffices to show that R(A) + R(C22) = R(A) and R(C4) is closed for some
C ∈ B(H2,H1). Clearly, there exists a closed subspace N of N (B) such that
N (B) = N ⊕ N⊥ with dimN = d (0 ≤ d ≤ d(A)) and dimN⊥ = ∞. Since

R(A) is not closed, dimR(A) = ∞. Let {ek}dk=1, {fk}d(A)
k=1 , {gk}∞k=1 and {hk}∞k=1

be orthogonal bases of N , R(A)⊥, N⊥ and R(A), respectively. Thus, we may

define the isometric operators U1 from N into R(A)⊥ and U2 from N⊥ onto R(A)
by

U1ei = fi, for i = 1, 2, · · · , d,
U2gi = hi, for i = 1, 2, · · · .

Take

C =

 0 0 U2

0 U1 0
0 0 0

 :

 N (B)⊥

N
N⊥

→
 R(A)

R
R⊥

 ,
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where R(A)⊥ = R ⊕ R⊥ with dimR being a d-dimensional closed subspace of
R(A)⊥. In this case,

C4 =

(
U1 0
0 0

)
:

(
N
N⊥

)
→
(
R
R⊥

)
, C22 = U2.

Hence,R(C4) = R is closed and C22, as an isometric operator fromN (C4)(= N⊥)

to R(A), is clearly surjective, i.e., R(C22) = R(A). Obviously, we also have

R(A) +R(C22) = R(A). The proof is finished. �

Corollary 2.6. (see [10]) Let A ∈ B(H1) and B ∈ B(H2). Then, the range
R(MC) of the partial operator matrix MC is closed for every C ∈ B(H2,H1) if
and only if R(A) and R(B) are both closed, and at least one of d(A) and n(B)
is finite.

Proof. Assume that the range R(MC) of MC is closed for every C ∈ B(H2,H1).
Taking C = 0, we then have the range R(( A 0

0 B )) is closed, which implies that the
ranges R(A) and R(B) are both closed. So, by Theorem 2.3, we further see that
the range R(C4) is closed for every C ∈ B(H2,H1). Thus, we claim that at least
one of d(A) and n(B) is finite. Otherwise, d(A) = ∞ = n(B), and then we can
conveniently find an operator C ∈ B(H2,H1) such that R(C4) is not closed.

Conversely, assume that R(A) and R(B) are closed, and at least one of d(A)
and n(B) is finite. Note that C4 is an operator from N (B) into R(A)⊥ for every
C ∈ B(H2,H1). Therefore, C4 must be a finite rank operator, and its range is
obviously closed for every C ∈ B(H2,H1). By Theorem 2.3, the conclusion is
established. �

Corollary 2.7. (see [11]) Let A ∈ B(H1) and B ∈ B(H2). Then,⋂
C∈B(H2,H1)σm(MC) = {λ ∈ σm(A) : n(B−λ) <∞}∪{λ ∈ σm(B) : d(A−λ) <∞}.
Proof. Replacing A by A − λ and B by B − λ, we see that the desired result
directly follows from Corollary 2.5. �

Corollary 2.8. (see [11]) Let A ∈ B(H1) and B ∈ B(H2). Then,⋃
C∈B(H2,H1)σm(MC) = σm(A) ∪ σm(B) ∪ {λ ∈ C : n(B − λ) =∞ = d(A− λ)}.
Proof. Replacing A by A − λ and B by B − λ, we see that the desired result
follows from Corollary 2.6 immediately. �

3. Fredholmness

This section is devoted to the Fredholmness of upper-triangular operator ma-
trices. Note that the notations are defined as in (2.1), (2.2) and (2.5).

Theorem 3.1. Let A ∈ B(H1), B ∈ B(H2) and C ∈ B(H2,H1). Then, the
upper-triangular operator matrix M is a left Fredholm operator if and only if the
following statements are fulfilled:

(i) R(C4) is closed;

(ii) R(A) +R(C22) = R(A);

(iii) R(B∗) +R(C32
∗) = R(B∗);

(iv) n(A) <∞, n(C22) <∞ and dimR(A) ∩R(C22) <∞.
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Proof. By Theorem 2.3, the closeness of R(M) is equivalent to the first three
conditions. So, we may assume that they are always satisfied.

From the proof of Theorem 2.3, it follows that the operator matrix M has the
block representation

M =


A1 0 C1 C21 C22

0 0 C31 C41 0
0 0 C32 0 0
0 0 B1 0 0
0 0 0 0 0

 :


N (A)⊥

N (A)
N (B)⊥

N (C4)⊥

N (C4)

→

R(A)
R(C4)
R(C4)⊥

R(B)
R(B)⊥

 . (3.1)

Then, we further have

M =


A1 0 C1 C21 C221 0
0 0 C31 C41 0 0
0 0 C32 0 0 0
0 0 B1 0 0 0
0 0 0 0 0 0

 :


N (A)⊥

N (A)
N (B)⊥

N (C4)⊥

N (C22)⊥

N (C22)

→

R(A)
R(C4)
R(C4)⊥

R(B)
R(B)⊥

 .

Here, C221 = C22|N (C22)⊥ , C41 is invertible and
(
C32
B1

)
is left invertible. Thus, the

null space N (M) of the upper-triangular operator matrix M is given by

N (M) = N (A)⊕N ((A1 C22))

= N (A)⊕N (C22)⊕ {
(

A−1
1 y

−C−1
221y

)
: y ∈ R(A) ∩R(C22)},

from which the theorem follows right away. �

The following is the dual result of Theorem 3.1.

Theorem 3.2. Let A ∈ B(H1), B ∈ B(H2) and C ∈ B(H2,H1). Then, the
upper-triangular operator matrix M is a right Fredholm operator if and only if
the following statements are fulfilled:

(i) R(C4) is closed;

(ii) R(A) +R(C22) = R(A);

(iii) R(B∗) +R(C32
∗) = R(B∗);

(iv) d(B) <∞, d(C32) <∞ and dimR(B∗) ∩R(C∗32) <∞.

As a direct consequence of Theorems 3.1 and 3.2, we have

Theorem 3.3. Let A ∈ B(H1), B ∈ B(H2) and C ∈ B(H2,H1). Then, the
upper-triangular operator matrix M is a Fredholm operator if and only if the
following statements are fulfilled:

(i) R(C4) is closed;

(ii) R(A) +R(C22) = R(A);

(iii) R(B∗) +R(C32
∗) = R(B∗);

(iv) n(A) <∞, n(C22) <∞ and dimR(A) ∩R(C22) <∞;
(v) d(B) <∞, d(C32) <∞ and dimR(B∗) ∩R(C∗32) <∞.
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Corollary 3.4. (see [7]) Let A ∈ B(H1) and B ∈ B(H2). Then, there exists
an operator C ∈ B(H2,H1) such that the partial operator matrix MC is a left
Fredholm operator if and only if A is a left Fredholm operator and the following
statements are fulfilled:{

d(A) =∞, if R(B) is not closed;
n(B) <∞ or n(B) =∞ = d(A), if R(B) is closed.

Proof. Assume that there exists an operator C ∈ B(H2,H1) such that the partial
operator matrix MC is a left Fredholm operator. Evidently, A is a left fredholm
operator. By Corollary 2.5, we know that d(A) = ∞ if R(B) is not closed. If

R(B) is closed, then replacing R(A) by R(A) and R(B) by R(B), we still have
the relation (3.1). In this case, A1 and B1 are clearly invertible. Thus, we deduce
that (

C41 0
0 0

)
:

(
N (C4)⊥

N (C4)

)
→
(
R(C4)
R(C4)⊥

)
is a left Fredholm operator. Therefore, n(C4) < ∞, which immediately implies
n(B) <∞ or n(B) = d(A) =∞.

Conversely, assume that A is a left Fredholm operator. If R(B) is not closed
and d(A) = ∞, then there exist infinite dimensional closed subspaces Ω and Ω⊥

such that R(A)⊥ = Ω⊕ Ω⊥, and hence taking

C =

0 0
0 T
S 0

 :

(
N (B)⊥

N (B)

)
→

R(A)
Ω

Ω⊥


will establish the desired result, where S : N (B)⊥ → Ω⊥ and T : N (B) → Ω
are both invertible operators. Indeed, C32 = S and C4 = ( T

0 ), which imply that

N (C4) = {0}, R(C4) = Ω and
(
C32
B1

)
: N (B)⊥ →

(
Ω⊥

R(B)

)
is left invertible.

So, n(C22) = 0 = dimR(A)∩R(C22), and
(
C∗32 B∗1

)
is surjective, i.e., R(C∗32) +

R(B∗1) = R(B∗). Thus, the assumptions of Theorem 3.1 are all satisfied. If R(B)

is closed and n(B) =∞ = d(A), we take C = ( 0 0
0 S ) :

(
N (B)⊥

N (B)

)
→
(
R(A)

R(A)⊥

)
, where

S : N (B) → R(A)⊥ is left invertible. One can verify the left Fredholmness of
MC similarly. The case when R(B) is closed and n(B) <∞ is trivial. �

The following is the dual result of Corollary 3.4.

Corollary 3.5. (see [7]) Let A ∈ B(H1) and B ∈ B(H2). Then, there exists
an operator C ∈ B(H2,H1) such that the partial operator matrix MC is a right
Fredholm operator if and only if B is a right Fredholm operator and the following
statements are fulfilled:{

n(B) =∞, if R(A) is not closed;
d(A) <∞ or n(B) =∞ = d(A), if R(A) is closed.

The two results below are obvious, and their proofs are omitted.

Corollary 3.6. (see [7]) Let A ∈ B(H1) and B ∈ B(H2). Then, there exists an
operator C ∈ B(H2,H1) such that the partial operator matrix MC is a Fredholm
operator if and only if the following statements are fulfilled:
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(i) A is a left Fredholm operator;
(ii) B is a right Fredholm operator;
(iii) n(B) =∞ = d(A), or n(B) and d(A) are both finite.

Corollary 3.7. Let A ∈ B(H1) and B ∈ B(H2). Then, the partial operator
matrix MC is a (left or right) Fredholm operator for every C ∈ B(H2,H1) if and
only if A and B are both (left or right) Fredholm operators.

Similar to the discussions in Section 2, we have

Corollary 3.8. (see [7]) Let A ∈ B(H1) and B ∈ B(H2). Then,⋂
C∈B(H2,H1)σle(MC) = σle(A) ∪ {λ ∈ σm(B) : d(A− λ) <∞}

∪{λ ∈ ρm(B) : d(A− λ) <∞, n(B − λ) =∞},⋂
C∈B(H2,H1)σre(MC) = σre(A) ∪ {λ ∈ σm(A) : n(B − λ) <∞}

∪{λ ∈ ρm(B) : n(B − λ) <∞, d(A− λ) =∞},⋂
C∈B(H2,H1)σe(MC) = σle(A) ∪ σre(B) ∪ {λ ∈ C : n(B − λ) <∞, d(A− λ) =∞}

∪{λ ∈ C : n(B − λ) =∞, d(A− λ) <∞}.

Corollary 3.9. Let A ∈ B(H1) and B ∈ B(H2). Then,⋃
C∈B(H2,H1)σ∗(MC) = σ∗(A) ∪ σ∗(B), where ∗ ∈ {le, re, e}.
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