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MINIMAL CUSCO MAPS
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Abstract. Let X be a locally compact space and let (Y, d) be a nontrivial
metric space such that d has the Heine–Borel property. We prove Ascoli-type
theorem for locally bounded quasicontinuous functions from X to Y . Using the
above result we also prove an Ascoli-type theorems for the spaces of minimal
usco and minimal cusco maps from X to R.

1. Introduction

In our paper we prove Ascoli-type theorems for locally bounded quasicontinu-
ous functions, minimal usco and minimal cusco maps.

The notion of quasicontinuity of real-valued functions of real variable was intro-
duced by Kempisty in [16]. The property of quasicontinuity was pehaps the first
time used by Baire in [1] in the study of points of continuity of separately con-
tinuous functions. For general topological spaces X and Y a function f : X → Y
is quasicontinuous [19] at x ∈ X if for every open set V ⊂ Y, f(x) ∈ V and open
set U ⊂ X, x ∈ U there is a nonempty open set W ⊂ U such that f(W ) ⊂ V . If
f is quasicontinuous at every point of X, we say that f is quasicontinuous.

Quasicontinuous functions are also very important in the study of minimal usco
and minimal cusco maps. In fact, every selection of of a minimal usco map is
quasicontinuous.

There is a rich literature concerning the study of quasicontinuity (see, for in-
stance [19], [17], [4]).

Date: Received: Jul. 1, 2014; Accepted: Oct. 29, 2014.
2010 Mathematics Subject Classification. Primary 46B25; Secondary 54C60.
Key words and phrases. Banach space, quasicontinuous function, densely equiquasicontinu-

ous, minimal usco map, minimal cusco map.
29



30 D. HOLÝ

The acronym usco (cusco) stands for a (convex) upper-semicontinuous non-
empty compact-valued set-valued map. Such set-valued maps are interesting
because they describe common features of maximal monotone operators, of the
convex subdifferential and of Clarke generalized gradient. (see [5])

Minimal usco and minimal cusco maps are used in many papers (see [5], [7],
[13], [10], [11], [12]). Minimal usco maps are a very convenient tool in the theory
of games (see [6]) or in functional analysis. (see [3]).

2. Compact subsets of (Q∗(X, Y ), τUC)

Let X, Y be Hausdorff topological spaces. By N we denote the set of positive
integers, R be the space of real numbers with the usual Euclidean metric and Rn

be the finite dimensional Euclidean space. The symbol A and IntA will stand
for the closure and interior of the set A in a topological space.

We say that a subset of X is quasi-open (or semi-open) if it is contained in the
closure of its interior. Then a function f : X → Y is quasicontinuous if and only
if f−1(V ) is quasi-open for every open set V ⊂ Y .

Denote by F (X, Y ) the set of all functions from X to Y , by C(X, Y ) the set of
all continuous functions in F (X, Y ), and by Q(X, Y ) the set of all quasicontinuous
functions from X to Y . Notice that if f : X → Y is a function, we will use the
symbol f also for the graph of f .

By τp and τUC we mean the topology of pointwise convergence on F (X, Y ) and
the topology of uniform convergence on compact sets on F (X, Y ), respectively.

Let H ⊂ F (X, Y ) and let x ∈ X, denote by H[x] the set {f(x) ∈ Y ; f ∈ H}.
If X is a locally compact space and (Y, d) is a metric space, the Ascoli theorem

[15] says that a subset E of (C(X, Y ), τUC) is compact if and only if it is closed in
(C(X, Y ), τUC), E [x] has a compact closure for each x ∈ X and is equicontinuous,
where a subset E of C(X, Y ) is equicontinuous provided that for each x ∈ X and
ε > 0 there is a neighbourhood U of x with d(f(x), f(z)) < ε for all z ∈ U and
f ∈ E .

If f is a function from X to a metric space (Y, d), we say that f is locally
bounded, if for every x ∈ X there is an open set U ⊂ X, x ∈ U such that
f(U) = {f(u) : u ∈ U} is a bounded subset of (Y, d). Denote by F ∗(X, Y ) the
space of all locally bounded functions from F (X, Y ). If G is a subset of F ∗(X, Y )
then we denote this set also by G∗.

Inspired by papers [9], [18] we give the following definition.

Definition 2.1. Let X be a topological space and (Y, d) be a metric space. We
say that a subset E of F ∗(X, Y ) is densely equiquasicontinuous at a point x of
X provided that for every ε > 0, there exists a finite family B of subsets of X
which are either quasi-open or nowhere dense such that ∪B is a neighbourhood
of x and such that for every f ∈ E , for every B ∈ B and for every p, q ∈ B,
d(f(p), f(q)) < ε. Then E is densely equiquasicontinuous provided that it is
densely equiquasicontinuous at every point of X.
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Lemma 2.2. Let X be a topological space and (Y, d) be a metric space. If E is
densely equiquasicontinuous subset of C(X, Y ), then E is equicontinuous.

Proof. Let x ∈ X and ε > 0. Because E is densely equiquasicontinuous, there
exist a finite family B = {B1, B2, · · · , Bn} of quasi-open or nowhere dense subsets
of X such that ∪B is a neighborhood of x and such that for every f ∈ E , for
every B ∈ B and for every p, q ∈ B, d(f(p), f(q)) < ε

2
. Since E ⊂ C(X, Y ), for

every f ∈ E , for every B ∈ B and for every p, q ∈ B, d(f(p), f(q)) < ε. Without
loss of generality we can suppose that x ∈ Bi for every i ∈ {1, 2, · · · , n}. Now
let z ∈ ∪B and f ∈ E . Then there is i ∈ {1, 2, · · · , n} such that z ∈ Bi and so
d(f(x), f(z)) < ε. �

Remark 2.3. Note that if {A1, A2, · · · , An} is a family of quasi-open sets of X,
then the set A = A1 ∩ · · · ∩ An is nowhere dense or it is a union of nowhere
dense set and quasi-open set. In fact, consider first the case IntA = ∅. If
x ∈ A, then there is i ∈ {1, 2, · · · , n} such that x ∈ Ai \ IntAi, hence A ⊂
A1 \IntA1∪· · ·∪An \IntAn. Since Ai is quasi-open for every i ∈ {1, 2, · · · , n},
A is nowhere dense. Now let IntA 6= ∅. Then we can show as above that the set
A \ IntA is nowhere dense and so A = (A \ IntA)∪ IntA is a union of a nowhere
dense set A \ IntA and a quasi-open set IntA.

Lemma 2.4. Let X be a topological space and (Y, d) be a metric space such that
every bounded set is totally bounded. If E is a densely equiquasicontinuous subset
of F ∗(X, Y ) and f ∈ Q∗(X, Y ), then E ∪ {f} is densely equiquasicontinuous.

Proof. Let x ∈ X and let ε > 0. Since E is densely equiquasicontinuous at x
there exists a finite family B = {B1, B2, · · · , Bn} of subsets of X which are either
quasi-open or nowhere dense such that ∪B is a neighbourhood of x and such that
for every f ∈ E , for every B ∈ B and for every p, q ∈ B, d(f(p), f(q)) < ε. Let O
be a neighbourhood of x such that O ⊂ ∪B and f(O) is bounded. Choose y0 ∈ Y
and let r > 0 be such that the set f(O) is contained in the closed ball Br(y0). Let
V1, V2, · · · , Vm be a finite open cover of Br(y0) where radius of Vj is less than
ε for every j ∈ {1, · · · , m}. For every j ∈ {1, 2, · · · , m} let Hj = f−1(Vj).
Then H = {Hj : j ∈ {1, 2, · · · , m}} is a finite family of quasi-open subsets of
X such that O ⊂ ∪H. For every i ∈ {1, 2, · · · , n}, j ∈ {1, 2, · · · , m} put
Pi,j = (Bi ∩Hj) \ Int(Bi ∩Hj) and Ri,j = Int(Bi ∩Hj), where Pi,j is a nowhere
dense set (if Bi and Hj are both quasi-open see Remark 2.3).

Denote by D the finite family containing all nonempty sets Pi,j and Ri,j where
i ∈ {1, 2, · · · , n}, j ∈ {1, 2, · · · , m}. Evidently O ⊂ ∪D and so ∪D is a
neighbourhood of x. It is easy to see that for every g ∈ E ∪{f}, for every D ∈ D
and for every p, q ∈ D, d(g(p), g(q)) < ε. �

It should be noted that bounded sets are totally bounded for a metric d if and
only if the metric of its completion has the Heine–Borel property.

Lemma 2.5. Let X be a topological space and (Y, d) be a metric space. Let
{fλ : λ ∈ Λ} be a net in Q∗(X, Y ) pointwise convergent to f ∈ F (X, Y ) and let
the set {fλ : λ ∈ Λ} be densely equiquasicontinuous. Then f ∈ Q∗(X, Y ).
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Proof. Let x ∈ X. Suppose, by the way of contradiction, that f is not quasicon-
tinuous at x. Then there exist ε > 0 and an open set U , x ∈ U such that for
every nonempty open set W ⊂ U there is z ∈ W such that d(f(x), f(z)) > ε.

Since {fλ : λ ∈ Λ} is densely equiquasicontinuous at x, there exists a finite
family B = {B1, B2, · · · , Bn} of subsets of X which are either quasi-open or
nowhere dense such that ∪B is a neighbourhood of x and such that for every
λ ∈ Λ, for every B ∈ B and for every p, q ∈ B, d(fλ(p), fλ(q)) <

ε
4
. Without loss

of generality we can suppose that x ∈ Bi for every i ∈ {1, 2, · · · , n}.
Denote by C the set of all numbers from j ∈ {1, 2, · · · , n} where IntBj 6= ∅.

We choose a zj ∈ IntBj ∩ U such that d(f(x), f(zj)) > ε for every j ∈ C. Since
the net {fλ : λ ∈ Λ} is pointwise convergent to f , there is λ ∈ Λ such that
d(f(x), fλ(x)) < ε

4
and d(f(zj), fλ(zj)) <

ε
4

for every j ∈ C.
We show that for ε

4
, the open set U ∩ (Int ∪ B) and for every nonempty open

set W ⊂ (U ∩ (Int ∪ B)) there exists w ∈ W such that d(fλ(x), fλ(w)) > ε
4
.

So let W ⊂ (U ∩ (Int ∪ B)). Let j ∈ C be such that IntBj ∩W 6= ∅ and let
w ∈ IntBj ∩W . Then d(fλ(w), fλ(zj)) <

ε
4
. We have

d(fλ(w), f(zj)) ≤ d(fλ(w), fλ(zj)) + d(fλ(zj), f(zj)) <
ε
4

+ ε
4

= 2ε
4

and d(fλ(x), f(x)) < ε
4
. So from inequality d(f(x), f(zj)) > ε follows that

d(fλ(x), fλ(w)) > ε
4
. Hence fλ is not quasicontinuous at x, a contradiction.

Suppose, by the way of contradiction, that f is not locally bounded at x.
Choose any y0 ∈ Y . Let U be a neighbourhood of x. For every n ∈ N there is
xn ∈ U ∩Int∪B such that d(f(xn), y0) > n. By passing to a subsequence there is
Bi ∈ B such that {xn : n ∈ N} ⊂ Bi. The net {fλ : λ ∈ Λ} pointwise converges
to f , so for every n ∈ N there is λn ∈ Λ such that d(fλ(xn), y0) > n for every
λ > λn. Then, since the set {fλ : λ ∈ Λ} is densely equiquasicontinuous at x,
d(fλ(z), y0) > n − ε

4
for every z ∈ Bi and for every λ > λn. From this it follows

that d(f(z), y0) ≥ n− ε
4

for every n ∈ N and for every z ∈ Bi, a contradiction. �

Corollary 2.6. Let X be a topological space and (Y, d) be a metric space. Let E
be a densely equiquasicontinuous and closed subset of (Q∗(X, Y ), τp). Then E is
closed also in (F (X, Y ), τp).

Proof. The proof follows from Lemma 2.5 �

Theorem 2.7. Let X be a topological space and (Y, d) be a metric space such
that every bounded set is totally bounded. Let E be a densely equiquasicontinuous
subset of Q∗(X, Y ). Then the topologies τp and τUC on E coincide.

Proof. Let {fλ : λ ∈ Λ} be a net in E which τp-converges to f ∈ Q∗(X, Y ). We
show that {fλ : λ ∈ Λ} also τUC-converges to f .

By Lemma 2.4 the set E ∪ {f} is densely equiquasicontinuous, so for every
x ∈ X and every m ∈ N there exists a finite family Bm,x of quasi-open or nowhere
dense subsets of X such that ∪Bm,x is a neighbourhood of x and such that for
every g ∈ E ∪ {f}, for every B ∈ Bm,x and for every p, q ∈ B, d(g(p), g(q)) < 1

m
.

Let x ∈ X, m ∈ N. We claim that there is λm,x ∈ Λ such that d(f(u)), fλ(u)) ≤
3
m

for every λ ≥ λm,x and every u ∈ ∪Bm,x. For everyB ∈ Bm,x we choose a z ∈ B.

Since {fλ : λ ∈ Λ} τp-converges to f , there is λz,B such that d(f(z)), fλ(z)) < 1
m

for every λ ≥ λz,B. Let u ∈ B, λ ≥ λz,B.
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d(f(u), fλ(u)) ≤ d(f(u), f(z)) + d(f(z)), fλ(u)) ≤
≤d(f(u), f(z)) + d(f(z)), fλ(z)) + d(fλ(z)), fλ(u)) ≤

≤ 1

m
+

1

m
+

1

m
<

3

m
,

Then let λm,x be such that λm,x ≥ λz,B for every B ∈ Bm,x. Then we have that
d(f(u), fλ(u)) ≤ 3

m
for every u ∈ ∪Bm,x and every λ ≥ λm,x.

Let K be a compact subset of X. For every m ∈ N there is finite set of
points xj ∈ K, where j ∈ {1, 2, · · · , nm} such that the family ∪Bm,x1 ,
∪Bm,x1 , · · · ,∪Bm,xnm is a finite cover of K. Let λm be such that λm ≥ λm,xj
for every j ∈ {1, 2, · · · , nm}. Then d(f(u)), fλ(u)) ≤ 3

m
for every u ∈ K and

every λ ≥ λm. Thus the net {fλ : λ ∈ Λ} uniformly converges to f on K. �

Let Y be a metric space. We say that a subset H of F (X, Y ) is pointwise
bounded provided that for each x ∈ X the set H[x] is bounded in Y .

Let (Y, d) be a metric space. We say that d has the Heine–Borel property if each
closed bounded subset is compact. This notion is also known in the literature as
the boundedly compact space [2]. Therefore (Y, d) is a locally compact, separable
metric space and d is complete. In fact, any locally compact, separable metric
space has a compatible metric with the Heine–Borel property ([20], [9]).

Theorem 2.8. Let X be a locally compact space and (Y, d) be a nontrivial metric
space such that d has the Heine–Borel property. A subset E of (Q∗(X, Y ), τUC) is
compact if and only if it is closed, pointwise bounded and densely equiquasicon-
tinuous.

Proof. Let E be closed in (Q∗(X, Y ), τUC), pointwise bounded and densely equi-
quasicontinuous subset of Q∗(X, Y ). By Theorem 2.7 E is also τp-closed. Since E
is pointwise bounded for every x ∈ X, from the Heine–Borel property of d, there
exist a compact set Bx such that E [x] ⊂ Bx. The product

∏
x∈X{Bx : x ∈ X} is a

compact subset of Y X =
∏

x∈X{Yx : x ∈ X} with the relative product topology.
Since E is a τp-closed subset of the τp-compact set

∏
x∈X{Bx : x ∈ X} it follows

that E is τp-compact and hence by Theorem 2.7 E is τUC-compact.
For the converse, suppose that E is a compact subset of (Q∗(X, Y ), τUC). The

set E is closed because (Q∗(X, Y ), τUC) is a Hausdorff space.
The evaluation at x defined by ex(f) = f(x) for all f ∈ Q∗(X, Y ) is continuous

with respect to τp topology on Q∗(X, Y ) [15], hence it is continuous also with
respect to τUC topology on Q∗(X, Y ) (Theorem 2.7) and so the image E [x] of E
is compact and therefore is bounded.

For the proof of equiquasicontinuity of E we use an idea of the proof of Theorem
5.7 in [9]. Let x ∈ X and let O be an open neighbourhood such that O = A is
compact. Let ε > 0, we define a finite family B of quasi-open subsets of X at
follows. Since E is compact in (Q∗(X, Y ), τUC), there is f1, · · · , fn ∈ E such that

E ⊂ W (f1, A,
ε
3
) ∪ · · · ∪W (fn, A,

ε
3
).

Since every function from E is locally bounded and A is compact, for every i ∈
{1, 2, · · · , n} the set fi(A) is bounded. Choose y0 ∈ Y and let r > 0 be
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such that the set f1(A) ∪ · · · ∪ fn(A) is contained in the closed ball Br(y0). Let
V1, V2, · · · , Vm be a finite open cover of Br(y0) where radius of Vj is less than
ε
3

for every j ∈ {1, · · · , m}. For every i ∈ {1, 2, · · · , n}, j ∈ {1, 2, · · · , m}
put Bi

j = f−1i (Vj), which is a quasi-open set since fi is quasicontinuous.
Denote by F the set of all functions from {1, 2, · · · , n} to {1, 2, · · · , m}.

For every h ∈ F put
Ph = (O ∩B1

h(1) ∩ · · · ∩Bn
h(n)) \ Int(O ∩B1

h(1) ∩ · · · ∩Bn
h(n))

and
Rh = Int(O ∩B1

h(1) ∩ · · · ∩Bn
h(n)).

By Remark 2.3 for every h ∈ F the set Ph is a nowhere dense set.
Denote by B the family containing all nonempty sets Ph and Rh where h ∈ F .

We show that ∪B is a neighbourhood of x. Let z ∈ O, then there is h ∈ F such
that fi(z) ∈ Vh(i) and so z ∈ Bi

h(i) for every i ∈ {1, 2, · · · , n}. Then z ∈ Ph or
z ∈ Rh and thus z ∈ ∪B.

Now let f ∈ E , let B ∈ B and let p, q ∈ B. Of course there is a h ∈ F such
that B ⊂ B1

h(1) ∩ · · · ∩ Bn
h(n). Because E ⊂ W (f1, A,

ε
3
) ∪ · · · ∪W (fn, A,

ε
3
) there

exist a i ∈ {1, 2, · · · , n} such that f ∈ W (fi, A,
ε
3
). So d(f(p), fi(p)) <

ε
3

and
d(f(q), fi(q)) <

ε
3
. Because p, q ∈ Bi

h(i) we have that fi(p) ⊂ Vh(i) and fi(q) ⊂ Vh(i)
Then d(f(p), f(q)) ≤ d(f(p), fi(p))+d(fi(p), fi(q))+d(fi(q), f(q)) < ε

3
+ ε

3
+ ε

3
= ε.

Hence E is densely equiquasicontinuous. �

3. Compact subsets of (MU(X, Y ), τUC) and (MC(X, Y ), τUC)

Let X, Y be Hausdorff topological spaces. By 2Y we denote the space of all
closed subsets of Y and by CL(Y ) the space of all nonempty closed subsets of
Y . The space of all functions from X to 2Y we denote by F (X, 2Y ) and the
space of all functions from X to CL(Y ) we denote by F (X,CL(Y )). We also
call the functions from F (X, 2Y ) set-valued maps, or multifunctions, from X to
Y . If F is a set-valued map from X to Y , then its graph is the set {(x, y) ∈
X × Y : y ∈ F (x)}. Conversely, if F is a subset of X × Y and x ∈ X, define
F (x) = {y ∈ Y : (x, y) ∈ F}. Then we can assign to each subset F of X × Y a
set-valued map which takes the value F (x) at each point x ∈ X and which graph
is F . In this way, we identify set-valued maps with their graphs. Following [7]
the term map is reserved for a set-valued map.

Given two maps F,G : X → Y , we write G ⊂ F and say that G is contained
in F if G(x) ⊂ F (x) for every x ∈ X.

A map F : X → Y is upper-semicontinuous at a point x ∈ X if for every
open set V containing F (x), there exists an open set U ⊂ X, x ∈ U such
that F (U) =

⋃
{F (u) : u ∈ U} ⊂ V. F is upper-semicontinuous if it is upper-

semicontinuous at each point of X.
Following Christensen [6] we say that a map F is usco if it is upper-semicontinuous
and takes nonempty compact values. A map F from a topological space X to
a linear topological space Y is cusco if it is usco and F (x) is convex for every
x ∈ X.
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Finally, a map F from a topological space X to a topological (linear topological
space) Y is said to be minimal usco (minimal cusco) if it is a minimal element
in the family of all usco (cusco) maps (with domain X and range Y ); that is,
if it is usco (cusco) and does not contain properly any other usco (cusco) map
from X into Y . By an easy application of the Kuratowski-Zorn principle we can
guarantee that every usco (cusco) map from X to Y contains a minimal usco
(cusco) map from X to Y (see [5], [7]).

We say that a (single-valued) function f : X → Y is subcontinuous (see [8]) at
x ∈ X if for every net {xσ : σ ∈ Σ} in X converging to x, there is a convergent
subnet of {f(xσ) : σ ∈ Σ}. A function f is subcontinuous if it is subcontinuous
at every point of X.

Let F : X → Y be a map with nonempty values. Then a function f : X → Y
is called a selection of F if f(x) ∈ F (x) for every x ∈ X.

Let Y be a Hausdorff locally convex (linear topological) space. Let F : X → Y
be a map with nonempty compact values. Then a selection f of F such that f(x)
is a extreme point of F (x) for every x ∈ X is called an extreme function of F
[11].

In our papers [10], [11] we gave characterizations of minimal usco and minimal
cusco maps via their selections.

Theorem 3.1. (see [10]) Let X, Y be topological spaces and Y be a T1 regular
space. Let F be a map from X to Y . The following are equivalent:

(1) F is a minimal usco map;
(2) There exist a quasicontinuous and subcontinuous selection f of F such

that f = F ;
(3) Every selection f of F is quasicontinuous, subcontinuous and f = F .

Theorem 3.2. (see [11]) Let X be a topological space and Y be a Hausdorff
locally convex (linear topological) space. Let F be a map from X to Y . Then the
following are equivalent:

(1) F is a minimal cusco map;
(2) F has nonempty compact values and there is a quasicontinuous, subcon-

tinuous selection f of F such that cof(x) = F (x) for every x ∈ X;
(3) F has nonempty compact, convex values, F has a closed graph, every

extreme function of F is quasicontinuous, subcontinuous and any two ex-
treme functions of F have the same closures of their graphs;

(4) F has nonempty compact values, every extreme function f of F is quasi-
continuous, subcontinuous and F (x) = cof(x) for every x ∈ X.

To define a densely continuous form from X to Y [9], denote by DC(X, Y ) the
set of all functions f ∈ F (X, Y ) such that the set C(f) of points of continuity is
dense in X. We call such functions densely continuous.

Of course DC(X, Y ) contains the set C(X, Y ) of all continuous functions from
X to Y . If Y = R and X is a Baire space, then all upper and lower semicontinuous
functions on X belongs to DC(X, Y ) and if X is a Baire space and Y is a metric
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space then every quasicontinuous function f : X → Y has a Gδ dense set C(f)
of the points of continuity [19]; i.e. Q(X, Y ) ⊂ DC(X, Y ).

For every f ∈ DC(X, Y ) we denote by f � C(f) the closure of the graph of
f � C(f). If D is any dense subset of C(f) then the closure of f � D in X × Y is

equal to f � C(f). We define the set D(X, Y ) of densely continuous forms by

D(X, Y ) = {f � C(f) : f ∈ DC(X, Y )}.
Then the densely continuous forms from X to Y may be considered as maps,
where for each x ∈ X and F ∈ D(X, Y ) F (x) = {y ∈ Y : (x, y) ∈ F}.

Densely continuous forms from X to Y have a kind of minimality property
found in the theory of minimal USCO maps. In particular, if X is a Baire space
X and (Y, d) is locally compact metric space then D∗(X, Y ) = MU(X, Y ), where
D∗(X, Y ) is the set of all members of D(X, Y ) that are locally bounded [14].

We have the following characterizations of elements of D(X, Y ).

Theorem 3.3. (see [10]) Let X be a Baire space and Y be a metric space. Let
F : X → Y be such that F (x) 6= ∅ for every x ∈ X. The following are equivalent:

(1) F ∈ D(X, Y )
(2) There is a quasicontinuous function f : X → Y such that f = F ;
(3) Every selection f of F is quasicontinuous and f = F .

It is easy to see that if f ∈ Q(X, Y ) and D is a dense subset of X then
f = f � D.

Let (Y, d) be a metric space. The open d-ball with center z0 ∈ Y and radius
ε > 0 will be denoted by Sε(z0) and the ε-enlargement

⋃
a∈A Sε(a) for a subset A

of Y will be denoted by Sε(A).
If A ∈ CL(Y ), the distance functional d(., A) : Y 7→ [0,∞) is described by the
familiar formula

d(z, A) = inf{d(z, a) : a ∈ A}.
Let A and B be nonempty subsets of (Y, d). The excess of A over B with

respect to d is defined by the formula

ed(A,B) = sup{d(a,B) : a ∈ A}.
The Hausdorff (extended-valued) metric Hd on CL(Y ) [2] is defined by

Hd(A,B) = max{ed(A,B), ed(B,A)}.
We can also use the following equality on CL(Y ):

Hd(A,B) = inf{ε > 0 : A ⊂ Sε(B) and B ⊂ Sε(A)}.
The topology generated by Hd is called the Hausdorff metric topology.

Following [9] we define the topology τp of pointwise convergence on F (X, 2Y ).
The topology τp of pointwise convergence on F (X, Y ) is induced by the uniformity
Up of pointwise convergence which has a base consisting of sets of the form

W (A, ε) = {(Φ,Ψ) : ∀ x ∈ A Hd(Φ(x),Ψ(x)) < ε},
where A is from the family of all nonempty finite subsets of X and ε > 0.
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We will define the topology τUC of uniform convergence on compact sets on
F (X, 2Y ) [9]. This topology is induced by the uniformity UUC which has a base
consisting of sets of the form

W (K, ε) = {(Φ,Ψ) : ∀ x ∈ K Hd(Φ(x),Ψ(x)) < ε},
where K is from the family of all nonempty compact subsets of X and ε > 0.

Theorem 3.4. Let X be a locally compact space and (Y, d) be a nontrivial metric
space such that d has the Heine–Borel property. If E is a compact subset of
(Q(X, Y ), τUC) then {f : f ∈ E} is a compact subset of (D(X, Y ), τUC).

Proof. Let E be a compact subset of (Q(X, Y ), τUC) and let {fλ : λ ∈ Λ} be a
net in {f : f ∈ E}. By Theorem 3.3 if f ∈ E , then f ∈ D(X, Y ). By passing to
a subnet, there is a function f ∈ E such that the net {fλ : λ ∈ Λ} τUC-converges
to f . We prove that {fλ : λ ∈ Λ} τUC-converges to f . For every x ∈ X choose
a compact set Kx ⊂ X, such that x ∈ IntKx. Let x0 ∈ X. First we show that
{fλ : λ ∈ Λ} uniformly converges on IntKx0 to f .

Let ε > 0. The net {fλ : λ ∈ Λ} uniformly converges to f on Kx0 , so there is
λ0 ∈ Λ such that d(f(x), fλ(x)) < ε

2
for every λ ≥ λ0 and every x ∈ Kx0 .

Choose any x ∈ IntKx0 and z ∈ f(x). There is a net {xω : ω ∈ Ω} in IntKx0

which converges to x such that the net {f(xω) : ω ∈ Ω} converges in Y to z.
Without loss of generality we may assume that {f(xω) : ω ∈ Ω} is bounded. Let
λ be arbitrary such that λ ≥ λ0. Then d(f(xω), fλ(xω)) < ε

2
for every ω ∈ Ω. The

net {fλ(xω) : ω ∈ Ω} has a cluster point y ∈ fλ(x) since is bounded and d has the
Heine–Borel property. Then d(z.y) ≤ ε

2
and since z is arbitrary element of f(x)

we have that f(x) ⊂ Sε(fλ(x)). The inclusion fλ(x) ⊂ Sε(f(x)) can be proved
similarly, hence Hd(f(x), fλ(x)) < ε. This shows that for every x ∈ IntKx0 and
every λ ≥ λ0 Hd(f(x), fλ(x)) < ε. So the net {fλ : λ ∈ Λ} uniformly converges
on IntKx0 to f .

Let K be a compact subset of X. There are finitely many points x1, x2, · · · , xn
from X such that K ⊂ ∪{IntKxi : i ∈ {1, 2, · · · , n}}. The uniform convergence
of {fλ : λ ∈ Λ} to f on K follows from uniform convergence of this net to f on
IntKxi for i ∈ {1, 2, · · · , n}. �

Denote by MU(X, Y ) the set of all minimal usco maps from X to Y and if Y
is a Hausdorff locally convex linear topological space, by MC(X, Y ) the set of all
minimal cusco maps from X to Y .

If F is a map from X to a metric space (Y, d), we say that F is locally bounded,
if for every x ∈ X there is an open set U ⊂ X, x ∈ U such that F (U) =

⋃
{F (u) :

u ∈ U} is a bounded subset of (Y, d).
Note that if f is a selection of F ∈ MU(X, Y ) then f ∈ Q(X, Y ) (Theorem

3.1) and since F is upper-semicontinuous, f ∈ Q∗(X, Y ).

Theorem 3.5. Let X be a locally compact space and (Y, d) be a nontrivial metric
space such that d has the Heine–Borel property. Let E be a subset of MU(X, Y ),
where for every F ∈ E there is a selection fF of F such that {fF : F ∈ E}
is closed in (Q∗(X, Y ), τUC), densely equiquasicontinuous and pointwise bounded.
Then E is compact subset of (MU(X, Y ), τUC).
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Proof. Let the set {fF : F ∈ E} be closed in (Q∗(X, Y ), τUC), densely equiquasi-
continuous and pointwise bounded. Then by Theorem 2.8 the set {fF : F ∈ E}
is a compact subset of (Q∗(X, Y ), τUC) and by Theorem 3.4 {fF : F ∈ E} is a
compact subset of (D(X, Y ), τUC). By Theorem 3.1 E = {fF : F ∈ E}, hence E
is a compact subset of (MU(X, Y ), τUC). �

Let Y be a Hausdorff locally convex (linear topological) space. Define the
function ϕ : MU(X, Y )→ F (X,CL(Y )) as follows: ϕ(F )(x) = coF (x).

Theorem 3.6. (see [12]) Let X be a locally compact space and Y be a Banach
space. The map ϕ from (MU(X, Y ), τUC) onto (MC(X, Y ), τUC) is homeomor-
phism.

Remark 3.7. Let X be a topological space and Y be a Hausdorff locally convex
(linear topological) space in which the closed convex hull of a compact set is
compact. Note that if G ∈MC(X, Y ) and F ∈MU(X, Y ), where F is contained
in G then ϕ(F )(x) = G(x) (see [12]). In fact, By Theorem 2.5. in [12] for G
there is a unique minimal usco map FG contained in G, so FG = F . By Lemma
2.1 (see [12]) the map x → coF (x) is a cusco map such that coF (x) ⊂ G(x) for
every x ∈ X. Since G is minimal cusco, G(x) = coF (x) for every x ∈ X.

Theorem 3.8. Let X be a locally compact space. Let E be a subset of MC(X,Rn)
where for every F ∈ E there is a selection fF of F such that {fF : F ∈ E} is
closed in (Q∗(X,Rn), τUC), densely equiquasicontinuous and pointwise bounded.
Then E is a compact subset of (MC(X,Rn), τUC).

Proof. Let the set {fF : F ∈ E} be closed in (Q∗(X,Rn), τUC), densely equiquasi-
continuous and pointwise bounded. Then by Theorem 2.8 the set {fF : F ∈ E} is
a compact subset of (Q∗(X,Rn), τUC) and by Theorem 3.4 {fF : F ∈ E} is com-
pact subset of (D(X,Rn), τUC). By Theorem 3.1 {fF : F ∈ E} ⊂ MU(X,Rn)
and hence {fF : F ∈ E} is a compact subset of (MU(X, Y ), τUC). By Re-
mark 3.7 E = ϕ({fF : F ∈ E}) and by Theorem 3.6 E is a compact subset of
(MC(X,Rn), τUC). �

Let F : X → R be a map with bounded values. Define the functions sF and
lF as follows:

sF (x) = sup{y : y ∈ F (x)}, lF (x) = inf{y : y ∈ F (x)}.

If F ∈ MU(X,R) ∪ MC(X,R), then of course sF and lF are selections of
F , where sF is upper-semicontinuous, lF is lower-semicontinuous and both of
them are locally bounded. If F ∈ MU(X,R), by Theorem 3.1, sF and lF are
quasicontinuous and if F ∈MC(X,R) then sF and lF are extreme functions and
so by Theorem 3.2 are also quasicontinuous.

Denote by UC(X,R) the set of all upper-semicontinuous functions from X to
R.

Define the mapping S : MU(X,R) ∪MC(X,R) → Q?(X,R) ∩ UC(X,R) by
S(F ) = sF .
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Theorem 3.9. (see [10]) Let X be a locally compact topological space. Then
the mapping S from (MU(X,R), UUC) onto (Q?(X,R) ∩ UC(X,R),UUC) is a
uniform isomorphism.

Proposition 3.10. Let X be a Hausdorff topological space. The mapping S :
MC(X,R)→ Q?(X,R) ∩ UC(X,R) is a bijection.

Proof. The map ϕ−1 from MC(X,R) to MU(X,R) and map S from MU(X,R)
to Q?(X,R) ∩ UC(X,R) are bijections. Then also the composition Sϕ−1 from
MC(X,R) to Q?(X,R) ∩ UC(X,R) is a bijection. Let F ∈ MU(X,R) and let
G(x) = coF (x) for every x ∈ X. Clearly sF = sG. Then for every G ∈MC(X,R)
we have that S(ϕ−1(G)) = S(F ) = sF = sG = S(G). �

Remark 3.11. It is easy to see that if A and B are nonempty compact subsets of
R, then d(supA, supB) 5 Hd(A,B).

Theorem 3.12. Let X be a locally compact topological space. Then the map-
ping S from (MC(X,R), UUC) onto (Q?(X,R) ∩ UC(X,R),UUC) is a uniform
isomorphism.

Proof. As we proved above the mapping S fromMC(X,R) toQ?(X,R)∩UC(X,R)
is a bijection. By Remark 3.11 we have that S : (MC(X,R),UUC)→ (O?(X,R)∩
UC(X,R),UUC) is uniformly continuous.

To prove that also S−1 is uniformly continuous, let K be a nonempty compact
subset of X and ε > 0. The local compactness of X implies that there is an open
set O in X such that K ⊂ O and O is compact. Let f, g ∈ Q?(X)∩UC(X) be such
that d(f(x), g(x)) < ε for every x ∈ O. We prove that Hd(cof(x), cog(x)) ≤ ε for
every x ∈ K. Suppose, by the way of contradiction that this is not true. Then
there exist x0 ∈ K such that Hd(cof(x0), cog(x0)) > ε.

Since f(x) = sup cof(x)), g(x) = sup cog(x)) and d(f(x), g(x)) < ε for every
x ∈ X we have that d(inf cof(x0), inf cog(x0)) > ε, where one of following two
cases can occurs: inf cof(x0) < inf cog(x0) or inf cog(x0) < inf cof(x0). Suppose
the first case occurs; the proof for the other one is analogous.

Put β = d(inf cof(x0), inf cog(x0)) − ε. Let {xλ : λ ∈ Λ} be a net in X
converging to x0, such that the net {f(xλ) : λ ∈ Λ} converges to inf cof(x0).
Then for β

4
there is λ0 ∈ Λ such that f(xλ) ∈ Sβ

4
(inf cof(x0)) for all λ > λ0. The

upper semicontinuity of cog(x) at x0 implies that there is an open neighbourhood
U of x0 such that cog(x) ⊂ Sβ

4
(cog(x0)) for all x ∈ U . Let λ ∈ Λ be such that

λ > λ0 and xλ ∈ U ∩O. Then of course d(f(xλ), g(xλ)) > ε, a contradiction. �

We can give a similar result for functions lF , where F ∈ MU(X,R) or F ∈
MC(X,R).

Theorem 3.13. Let X be a locally compact space. Let E be a subset of
(MU(X,R), τUC). Then E is compact if and only if the set {sF : F ∈ E} is
closed in (Q∗(X,R), τUC), densely equiquasicontinuous and pointwise bounded.

Proof. Let E be a compact subset of (MU(X,R), τUC). By Theorem 3.9 the set
{sF : F ∈ E} is compact subset of (Q∗(X, Y ), τUC) and by Theorem 2.8 it is
closed in (Q∗(X,R), τUC), densely equiquasicontinuous and pointwise bounded.
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The converse follows from Theorem 3.5. �

Theorem 3.14. Let X be a locally compact space. Let E be a subset of
(MC(X,R), τUC). Then E is compact if and only if the set {sF : F ∈ E} is
closed in (Q∗(X,R), τUC), densely equiquasicontinuous and pointwise bounded.

Proof. Let E be a compact subset of (MC(X,R), τUC). By Theorem 3.12 the set
{sF : F ∈ E} is compact subset of (Q∗(X, Y ), τUC) and by Theorem 2.8 it is
closed in (Q∗(X,R), τUC), densely equiquasicontinuous and pointwise bounded.

The converse follows from Theorem 3.8. �

Theorem 3.15. Let X be a locally compact space. Let E be a subset of
(MU(X,R), τUC) such that the set {sF : F ∈ E} is densely equiquasicontinuous
subset of Q∗(X,R). Then the topologies τp and τUC on E coincide.

Proof. Let {Fλ : λ ∈ Λ} be a net in E which τp-converges to a F ∈ E . We show
that {Fλ : λ ∈ Λ} also τUC-converges to F . It is easy to see that {sFλ : λ ∈ Λ}
τp-converges to sF . By Theorem 2.7 {sFλ : λ ∈ Λ} τUC-converges to sF and by
Theorem 3.9 {Fλ : λ ∈ Λ} τUC-converges to F . �

Theorem 3.16. Let X be a locally compact space. Let E be a subset of
(MC(X,R), τUC) such that the set {sF : F ∈ E} is densely equiquasicontinuous
subset of Q∗(X,R). Then the topologies τp and τUC on E coincide.

Proof. The proof is similar to the proof of the above Theorem but we must use
Theorem 3.12 instead of Theorem 3.9. �
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14. D. Holý and P. Vadovič Hausdorff graph topology, proximal graph topology and the uniform
topology for densely continuous forms and minimal USCO maps, Acta Math. Hungarica
116, (2007), no. 1-2, 133–144.

15. J.L. Kelley General Topology, Van Nostrand, New York, 1955.
16. S. Kempisty Sur les fonctions quasi-continues, 19 (1932), 184–197.
17. M. Matejdes Minimality of multifunctions, Real Anal. Exchange 32 (2007), 519–526.
18. R.A. McCoy Spaces of semicontinuous forms, Topology Proc. 23 (1998), 249–275.
19. T. Neubrunn Quasi-continuity, Real Anal. Exchange 14 (1988), 259–306.
20. H. VaughanOn locally compact metrizable spaces, Bull. Amer. Math. Soc. 43 (1937), 532–

535.

Department of Mathematics and Computer Science, Faculty of Education,
Trnava University,
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