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TRUNCATED MOMENT PROBLEMS FOR J-SELF-ADJOINT,
J-SKEW-SELF-ADJOINT AND J-UNITARY OPERATORS

SERGEY ZAGORODNYUK

Communicated by S. R. Garcia

Abstract. In this paper we study truncated moment problems for J-self-
adjoint, J-skew-self-adjoint and J-unitary operators. Conditions of the solv-
ability are given. Some canonical solutions of the moment problems are con-
structed. As a by-product, some extension results for J-skew-symmetric and
J-isometric operators are obtained.

1. Introduction and preliminaries

During the past decade an increasing interest was devoted to the investigations
of operators related to a conjugation in a Hilbert space, see, e.g. [3], [4], [12], [8]
and references therein. A conjugation J in a Hilbert space H is an antilinear
operator on H such that J2x = x, x ∈ H, and

(Jx, Jy)H = (y, x)H , x, y ∈ H.

The conjugation J generates the following bilinear form:

[x, y]J := (x, Jy)H , x, y ∈ H.

A linear operator A in H is said to be J-symmetric (J-skew-symmetric) if

[Ax, y]J = [x, Ay]J , x, y ∈ D(A),

or, respectively,

[Ax, y]J = −[x, Ay]J , x, y ∈ D(A).

A linear operator A in H is said to be J-isometric if

[Ax, Ay]J = [x, y]J , x, y ∈ D(A).
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A linear operator A in H is called J-self-adjoint (J-skew-self-adjoint, or J-unitary)
if

A = JA∗J,

or

A = −JA∗J,

or

A−1 = JA∗J,

respectively. In this paper we shall study the following three problems:

• Problem A. Given a finite set of complex numbers {sn,m}d
n,m=0, d ∈ N.

Find a J-self-adjoint operator A in a Hilbert space H, and an element
x0 ∈ H, such that

[Anx0, A
mx0]J = sn,m, n, m = 0, 1, · · · , d. (1.1)

• Problem B. Given a finite set of complex numbers {sn,m}d
n,m=0, d ∈ N.

Find a J-skew-self-adjoint operator A in a Hilbert space H, and an element
x0 ∈ H, such that relation (1.1) holds.

• Problem C. Given a finite set of complex numbers {sn,m}d
n,m=0, d ∈ N.

Find a J-unitary operator A in a Hilbert space H, and an element x0 ∈ H,
such that relation (1.1) holds.

The problem A / B / C is said to be the truncated moment problem for
J-self-adjoint / J-skew-self-adjoint / J-unitary operators, respectively.
These moment problems are analogs of the well-known truncated Hamburger
and trigonometric moment problems, which are usually formulated in terms of
prescribed integrals of powers with respect to an unknown positive Borel measure,
see, e.g. [1], [2], [11] and references therein. However, the operator statements for
such problems, close to our definitions of problems A-C, are also known, see [5,
pp. 411,413].

A solution of the moment problem A / B / C is said to be canonical if
Lin{Anx0}d

n=0 = H. A solution of the moment problem A / B / C is said
to be almost canonical if Lin{Anx0, JAnx0}d

n=0 = H. Our aim is to present
conditions of the solvability for the problems A, B, C and to describe some of their
canonical solutions. As a by-product, we shall obtain some extension results for
J-skew-symmetric and J-isometric operators. It should be said that under some
conditions a description of J-skew-self-adjoint extensions of a J-skew-symmetric
operator was presented earlier, see [9] and references therein. A description of
J-unitary extensions of a J-isometric operator, under some conditions which are
different from our assumptions in this paper, was given in [7, Lemma 6].

Notations. As usual, we denote by R, C, N, Z, Z+, the sets of real numbers,
complex numbers, positive integers, integers and non-negative integers, respec-
tively. Let m, n ∈ N. The set of all complex matrices of size (m× n) we denote
by Cm×n. The set of all complex non-negative Hermitian matrices of size (n×n)
we denote by C≥n×n. If M ∈ Cm×n then MT denotes the transpose of M , and M∗

denotes the complex conjugate of M . The identity matrix from Cn×n we denote
by In. By Ker M we denote the kernel of M , i.e. all x ∈ Cn×1 such that Mx = 0.
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By CN we denote the finite-dimensional Hilbert space of complex column vec-
tors of size N with the usual scalar product (~x, ~y)CN =

∑N−1
j=0 xjyj, for ~x, ~y ∈ CN ,

~x = (x0, x1, . . . , xN−1)
T , ~y = (y0, y1, . . . , yN−1)

T , xj, yj ∈ C; N ∈ N.
If H is a Hilbert space then (·, ·)H and ‖ · ‖H mean the scalar product and

the norm in H, respectively. Indices may be omitted in obvious cases. For a
linear operator A in H, we denote by D(A) its domain, by R(A) its range, and
A∗ means the adjoint operator if it exists. If A is invertible then A−1 means its
inverse. A means the closure of the operator, if the operator is closable. If A
is bounded then ‖A‖ denotes its norm. For a set M ⊆ H we denote by M the
closure of M in the norm of H. For an arbitrary set of elements {xn}n∈I in H,
we denote by Lin{xn}n∈I the set of all linear combinations of elements xn, and

span{xn}n∈I := Lin{xn}n∈I . Here I is an arbitrary set of indices. By EH we
denote the identity operator in H, i.e. EHx = x, x ∈ H. In obvious cases we may
omit the index H. If H1 is a subspace of H, then PH1 = PH

H1
is an operator of the

orthogonal projection on H1 in H. By [H1, H2] we denote a set of all bounded
linear operators, which map a Hilbert space H1 into a Hilbert space H2.

2. A Hilbert space generated by a complex symmetric matrix.

We shall need the following theorem.

Theorem 2.1. Let {sn,m}d
n,m=0 be a finite set of complex numbers, d ∈ N. There

exist a Hilbert space H, a conjugation J in H, and elements {xn}d
n=0 in H, such

that

[xn, xm]J = sn,m, n, m = 0, 1, · · · , d;

if and only if the matrix (sn,m)d
n,m=0 is complex symmetric.

If the last conditions are satisfied, the Hilbert space H may be chosen with
dim H = d + 1.

Proof. The necessity follows directly from the property of the J-form: [x, y]J =
[y, x]J .
Let us check the necessity. Suppose that the matrix Γ := (sn,m)d

n,m=0 is complex
symmetric. By a corollary from Takagi’s factorization [6, Corollary 4.4.6], there
exists a matrix Λ = (an,j)

d
n,j=0 ∈ C(d+1)×(d+1) such that

Γ = ΛΛT .

Set H = Cd+1, ~en = (δn,0, δn,1, . . . , δn,d)
T , 0 ≤ n ≤ d, and

J

d∑
k=0

αk~ek =
d∑

k=0

αk~ek, αk ∈ C.

Elements {xn}d
n=0 we define in the following way:

xn =
d∑

j=0

an,j~ej, 0 ≤ j ≤ d.
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Then

[xn, xm]J = (xn, Jxm)H =
d∑

j,k=0

an,jam,kδj,k =
d∑

j=0

an,jam,j = sn,m,

for 0 ≤ n, m ≤ d. �

Let Γ = (sn,m)d
n,m=0 be a complex symmetric matrix. According to the proof

of the last theorem, we see that the Gram matrix G = ((xn, xm)H)d
n,m=0 of the

constructed sequence {xn}d
n=0 is equal to

G = ΛΛ∗.

If det Γ 6= 0, then det Λ 6= 0, det G 6= 0, and {xn}d
n=0 form a linear basis in

Cd+1. In this case we have:

Lin{xn}d
n=0 = H. (2.1)

Conversely, if relation (2.1) holds then det G 6= 0 and therefore det Γ 6= 0.
Notice that the matrix Λ can be constructed explicitly, since Takagi’s factor-

ization can be computed, see [6, p.205].
Suppose that det Γ 6= 0. If Λ0 ∈ Cd+1,l, l ≥ d + 1, is such that Λ0Λ

T
0 = Γ, then

Λ0Λ
T
0 = ΛΛT ,

and therefore
Λ−1Λ0Λ

T
0 (Λ−1)T = Id+1.

Thus C := Λ−1Λ0 ∈ Cd+1,l is such that CCT = Id+1. Consequently,

Λ0 = ΛC, (2.2)

where C ∈ Cd+1,l, l ≥ d + 1, is such that CCT = Id+1. Conversely, any matrix of
the form (2.2) satisfy the condition: Λ0Λ

T
0 = Γ.

3. Necessary conditions for the solvability of moment problems
A, B, C.

Let one of the the moment problems A,B,C be given with a set {sn,m}d
n,m=0,

d ∈ N. Suppose that the moment problem has a solution: a J-self-adjoint (J-
skew-self-adjoint, or a J-unitary) operator A in a Hilbert space H, and an element
x0 ∈ H, such that relation (1.1) holds. Set

xn := Anx0, 0 ≤ n ≤ d.

Then
[xn, xm]J = sn,m, n, m = 0, 1, · · · , d. (3.1)

Set

Γ := (sn,m)d
n,m=0, H0 := Lin{xn}d−1

n=0, H := Lin{xn, Jxn}d
n=0,J = J |H.

Observe that J is a conjugation in a Hilbert space H. By (3.1) and the property of
the J-form [x, y]J = [y, x]J we conclude that the matrix Γ is complex symmetric.
Consider the following operator A0 in H with the domain D(A) = H0:

A0h = Ah, h ∈ H0.
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Observe that

A0

d−1∑
n=0

αnxn =
d−1∑
n=0

αnxn+1, αn ∈ C.

Of course, the operator A0 is J-symmetric (respectively J-skew-symmetric, or
J-isometric).
The operator A0 is well-defined (as a restriction of A). Consequently, the equality

d−1∑
n=0

αnxn = 0, αn ∈ C, (3.2)

implies
d−1∑
n=0

αnxn+1 = 0. (3.3)

Firstly, suppose that H 6= {0}. Let {fj}ρ
j=0, 0 ≤ ρ ≤ 2d+1, be an orthonormal

basis in H such that Jfj = fj, 0 ≤ j ≤ ρ. Set

an,j = (xn, fj), Λ = (an,j)0≤n≤d, 0≤j≤ρ.

Let Λ1 (Λ2) be a matrix which consists of the first (respectively last) d rows of
the matrix Λ. Observe that (3.2) is equivalent to the following condition:

0 =

(
d−1∑
n=0

αnxn, fj

)
=

d−1∑
n=0

αnan,j, 0 ≤ j ≤ ρ, (3.4)

or, briefly
(α0, α1, · · · , αd−1)Λ1 = 0. (3.5)

On the other hand, condition (3.3) is equivalent to the following condition:

0 =

(
d−1∑
n=0

αnxn+1, fj

)
=

d−1∑
n=0

αnan+1,j, 0 ≤ j ≤ ρ, (3.6)

or, briefly
(α0, α1, · · · , αd−1)Λ2 = 0. (3.7)

Thus, we get
Ker ΛT

1 ⊆ Ker ΛT
2 . (3.8)

Moreover, we may write:

sn,m = [xn, xm]J = (xn, Jxm) =

ρ∑
j,k=0

an,jam,kδj,k

=

ρ∑
j=0

an,jam,j, 0 ≤ n,m ≤ d.

Consequently, we obtain that
Γ = ΛΛT . (3.9)

In the case H = {0} we get xn = 0, 0 ≤ n ≤ d, and therefore all sn,m are zeros.
Then Γ = 0 and we may choose Λ = Γ, so that relations (3.8) and (3.9) holds.
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Observe that

[A0xn, xm]J = [xn+1, xm]J = sn+1,m, [xn, A0xm]J = sn,m+1,

[A0xn, A0xm]J = sn+1,m+1, [xn, xm]J = sn,m, 0 ≤ n, m ≤ d− 1.

In the case of the moment problem A / B / C, we conclude that

sn+1,m = sn,m+1, 0 ≤ n, m ≤ d− 1; (3.10)

or
sn+1,m = −sn,m+1, 0 ≤ n,m ≤ d− 1; (3.11)

or
sn+1,m+1 = sn,m, 0 ≤ n, m ≤ d− 1, (3.12)

respectively.
From the preceding considerations we obtain the following result.

Theorem 3.1. Let one of the moment problems A,B,C be given with a set
{sn,m}d

n,m=0, d ∈ N. If the moment problem A (B or C) has a solution, then the

matrix Γ := (sn,m)d
n,m=0 is complex symmetric, relation (3.10) holds (respectively

relation (3.11) holds, or relation (3.12) holds), and there exists a representation
of the matrix Γ of the form Γ = ΛΛT , where Λ ∈ Cd+1,ρ+1, 0 ≤ ρ ≤ 2d + 1,
such that Ker ΛT

1 ⊆ Ker ΛT
2 . Here Λ1 (Λ2) is a matrix which consists of the first

(respectively last) d rows of the matrix Λ.

4. Sufficient conditions for the solvability of moment problems
A, B, C.

Let one of the moment problems A, B, C be given with a set {sn,m}d
n,m=0, d ∈ N.

Suppose that the matrix Γ := (sn,m)d
n,m=0 is complex symmetric, relation (3.10)

holds (respectively relation (3.11) holds, or relation (3.12) holds), and there exists
a representation of the matrix Γ of the form

Γ = ΛΛT , (4.1)

where Λ ∈ Cd+1,ρ+1, 0 ≤ ρ ≤ 2d + 1, such that Ker ΛT
1 ⊆ Ker ΛT

2 . Here Λ1 (Λ2)
is a matrix which consists of the first (respectively last) d rows of the matrix Λ.
Let Λ = (an,j)0≤n≤d, 0≤j≤ρ, an,j ∈ C.
Set H = Cρ+1, ~en = (δn,0, δn,1, . . . , δn,ρ)

T , 0 ≤ n ≤ ρ, and

J

ρ∑
k=0

αk~ek =

ρ∑
k=0

αk~ek, αk ∈ C.

Then J is a conjugation in H. Elements {xn}d
n=0 we define in the following way:

xn =

ρ∑
j=0

an,j~ej, 0 ≤ n ≤ d.

Then

[xn, xm]J = (xn, Jxm)H =

ρ∑
j,k=0

an,jam,kδj,k =

ρ∑
j=0

an,jam,j = sn,m,
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0 ≤ n, m ≤ d. (4.2)

Define the following operator:

A0

d−1∑
n=0

αnxn =
d−1∑
n=0

αnxn+1, αn ∈ C, (4.3)

with the domain D(A0) = Lin{xn}d−1
n=0. Let us check that it is well-defined. The

latter fact means that relation (3.2) implies (3.3). Suppose that (3.2) holds. Then
relations (3.4) and (3.5) hold, with fj = ~ej. By our assumptions we conclude that
relations (3.7) and (3.6) hold, with fj = ~ej. Then relation (3.3) holds. Thus, A0

is well-defined.
Choose arbitrary h =

∑d−1
k=0 αkxk, g =

∑d−1
j=0 βjxj, αk, βj ∈ C, from D(A0).

Then

[A0h, g]J =
d−1∑

k,j=0

αkβj[xk+1, xj]J =
d−1∑

k,j=0

αkβjsk+1,j,

[h,A0g]J =
d−1∑

k,j=0

αkβj[xk, xj+1]J =
d−1∑

k,j=0

αkβjsk,j+1.

In the case of the moment problem A (B) by relation (3.10) (respectively by rela-
tion (3.11)) we conclude that A0 is J-symmetric (respectively J-skew-symmetric).
In the case of the moment problem C, by a similar argument we obtain that A0

is J-isometric.

Theorem 4.1. Let one of the moment problems A, B, C be given with a set
{sn,m}d

n,m=0, d ∈ N. Suppose that the matrix Γ := (sn,m)d
n,m=0 is complex sym-

metric, relation (3.10) holds (respectively relation (3.11) holds, or relation (3.12)
holds), and there exists a representation of the matrix Γ of the form Γ = ΛΛT ,
where Λ ∈ Cd+1,ρ+1, 0 ≤ ρ ≤ 2d+1, such that Ker ΛT

1 ⊆ Ker ΛT
2 . Here Λ1 (Λ2) is

a matrix which consists of the first (respectively last) d rows of the matrix Λ. Sup-
pose that for the corresponding J-symmetric (respectively J-skew-symmetric, or
J-isometric) operator A0 from (4.3) there exists a J-self-adjoint (respectively J-
skew-self-adjoint, or J-unitary) extension in a possibly larger Hilbert space (with
an extension of J). Then the moment problem has a solution.

Proof. Let A ⊇ A0 be a J-self-adjoint (J-skew-self-adjoint, or J-unitary) exten-
sion of the J-symmetric (respectively J-skew-symmetric, or J-isometric) operator
A0 from (4.3). By the induction argument we conclude that

Anx0 = xn, 0 ≤ n ≤ d. (4.4)

By (4.2) and (4.4) we obtain that relation (1.1) holds. �

Thus, similar to the case of classical moment problems, we arrive to a problem
of an extension of the corresponding operator.

In the case det Γ 6= 0, the above sufficient conditions of the solvability may be
simplified.
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Corollary 4.2. Let one of the moment problems A, B, C be given with a set
{sn,m}d

n,m=0, d ∈ N. Suppose that the matrix Γ := (sn,m)d
n,m=0 is complex sym-

metric, relation (3.10) holds (respectively relation (3.11) holds, or relation (3.12)
holds), and det Γ 6= 0. Suppose that for the corresponding J-symmetric (respec-
tively J-skew-symmetric, or J-isometric) operator A0 from (4.3) (acting in Cρ,
ρ = d + 1, with Λ in (4.1), provided by the corollary from Takagi’s factoriza-
tion) there exists a J-self-adjoint (respectively J-skew-self-adjoint, or J-unitary)
extension in a possibly larger Hilbert space (with an extension of J). Then the
moment problem has a solution.

Proof. By the above-mentioned corollary from Takagi’s factorization ([6, Corol-
lary 4.4.6]), there exists a matrix Λ ∈ C(d+1)×(d+1) such that

Γ = ΛΛT .

It is clear that det Λ 6= 0. Then Ker ΛT
1 ⊆ Ker ΛT

2 , where Λ1 (Λ2) is a matrix
which consists of the first (respectively last) d rows of the matrix Λ. In fact, if
(α0, α1, · · · , αd−1)Λ1 = 0, αj ∈ C, then (α0, α1, · · · , αd−1, 0)Λ = 0. Therefore all
αj are zeros.
It remains to apply Theorem 4.1 to complete the proof. �

Let H1, H2 be some Hilbert spaces. An operator J , which maps H1 into H2 is
said to be anti-isometric, if ([10])

(Jx, Jy)H2 = (y, x)H1 , x, y ∈ H1.

An operator A ∈ [H1, H2] is said to be J-self-adjoint (J-skew-self-adjoint) if
B = JB∗J (respectively B = −JB∗J).

Theorem 4.3. ([10, Theorem 1]) Let B be a bounded closed J-symmetric operator
in a Hilbert space H, with the domain H1 := D(B) and H2 := H 	D(B) 6= {0}.
Let B∗ be the adjoint to B, viewed as an operator from [H1, H]. The following
formula:

B̂ = BPH
H1

+ (JB∗J + S)PH
H2

(4.5)

establishes a one-to-one correspondence between a set of all bounded J-self-adjoint
extensions on the whole H of B, and a set of all J-self-adjoint operators S ∈
[H2, JH2].

The following analog of Theorem 4.3 holds.

Theorem 4.4. Let B be a bounded closed J-skew-symmetric operator in a Hilbert
space H, with the domain H1 := D(B) and H2 := H 	 D(B) 6= {0}. Let B∗ be
the adjoint to B, viewed as an operator from [H1, H]. The following formula:

B̂ = BPH
H1

+ (−JB∗J + S)PH
H2

(4.6)

establishes a one-to-one correspondence between a set of all bounded J-skew-self-
adjoint extensions on the whole H of B, and a set of all J-skew-self-adjoint
operators S ∈ [H2, JH2].
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Proof. The proof is similar to the proof of the Theorem 4.3, given in [10]. Since
B is J-skew symmetric, it follows that

PH
JH1

B ⊆ −JB∗J, (4.7)

where B∗ is understood for B, which is viewed as an operator from [H1, H]. The
following property holds:

PH
F J = JPH

JF , (4.8)

where F is an arbitrary subspace of H. Observe that

B̂∗ = B∗ − PH
H2

JBPH
H1

J + S∗PH
JH2

. (4.9)

By (4.9),(4.7) and (4.8) we obtain that JB̂∗J = −B̂.

On the other hand, let B̃ be an arbitrary bounded J-skew-self-adjoint exten-

sion of B on the whole H. Let B̂0 be the operator B̂ from (4.6) with S = 0.

Since (B̃ − B̂0)H1 = {0}, then R
(
(B̃ − B̂0)

∗
)
⊆ H2. We have R

(
B̃ − B̂0

)
=

R
(
J(B̃ − B̂0)

∗J
)
⊆ JH2. We set S =

(
B̃ − B̂0

)
|H2 ∈ [H2, JH2]. Observe that

S is J-skew-self-adjoint, and B̃ = B̂0 + SPH
H2

has the required form. �

Notice that S = 0 is J-self-adjoint and J-skew-self-adjoint. Therefore, by The-
orems 3.1, 4.1, 4.3, 4.4 and Corollary 4.2 we obtain the following two theorems.

Theorem 4.5. Let the moment problem A (B) be given with a set {sn,m}d
n,m=0,

d ∈ N. The moment problem A (B) has a solution if and only if the matrix
Γ := (sn,m)d

n,m=0 is complex symmetric, relation (3.10) (respectively (3.11)) holds,

and there exists a representation of the matrix Γ of the form Γ = ΛΛT , where
Λ ∈ Cd+1,ρ+1, 0 ≤ ρ ≤ 2d + 1, such that Ker ΛT

1 ⊆ Ker ΛT
2 . Here Λ1 (Λ2) is a

matrix which consists of the first (respectively last) d rows of the matrix Λ.

Theorem 4.6. Let the moment problem A (B) be given with a set {sn,m}d
n,m=0,

d ∈ N. Suppose that the matrix Γ := (sn,m)d
n,m=0 is complex symmetric, rela-

tion (3.10) (respectively (3.11)) holds, and det Γ 6= 0. Then the moment problem
has a solution.

Moreover, if conditions of Theorem 4.6 are satisfied, then canonical solutions
in a Hilbert space H, constructed as in Corollary 4.2, can be obtained by for-
mula (4.5).

On the other hand, suppose that we only know that conditions of Theorem 4.5
are satisfied. In this case, we may proceed as at the beginning of Section 3 and
construct a J-symmetric (J-skew-symmetric) operator A0 in a finite-dimensional
Hilbert space H. By Theorem 4.3 (Theorem 4.4) extending (if necessary) this
operator to a J-self-adjoint (respectively J-skew-self-adjoint) operator in H, we
obtain an almost canonical solution of the moment problem A (respectively B).
Thus, if the moment problem A (B) is solvable, then it always has an almost
canonical solution.
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5. Extensions of J-isometric operators. Applications to the
moment problem C.

Let V be a bounded closed J-isometric operator in a Hilbert space H, with
the domain H0 := D(V ) and H1 := H 	D(V ) 6= {0}. Let W ⊇ V be a bounded
operator, defined on the whole H. Choose arbitrary h, g ∈ H, h = h0 + h1,
g = g0 + g1, gj, hj ∈ Hj, j = 1, 2. We may write:

[Wh, Wg]J = [Wh0 + Wh1, Wg0 + Wg1]J

= [h0, g0]J + [V h0, Wg1]J + [Wh1, V g0]J + [Wh1, Wg1]J ;

[h, g]J = [h0 + h1, g0 + g1]J = [h0, g0]J + [h0, g1]J + [h1, g0]J + [h1, g1]J .

Thus, W is J-isometric if and only if

[V h0, Wg1]J + [Wh1, V g0]J + [Wh1, Wg1]J = [h0, g1]J + [h1, g0]J + [h1, g1]J .

In the case h1 = 0, we get

[V h0, Wg1]J = [h0, g1]J , h0 ∈ H0, g1 ∈ H1. (5.1)

In the case g1 = 0, we get

[Wh1, V g0]J = [h1, g0]J , h1 ∈ H1, g0 ∈ H0. (5.2)

Therefore

[Wh1, Wg1]J = [h1, g1]J , , h1, g1 ∈ H1.

It is clear that conditions (5.1) and (5.2) are equivalent. Consequently, the opera-
tor W is J-isometric iff relation (5.1) holds and the operator W |H1 is J-isometric.

Assume that V has a bounded inverse. Denote by (V −1)∗ the adjoint to V −1,
viewed as an operator from [R(V ), H0]. Rewrite condition (5.1) in the following
form:

(V h0, JWg1) = (V −1V h0, P
H
H0

Jg1) = (V h0, (V
−1)∗PH

H0
Jg1),

where h0 ∈ H0, g1 ∈ H1. Then

(V h0, JWg1 − (V −1)∗PH
H0

Jg1) = 0, h0 ∈ H0, g1 ∈ H1;

and therefore Wg1 − J(V −1)∗PH
H0

Jg1 ∈ H 	 JR(V ), ∀g1 ∈ H1. Then

PH
JR(V )W |H1 = J(V −1)∗PH

H0
J |H1 .

From our considerations we obtain the following theorem.

Theorem 5.1. Let V be a bounded closed J-isometric operator in a Hilbert space
H, with the domain H0 := D(V ) and H1 := H 	 D(V ) 6= {0}. Let V have
a bounded inverse. The operator V can be extended to a bounded J-isometric
operator, defined on the whole H, if and only if there exists a bounded J-isometric
operator W1 in H, with the domain H1, such that

PH
JR(V )W1 = J(V −1)∗PH

H0
J |H1 . (5.3)

Here by (V −1)∗ the adjoint to V −1, viewed as an operator from [R(V ), H0], is
understood. If such an operator W1 exists then the following formula:

W (h0 + h1) = V h0 + W1h1, h0 ∈ H0, h1 ∈ H1, (5.4)



TRUNCATED MOMENT PROBLEMS 101

establishes a one-to-one correspondence between a set of bounded J-isometric ex-
tensions W ⊇ V , D(W ) = H, and a set of all bounded J-isometric operators W1

in H, with the domain H1, such that relation (5.3) holds.

In general, it is not easy to construct an operator W1 with the properties,
described in Theorem 5.1. However, in the case of a finite-dimensional H and
dim H1 = 1, a full explicit answer on a question of the possibility of the extension
can be given.

Theorem 5.2. Let V be an invertible J-isometric operator in a finite-dimensional
Hilbert space H, with the domain H0 := D(V ) and H1 := H 	 D(V ) 6= {0},
dim H1 = 1. Let u be a non-zero element in H1, and v be a non-zero element in
H 	 JR(V ). The operator V can be extended to a J-isometric operator, defined
on the whole H, if and only if there exists a solution of the following quadratic
equation with respect to an unknown λ ∈ C:

[v, v]Jλ2 + 2
(
v, (V −1)∗PH

H0
Ju
)

H
λ

+
[
(V −1)∗PH

H0
Ju, (V −1)∗PH

H0
Ju
]
J
− [u, u]J = 0. (5.5)

Here by (V −1)∗ the adjoint to V −1, viewed as an operator from [R(V ), H0], is
understood. If equation (5.5) is solvable then the following formula:

W (h0 + βu) = V h0 + βλv + βJ(V −1)∗PH
H0

Ju, h0 ∈ H0, β ∈ C, (5.6)

establishes a one-to-one correspondence between a set of solutions λ of equa-
tion (5.5) and a set of all J-isometric operators W ⊇ V , D(W ) = H. All
such operators W are J-unitary operators.

Remark 5.3. It is clear that equation (5.5) has no solutions if and only if

[v, v]J = 0,
(
v, (V −1)∗PH

H0
Ju
)

H
= 0,

and [
(V −1)∗PH

H0
Ju, (V −1)∗PH

H0
Ju
]
J
6= [u, u]J .

However, we do not know, whether such a case can ever happen.

Proof. (Theorem 5.2.)
By Theorem 5.1, the given operator V can be extended to a J-isometric opera-

tor, defined on the whole H, if and only if there exists a J-isometric operator W1

in H, with the domain H1, such that relation (5.3) holds. Let u be a non-zero
element in H1, and v be a non-zero element in H 	 JR(V ). An arbitrary linear
operator W1 in H, with the domain H1, such that relation (5.3) holds, has the
following form:

W1(βu) = βλv + βJ(V −1)∗PH
H0

Ju, β ∈ C, (5.7)

where λ ∈ C. On the other hand, an operator W1 of the form (5.7) with an
arbitrary complex parameter λ is a linear operator in H, with the domain H1,
such that relation (5.3) holds.

It is easy to check that an operator W1 of the form (5.7) is J-isometric if and
only if relation (5.5) holds. The statement about the correspondence (5.6) follows
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from the formulas (5.4) and (5.7). Let us check the last statement of the theorem.
An arbitrary J-isometric operator W ⊇ V , D(W ) = H, is invertible [12, p. 18].
Moreover, we have W−1 ⊆ JW ∗J . Since H is finite-dimensional, then WH = H.
Therefore W−1 = JW ∗J . �

Example 5.4. (J-isometric operator which has no J-unitary extensions) Let

H = C2, ~e0 =

(
1
0

)
, ~e1 =

(
0
1

)
, and

J(α~e0 + β~e1) = α~e1 + β~e0, α, β ∈ C.

Observe that J is a conjugation in H. Consider the following operator V :

V α~e0 = 0, α ∈ C,

with the domain D(V ) = Lin{~e0}. The operator V is J-isometric. Since it is not
invertible, it has no J-unitary extensions.

Example 5.5. (J-isometric operator which has a unique J-unitary extension in-
side the original Hilbert space) Let H, ~e0, ~e1, and J be the same as in Example 5.4.
Consider the following operator V :

V α~e0 = α~e0, α ∈ C,

with the domain D(V ) = Lin{~e0} =: H0. The operator V is J-isometric. Observe
that H 	 JR(V ) = H0. Set u = ~e1, v = ~e0. Then [u, u]J = [v, v]J = 0, and

(V −1)∗PH
H0

Ju = ~e0.

Equation (5.5) takes the following form: 2λ = 0. Therefore W = EH is the
unique J-unitary extension inside H.

Example 5.6. (J-isometric operator which has exactly two J-unitary extensions
inside the original Hilbert space) Let H, ~e0, ~e1 be the same as in Example 5.4.
Set

J(α~e0 + β~e1) = α~e0 + β~e1, α, β ∈ C.

Consider the following operator V :

V α~e0 = α~e0, α ∈ C,

with the domain D(V ) = Lin{~e0} =: H0. The operator V is J-isometric. Observe
that H 	 JR(V ) = Lin{~e1} =: H1. Set u = v = ~e1. Then [u, u]J = [v, v]J = 1,
and

(V −1)∗PH
H0

Ju = 0.

Equation (5.5) takes the following form: λ2 − 1 = 0. Therefore we have two
possible J-unitary extensions of V inside H.

We can apply Theorem 5.2 to obtain some sufficient results for the solvability
of the moment problem C.

Theorem 5.7. Let the moment problem C be given with a set {sn,m}d
n,m=0,

d ∈ N. Suppose that the matrix Γ := (sn,m)d
n,m=0 is complex symmetric, rela-

tion (3.12) holds, and det Γ 6= 0. Consider the corresponding J-isometric operator
A0 from (4.3) (acting in Cρ, ρ = d + 1, with Λ in (4.1), provided by the corollary
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from Takagi’s factorization). Let u be a non-zero element in H 	D(A0), and v
be a non-zero element in H	JR(A0); H0 := D(A0). Suppose that equation (5.5)
with respect to an unknown λ ∈ C, where V = A0, has a solution. Then the
moment problem has a solution.

Proof. Observe that det Λ 6= 0. The Gram matrix G = ((xn, xm)H)d
n,m=0 is equal

to ΛΛ∗. Then det G 6= 0, and {xn}∞n=0 are linearly independent. Thus, we
have dim(H 	 D(A0)) = 1, and A0 is invertible. Applying Corollary 4.2 and
Theorem 5.2 we complete the proof. �
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