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NOTES ABOUT SUBSPACE-SUPERCYCLIC OPERATORS
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Abstract. A bounded linear operator T on a Banach space X is called
subspace-hypercyclic for a nonzero subspace M if orb (T, x)∩M is dense in M
for a vector x ∈ X, where orb(T, x) = {Tnx : n = 0, 1, 2, · · · }. Similarly, the
bounded linear operator T on a Banach space X is called subspace-supercyclic
for a nonzero subspace M if there exists a vector whose projective orbit in-
tersects the subspace M in a relatively dense set. In this paper we provide a
Subspace-Supercyclicity Criterion and offer two equivalent conditions of this
criterion. At the same time, we also characterize other properties of subspace-
supercyclic operators.

1. Introduction

Let X be a separable infinite dimensional Banach space over the scalar field
C and let B (X) denote the set of all bounded linear operators on X and we will
usually refer to elements of B (X) as just operators. A bounded linear operator
T : X → X is called hypercyclic (respectively, supercyclic) if there is some vector
x ∈ X such that orb(T, x) = {T nx : n = 0, 1, · · · } (respectively, the projective
orbit {λT nx : λ ∈ C, n = 0, 1, 2, · · · }) is dense in X. Such a vector x is said
to hypercyclic (respectively, supercyclic) for T. The study of hypercyclicity goes
back a long way, and has been investigated in more general settings, for exam-
ple in topological vector spaces. This phenomenon appears in separable spaces,
and it is connected with the invariant subspace problem, dynamical systems,
and approximation theory. One can refer to [3, 5] for more information about
hypercyclicity.

Date: Received: Dec. 1, 2013; Revised: Apr. 24, 2014; Accepted: Jun. 10, 2014.
∗ Corresponding author.
2010 Mathematics Subject Classification. Primary: 47A16; Secondary: 46E15.
Key words and phrases. Subspace-supercyclic, Subspace-Supercyclicity Criterion, Banach

space.
60



SUBSPACE-SUPERCYCLIC OPERATORS 61

The definition and the properties of supercyclic operators were introduced by
Hilden and Wallen [6]. They proved that all unilateral backward weighted shifts
on a Hilbert space are supercyclic. The study of supercyclic operators has expe-
rienced a great of development in recent years. Salas gave a characterization of
supercyclic bilateral backward weighted shifts via the Supercyclicity Criterion in
[12]. Montes and Salas [10] refined the Supercyclicity Criterion and proved that it
is equivalent to the former one given by Salas. Besides, T. Bermúdez, A. Bonilla
and A. Peris [2] showed that the equivalence of two supercyclicity criteria given
by N. Feldman, V. Miller and L. Miller in [4] to the Supercyclicity Criterion.

Recently, B. F. Madore and R. A. Mart́ınez-Avendaño in [9] introduced the
concept of subspace-hypercyclicity and proved several results analogous to the
hypercyclic case.

For example, there is a Kitai-like Criterion: if T is a subspace-hypercyclic,
then its spectrum must intersect the unit circle; subspace-hypercyclicity is a
strictly infinite dimensional phenomenon; compact or hyponormal operators are
not subspace-hypercyclic and provided a Subspace-Hypercyclicity Criterion and
they constructed examples to show that subspace-hypercyclicity is interesting,
including a nontrivial subspace-hypercyclic operator that is not hypercyclic. Be-
sides, C.M. Le [8] gave an improvement of the Kitai-like Criterion and showed that
if an operator T satisfies a strong condition than the Hypercyclicity Criterion,
it is subspace-hypercyclic for any finite co-dimensional subspace. Other sources
of examples and some properties of notions relating subspace-hypercyclicity and
subspace-supercyclicity are [7, 11].

Similarly, for subspace-supercyclicity, Zhao et al. in [13] provided a Subspace-
Supercyclicity Criterion and offered two necessary and sufficient conditions for a
path of bounded linear operators to have a dense Gδ set of common subspace-
hypercyclic vectors and common subspace-supercyclic vectors and they also con-
structed examples to show that subspace-supercyclic is not a strictly infinite
dimensional phenomenon and that some subspace-supercyclic operators are not
supercyclic.

Note that if the operator T is invertible, T is supercyclic if and only if T−1 is
supercyclic (see, [3, Theorem 1.12]). And if T ∈ B(X) is supercyclic, then there
exists R ≥ 0 such that the circle {|z| = R} intersects each component of the
spectrum of T . The circle {|z| = R} is called a supercyclic circle of T (see, [3,
Theorem 1.24]).

For the subspace-supercyclic operator T, the similar questions were posed from
[13] as follows:

Question 1.1. If T ∈ B(X) is subspace-supercyclic for some infinite dimensional
subspace M, then does T have a subspace-supercyclic circle?

Question 1.2. Let T be invertible and T be subspace-supercyclic for some sub-
space M . Is T−1 subspace-supercyclic for some space?

Question 1.3. If T is subspace-supercyclic for some subspace M, is T ∗ subspace-
supercyclic for some space?
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In this present paper, we will partially answer these questions and we provide
a Subspace-Supercyclicity Criterion and offer two equivalent conditions of this
criterion. At the same time, we also obtain a slight improvement of the Subspace-
Supercyclicity Criterion.

2. Subspace-supercyclicity

In this section, we will discuss the subspace-supercyclicity.

Definition 2.1. Let T ∈ B (X) and let M be a nonzero subspace of X. We say
that T is M -supercyclic for M if there exists x ∈ X such that Corb (T, x)∩M is
dense in M. We call x a M -supercyclic vector.

Remark 2.2. The definition above reduces to the classical definition of super-
cyclicity if M = X and we may assume that the subspace-supercyclic vector
x ∈ M, if needed.

First, there are some simple examples of subspace-supercyclic operators.

Example 1. Consider the operator T := B, where B is the backwad shift on l2 (N)
and I is the identity operator on l2 (N) . Then the operator T ⊕ I is subspace-
supercyclic for the subspace M := l2 ⊕ {0} of l2 ⊕ l2; whereas it cannot be
supercyclic on l2 (N) ⊕ l2 (N), since the identity operator is not supercyclic on
l2 (N) . But, T ⊕ I is not subspace-hypercyclic for the subspace M := l2 ⊕ {0} of
l2 ⊕ l2, since the operator B is not hypercyclic on l2 (N) .

Example 2. It can easily be shown that the operator
(

1
2
B
)
⊕(4I) : l2 (N)⊕l2 (N) →

l2 (N) ⊕ l2 (N) is subspace-supercyclic for l2 (N) ⊕ {0} with subspace-supercyclic
vector f ⊕ 0, where f is a supercyclic vector for 1

2
B. Observe that the spectrum

σ
((

1
2
B
)
⊕ (4I)

)
is the closed disk of radius 1

2
union the singleton {4}. Thus, it

is not true that every component of the spectrum must intersect some circle for
this subspace-supercyclic operator, which partially solves Question 1.1.

As far as we know, if T is subspace-hypercyclic for M, then M is not finite-
dimensional (see, [9, Theorem 4.10]); but if T is subspace-supercyclic for some
space M , then M may be finite-dimensional (see, [13, Proposition 1.3]). Besides,
the adjoint of a supercyclic operator T cannot have more than one eigenvalue
(see, [3, Proposition 1.26]). Let H denote a separable Hilbert space over C, the
field of complex numbers. Similarly, we have the following result:

Theorem 2.3. Let T ∈ B (H) , M be a nonzero reducing subspace of X. If
T is a subspace-supercyclic for M, then ker (T ∗ − λ) ⊆ M⊥ for all λ ∈ C or
ker (T ∗ − λ) ⊆ M for some λ ∈ C\{0}. In particular, ker (T ∗ − λ) = ker (T ∗ − λ)p ,
for all λ ∈ C and all p ∈ N.

The proof relies on the following elementary lemma.

Lemma 2.4. [3, Lemma 1.27] Let a, b, c, λ, µ ∈ C. Then the sets C·{(aλn, bµn) ; n ∈
N} and C · {(a, cn + b) ; n ∈ N} are not dense in C2.



SUBSPACE-SUPERCYCLIC OPERATORS 63

Proof. of Theorem 2.3.
Let x be a M -supercyclic vector for T and Corb (T, x)∩M be dense in M. The

proof follows ideas of the proof of [3, Proposition 1.26]. Let x∗, y∗ ∈ H∗. Note
that if x∗|M , y∗|M are linearly independent and x∗ /∈ M⊥ and y∗ /∈ M⊥, then the
set

Ax∗,y∗ := C · {(〈x∗, T nx〉 , 〈y∗, T nx〉) ; T nx ∈ M, n ∈ N}
is dense in C2. Indeed, the linear map Φx∗,y∗ := M → C2 defined by Φx∗,y∗ (z) :=
(〈x∗, z〉 , 〈y∗, z〉) is continuous and onto, so it maps the dense set C ·orb(x, T )∩M
in M onto a dense subset of C2.

If x∗ and y∗ are any two eigenvectors of the adjoint of T and x∗ /∈ M⊥ and y∗ /∈
M⊥, there exist λ, µ ∈ C such that T ∗ (x∗) = λx∗ and T ∗ (y∗) = µy∗. By Lemma
2.4, Ax∗,y∗ = C · {(〈x∗, x〉λn, 〈y∗, x〉µn) ; T nx ∈ M, n ∈ N} is not dense in C2.
So x∗|M , y∗|M are linearly dependent. It is easy to know that M -supercyclic
operator has dense range in M . Note that T (M) ⊆ M and T

(
M⊥) ⊆ M⊥, so

λ = µ 6= 0. Therefore, ker (T ∗ − λ) ⊆ M⊥ for all λ ∈ C or ker (T ∗ − λ) ⊆ M for
some λ ∈ C\{0}.

If x∗0 ∈ ker (T ∗ − λI) , T ∗x∗0 = λx∗0. For a ∈ C\{0}, since T is a subspace-
supercyclic for M if and only if aT is also subspace-supercyclic for M, we may in
fact assume that λ = 1, that is, T ∗x∗0 = x∗0. Let y∗ ∈ ker (T ∗ − I)2 be arbitrary.
Then (T ∗ − I) y∗ ∈ ker (T ∗ − I) = Cx∗0, so one can write T ∗ (y∗) = y∗ + γx∗0,
where γ ∈ C. By induction, T ∗n (y∗) = y∗ + nγx∗0 for all n ∈ N. By Lemma 2.4,

Ax∗0,y∗ = C · {(〈x∗0, x〉 , γ 〈x∗0, x〉n + 〈y∗, x〉) ; T nx ∈ M, n ∈ N}

is not dense in C2, so that y∗ ∈ Cx∗0. Thus ker (T ∗ − I) = ker (T ∗ − I)2 . Then we
get ker (T ∗ − I)n = ker (T ∗ − I) for all n ≥ 1 by straightforward induction. The
proof is complete. �

Definition 2.5. Let T ∈ B (X) , M be a nonzero subspace of X. For every
x ∈ M, the set
JS (T,M, x) := {y ∈ M : for every relatively open neighborhoods U, V
of x , y in M respectively, and every positive integer N, there exist
n > N and λ ∈ C\{0} such that λT n (U) ∩ V is nonempty and T n (M) ⊆ M.}
denotes the M -generalized limit set of x under T.

Proposition 2.6. An equivalent definition of JS (T, M, x) is the following.
JS (T,M, x) := {y ∈ M : there exists a strictly increasing sequence

of positive integers (kn)n , a sequence (xn)n ⊆ M and (λkn)n ⊆ C\{0}
such that xn → x and λknT knxn → y and for every n, T kn(M) ⊆ M}.

Proof. Let ∀y ∈ JS (T, M, x) and consider the open balls

Un = B

(
x,

1

n

)
∩M, Vn = B

(
y,

1

n

)
∩M, for n = 1, 2, · · ·

and N = kn−1, k0 = 1. Then there exist kn > N = kn−1 and (λkn)n ⊆ C\{0}
such that

λknT kn (Un) ∩ Vn 6= ∅ and T kn (M) ⊆ M.
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Hence there exists xn ∈ Un such that λknT knxn ∈ Vn and T kn (M) ⊆ M. There-
fore, there exist a strictly increasing sequence of positive integers (kn)n and a
sequence (xn)n ⊆ M and (λkn)n ⊆ N such that xn → x and λknT knxn → y and
for every n, T kn(M) ⊆ M. The converse is obvious. The proof is complete. �

Theorem 2.7. Let T ∈ B (X) and M be a nonzero subspace of X. For every
x ∈ M, JS (T,M, x) = M. Then T is subspace-supercyclic for M.

Proof. For any nonempty sets U ⊆ M and V ⊆ M, both relatively open, consider
x0 ∈ V, y0 ∈ U. Since JS (T,M, x0) = M, there exist n ≥ 1 and λ ∈ C\{0}
such that λT n (V ) ∩ U 6= ∅ and T n (M) ⊆ M. By Theorem 1.8 in [13], T is
subspace-supercyclic for M. �

Next, we partially solve the Question 1.2.

Theorem 2.8. Let T ∈ B (X) , T be an invertible operator and M be a nonzero
subspace of X. If for every x ∈ M, JS (T,M, x) = M, then T−1 is also subspace-
supercyclic for M.

Proof. First, by Theorem 2.7, T is subspace-supercyclic for M. For any x, y ∈ M,
by assumption, JS (T,M, x) = M. For any nonempty sets U ⊆ M and V ⊆ M,
both relatively open such that contain x, y respectively, then there exist n > 1
and λ ∈ C\{0} such that λT n (U)∩V 6= ∅ and T n (M) ⊆ M. By the invertibility
of T, λ−1 (T−1)

n
(V ) ∩ U 6= ∅ and T−n (M) ⊆ M. Hence for every y ∈ M,

JS (T−1, M, y) = M. By Theorem 2.7, T−1 is also subspace-supercyclic for M. �

We know from [5] that there exists an operator T on l2 (Z) such that T and
its adjoint T ∗ are weakly mixing and hence hypercyclic. The following example
shows that there exists the operator T such that T and its adjoint T ∗ are subspace-
supercyclic and partially answer Question 1.3.

Example 3. As usual, we identify the dual of l2 (Z) with itself. Let T = Bw be
a bilateral shift and Bwen = wnen−1 (n ∈ Z) . If the wn, n ∈ Z, are bounded,
then T = Bw defines an operator on l2 (Z) . It is easy to know that the adjoint
T ∗ = B∗

w of Bw is the forward shift F(wn+1). Let

vn =

(
n∏

i=1

wi

)−1

(n ≥ 1) , vn =

(
0∏

i=n+1

wi

)
(n ≤ −1) , v0 = 1.

We choose the symmetric sequence (vn)n∈z with

(vn)n≥0 =

(
1, 1, 2, 1,

1

2
, 1, 2, 4, 2, 1,

1

2
,
1

4
,
1

2
, 1, 2, 4, 8, 4, 2, 1,

1

2
,
1

4
,
1

8
,
1

4
,
1

2
, · · ·

)
.

By Proposition 4.16 in [5], T and its adjoint T ∗ are hypercyclic. Then the operator
T1 = T ⊕ I is subspace-supercyclic for the subspace M := l2 (Z)⊕{0} of l2 (Z)⊕
l2 (Z) and T ∗1 = T ∗⊕I is also subspace-supercyclic for the subspace M := l2 (Z)⊕
{0} of l2 (Z)⊕ l2 (Z) .

Next we get the following theorem, which is the Subspace-Supercyclicity Cri-
terion, which is similar to the Supercyclictiy Criterion that was stated in [2].
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Theorem 2.9. ( Subspace-Supercyclicity Criterion ) Let T ∈ B (X) and M be a
nonzero subspace of X. Assume that there exist M0 and M1, dense subsets of M ,
an increasing sequence of positive integers (nk)k, a sequence (λnk

)k∈N ⊆ C\{0}
and a sequence of mappings Snk

: M1 → M such that
(i) λnk

T nkx → 0 for every x ∈ M0,
(ii) 1

λnk
Snk

y → 0 for every y ∈ M1,

(iii) (T nk ◦ Snk
)y → y, for every y ∈ M1.

(iv) M is an invariant subspace for T nk for all k ∈ N.
Then T is subspace-supercyclic for M.

Proof. Let U and V be non-empty open subsets of M. Since M0 and M1 are dense
in M, there exist x ∈ M0 ∩ V, y ∈ M1 ∩ U. And since U and V are nonempty
open subsets, there exists ε > 0 such that B(x, ε) ⊆ V and B(y, ε) ⊆ U. By
assumption, there exist nk and λnk

∈ C\{0} such that

‖λnk
T nkx‖ <

ε

2
,
∥∥λ−1

nk
Snk

y
∥∥ <

ε

2
and ‖T nkSnk

y − y‖ <
ε

2
.

Define u = x + λ−1
nk

Snk
y. We know that u ∈ M and u ∈ V , since ‖u− x‖ =∥∥λ−1

nk
Snk

y
∥∥ < ε

2
. Observe that λnk

T nku = λnk
T nkx + T nkSnk

y, so λnk
T nku ∈ M.

Since
‖λnk

T nku− y‖ = ‖λnk
T nkx‖+ ‖T nkSnk

y − y‖ < ε,

we have that λnk
T nku ∈ U. Then (λnk

T nk)−1 U ∩ V 6= ∅ and T is subspace-
supercyclic for M. �

Lemma 2.10. [13, Theorem 1.7] Let T ∈ B (X) , M be a nonzero subspace of X,
then SC(T, M)

⋂
M =

(
∩j ∪λ,n (λT n)−1 (Vj)

)
∩M, where {Vj}j∈N+ is a countable

basis of open sets for M.

T. Bermúdez, A. Bonilla and A. Peris in [2] showed that the equivalence of two
supercyclicity criteria given by N. Feldman, V. Miller and L. Miller in [4] to the
Supercyclicity Criterion. Now, we will show that they hold for subspace M.

Theorem 2.11. Let T ∈ B (X) and M be a nonzero subspace of X. Then the
following (a) , (b) and (c) are equivalent:

(a) T satisfies Subspace-Supercyclicity Criterion.
(b) (Outer Subspace-Supercyclicity Criterion) There exist an increasing se-

quence (nk)k∈N of positive integers, a dense linear subspace Y0 ⊆ M and, for
each y ∈ Y0, a dense linear subspace Xy ⊆ M such that:

(i). There exists a sequence of maps Snk
: Y0 → M such that (T nk ◦Snk

)y → y,
for every y ∈ Y0 and

(ii). ‖T nkx‖ ‖Snk
y‖ → 0 for every y ∈ Y0 and x ∈ Xy.

(iii). M is an invariant subspace for T nk for all k ∈ N.
(c) (Inner Subspace-Supercyclicity Criterion) There exist an increasing sequence

(nk)k∈N of positive integers, a dense linear subspace Y0 ⊆ M and, for each y ∈ Y0,
a dense linear subspace Xy ⊆ M such that:

(i). There exists a sequence of maps Sy,nk
: Xy → M such that T nk ◦Sy,nk

x → x
for all x ∈ Xy, and

(ii). ‖T nky‖ ‖Sy,nk
x‖ → 0 for every y ∈ Y0 and x ∈ Xy.
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(iii). M is an invariant subspace for T nk for all k ∈ N.

Proof. It is obvious that any operator satisfying the Subspace-Supercyclicity Cri-
terion also satisfies the criteria of (b) and (c). It suffices to show that (b) implies
(a) , since the other case is analogous. Let Ui, Vi ⊆ M non-empty open sets with
i = 1, 2. The same argument as in the proof of Theorem 3.2 in [2] can be used to
show that there exist nk ∈ N and λnk

∈ C\{0} such that

(λnk
T nk)−1 (Ui) ∩ Vi 6= ∅, for i = 1, 2.

Then we can know that T
⊕

T is subspace-supercyclic for M
⊕

M and (x, y) is
subspace-supercyclic vector for T

⊕
T. In particular, x be subspace-supercyclic

vector for T and SC(T, M)
⋂

M is a dense Gδ subset of M. Now fix (Uk)k≥1 a
decreasing 0-basis in M. Proceeding by induction we find uk ∈ Uk, for all k ∈ N,
an increasing subsequence (mk)k≥1 of (nk)k≥1 and (λmk

)k ⊆ C\{0} satisfying

λmk
Tmkx ∈ Uk and λmk

Tmkuk ∈ x + Uk, (2.1)

for all k ∈ N. Let M0 = M1 = Corb(T, x) ∩M, which is dense in M. From (2.1),
we have that λmk

Tmkx → 0 and then λmk
Tmky → 0 for every y ∈ M0. Define

Smk
(λT nx) = λmk

.λT nuk, for all n, k ∈ N and λ ∈ C. Then λ−1
mk

Smk
v → 0, for

every v ∈ M1. Finally, given n ∈ N, λ ∈ C, by (2.1), we have that

TmkSmk
(λT nx) = λmk

Tmk
(
λ−1

mk
Smk

(λT nx)
)

= λmk
Tmk (λT nuk) → λT nx.

Hence (a) holds. We complete the proof. �

Next, we provide a slight improvement of the Subspace-Supercyclicity Crite-
rion.

Theorem 2.12. Let T ∈ B (X) and M be a nonzero closed subspace of X.
Assume that there exist subsets X0 and Y0 of M, where Y0 is dense in M , an
increasing sequence (nk)k of positive integers and (λnk

)k ⊆ C\{0} such that the
following hold:

(i) λnk
T nkx → 0 for all x ∈ X0,

(ii) for each y ∈ Y0, there exists a sequence (xk)
∞
k=1 in X0 such that

1

λnk

xk → 0 and T nkxk → y,

(iii) X0 ⊆ ∩∞k=1T
−nk

(
1

λnk
M
)

Then T is subspace-supercyclic for M.

Proof. Since X is separable and Y0 is dense in M , we assume that Y0 = (yj)
∞
j=1 .

Let (εj)
∞
j=1 be a sequence of positive numbers such that

lim
j→∞

(
jεj +

∞∑
i=j+1

εi

)
= 0.

By assumption, choose xk1 ∈ X0, nk1 ∈ (nk)k and λnk1
∈ (λnk

)k such that∥∥∥∥∥ 1

λnk1

xk1

∥∥∥∥∥+ ‖T nk1xk1 − y1‖ < ε1.
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For each j, choose xkj
∈ X0, nkj

∈ (nk)k and λnkj
∈ (λnk

)k such that∥∥∥∥∥ 1

λnkj

xkj

∥∥∥∥∥+
∥∥∥∥∥λnkj

T nkj
xki

λnki

∥∥∥∥∥+
∥∥∥∥∥λnki

T nki
xkj

λnkj

∥∥∥∥∥+∥∥T nkj xkj
− yj

∥∥ < εj, for all i < j.

By induction, we construct a sequence
(
xkj

)∞
j=1

⊆ X0, a subsequence
(
nkj

)∞
j=1

of

(nk)
∞
k=1 and a subsequence

(
λnkj

)∞
j=1

of (λnk
)k ⊆ C\{0}.

Let x =
∞∑
i=1

1
λnki

xki
, where it is well defined. Obviously, λnkj

T nkj x ∈ M, for

every j. Then∥∥∥λnkj
T nkj x− yj

∥∥∥ =

∥∥∥∥∥T nkj xkj
− yj +

j−1∑
i=1

λnkj
T nkj

xki

λnki

+
∞∑

i=1+j

λnkj
T nkj

xki

λnki

∥∥∥∥∥
≤ εj +

∥∥∥∥∥
j−1∑
i=1

λnkj
T nkj

xki

λnki

∥∥∥∥∥+

∥∥∥∥∥
∞∑

i=1+j

λnkj
T nkj

xki

λnki

∥∥∥∥∥
< jεj +

∞∑
i=j+1

εi.

Therefore, T is subspace-supercyclic for M. �

Remark 2.13. Notice that in Theorem 2.12 the set X0 is not assumed to be dense
in M.

We end this section by mentioning related problems.

Question 2.14. If T is supercyclic, must there be a proper subspace M such
that T is subspace-supercyclic for M?

We should mention that the authors in [9] showed that compact or hyponormal
operators are not subspace-hypercyclic. But, there exists compact subspace-
supercyclic operator T , as showed by [13]. Besides, Hilden and Wallen showed in
[6] that unitary operators are not supercyclic; and hyponormal operators are not
supercyclic, as showed by [1]. Similarly, the question for subspace-supercyclicity
can be given:

Question 2.15. Can hyponormal operators be subspace-supercyclic for some
nonzero subspace M of the Hilbert space H? and can unitary operators be
subspace-supercyclic for some nonzero subspace M of the Hilbert space H?
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