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PROPERTY (aBw) AND PERTURBATIONS

QINGPING ZENG∗

Communicated by M. Mbekhta

Abstract. A bounded linear operator T acting on a Banach space X satis-
fies property (aBw), a strong version of a-Weyl’s theorem, if the complement
in the approximate point spectrum σa(T ) of the upper semi-B-Weyl spectrum
σUSBW (T ) is the set of all isolated points of approximate point spectrum which
are eigenvalues of finite multiplicity. In this paper we investigate the property
(aBw) in connection with Weyl type theorems. In particular, we show that
T satisfies property (aBw) if and only if T satisfies a-Weyl’s theorem and
σUSBW (T ) = σUSW (T ), where σUSW (T ) is the upper semi-Weyl spectrum of
T . The preservation of property (aBw) is also studied under commuting nilpo-
tent, quasi-nilpotent, power finite rank or Riesz perturbations. The theoretical
results are illustrated by some concrete examples.

1. Introduction

Throughout this paper, let B(X) denote the Banach algebra of all bounded linear
operators acting on an infinite dimensional complex Banach space X, and F(X)
denote its ideal of finite rank operators on X. For an operator T ∈ B(X), let T ∗

denote its dual, N (T ) its kernel, α(T ) its nullity, R(T ) its range, β(T ) its defect,
σ(T ) its spectrum, σa(T ) its approximate point spectrum and σp(T ) its point
spectrum. If the range R(T ) is closed and α(T ) < ∞ (resp. β(T ) < ∞), then T
is said to be upper semi-Fredholm (resp. lower semi-Fredholm). If T ∈ B(X) is
both upper and lower semi-Fredholm, then T is said to be Fredholm. If T ∈ B(X)
is either upper or lower semi-Fredholm, then T is said to be semi-Fredholm, and
its index is defined by ind(T ) = α(T ) − β(T ). An operator T ∈ B(X) is called
Weyl (resp. upper semi-Weyl) if T is Fredholm and ind(T ) = 0 (resp. T is upper
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semi-Fredholm and ind(T ) ≤ 0). An operator T ∈ B(X) is called Riesz if T − λ
is Fredholm for all non-zero λ ∈ C. Note that if T ∈ B(X) is Weyl (resp. upper
semi-Weyl) and R ∈ B(X) is a Riesz operator commuting with T , then T + R
also is Weyl (resp. upper semi-Weyl); we refer the reader to [23] for a proof.

Recall that the descent and the ascent of T ∈ B(X) are dsc(T ) = inf{n ∈ N :
R(T n) = R(T n+1)} and asc(T ) = inf{n ∈ N : N (T n) = N (T n+1)}, respectively
(the infimum of an empty set is defined to be ∞). Note that if T has finite ascent
and descent, then asc(T ) = dsc(T ) (see [1, Theorem 3.3]). It is well known that
0 < asc(T ) = dsc(T ) < ∞ precisely when λ is a pole of the resolvent of T (see
[16, Proposition 50.2]). An operator T ∈ B(X) is said to be left (resp. right)
Drazin invertible if asc(T ) < ∞ (resp. dsc(T ) < ∞) and R(T asc(T )+1) (resp.
R(T dsc(T ))) is closed. Moreover, T is Drazin invertible if it has finite ascent
and descent. Clearly, T ∈ B(X) is Drazin invertible if and only if it is both left
and right Drazin invertible. An operator T ∈ B(X) is said to be Browder (resp.
upper semi-Browder) if T is Fredholm and asc(T ) = dsc(T ) < ∞ (resp. T is
upper semi-Fredholm and asc(T ) < ∞). Note that if T ∈ B(X) is Browder (resp.
upper semi-Browder) and R ∈ B(X) is a Riesz operator commuting with T , then
T +R also is Browder (resp. upper semi-Browder); we refer the reader to [22] for
a proof.

For each integer n, define Tn to be the restriction of T to R(T n) viewed as
the map from R(T n) into R(T n) (in particular T0 = T ). If there exists n ∈ N
such that R(T n) is closed and Tn is Fredholm (resp. upper semi-Fredholm),
then T is called B-Fredholm (resp. upper semi-B-Fredholm). It follows from
[8, Proposition 2.1] that if there exists n ∈ N such that R(T n) is closed and
Tn is upper semi-Fredholm, then R(Tm) is closed, Tm is upper semi-Fredholm
and ind(Tm) = ind(Tn) for all m ≥ n. This enables us to define the index of
a upper semi-B-Fredholm operator T as the index of the upper semi-Fredholm
operator Tn, where n is an integer satisfying R(T n) is closed and Tn is upper
semi-Fredholm. An operator T ∈ B(X) is called B-Weyl (resp. upper semi-B-
Weyl) if T is B-Fredholm and ind(T ) = 0 (resp. T is upper semi-B-Fredholm and
ind(T ) ≤ 0). It is established in [24] that if T ∈ B(X) is B-Weyl (resp. upper
semi-B-Weyl) and F ∈ B(X) is an operator satisfying F n ∈ F(X) for some n ∈ N
that commutes with T , then T + F also is B-Weyl (resp. upper semi-B-Weyl).

For T ∈ B(X), let us define the upper semi-Weyl spectrum, the Weyl spectrum,
the upper semi-B-Weyl spectrum and the B-Weyl spectrum of T as follows re-
spectively:

σUSW (T ) = {λ ∈ C : T − λI is not a upper semi-Weyl operator};
σW (T ) = {λ ∈ C : T − λI is not a Weyl operator};

σUSBW (T ) = {λ ∈ C : T − λI is not a upper semi-B-Weyl operator};
σBW (T ) = {λ ∈ C : T − λI is not a B-Weyl operator}.

Let Π(T ) denote the set of all poles of T . We say that λ ∈ σa(T ) is a left pole
of T if T − λI is left Drazin invertible. Let Πa(T ) denote the set of all left poles
of T . We also set

Π0(T ) = {λ ∈ Π(T ) : α(T − λI) < ∞},
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Π0
a(T ) = {λ ∈ Πa(T ) : α(T − λI) < ∞},

E(T ) = {λ ∈ iso σ(T ) : 0 < α(T − λI)},
Ea(T ) = {λ ∈ iso σa(T ) : 0 < α(T − λI)},
E0(T ) = {λ ∈ E(T ) : α(T − λI) < ∞}

and
E0

a(T ) = {λ ∈ Ea(T ) : α(T − λI) < ∞},
where iso K denotes the isolated points of K ⊆ C. Evidently, we have the following
inclusions: Π(T ) ⊆ E(T ), Πa(T ) ⊆ Ea(T ), Π0(T ) ⊆ E0(T ) and Π0

a(T ) ⊆ E0
a(T );

Π(T ) ⊆ Πa(T ), Π0(T ) ⊆ Π0
a(T ), E(T ) ⊆ Ea(T ) and E0(T ) ⊆ E0

a(T ). Moreover,

Π0(T ) = {λ ∈ iso σ(T ) : T − λI is Browder}
and

Π0
a(T ) = {λ ∈ iso σa(T ) : T − λI is upper semi-Browder}.

Let T ∈ B(X). Following Coburn [10], we say that T satisfies Weyl’s theorem
if σ(T )\σW (T ) = E0(T ), while, according to Rakočević [21], we say that T
satisfies a-Weyl’s theorem if σa(T )\σUSW (T ) = E0

a(T ). Following Harte and
Lee [15], T is said to satisfy Browder’s theorem if σ(T )\σW (T ) = Π0(T ),
while, according to Djordjević and Han [11], T is said to satisfy a-Browder’s
theorem if σa(T )\σUSW (T ) = Π0

a(T ). Following Berkani and Koliha [7], we say
that generalized Browder’s theorem holds for T if σ(T )\σBW (T ) = Π(T ), and
generalized a-Browder’s theorem holds for T if σa(T )\σUSBW (T ) = Πa(T ). Ac-
cording to [3, 7, 4, 11, 21], we have the following implications:

Weyl’s theorem =⇒ Browder’s theorem ⇐⇒ generalized Browder’s theorem

⇑ ⇑

a-Weyl’s theorem =⇒ a-Browder’s theorem ⇐⇒ generalized a-Browder’s theorem

Following Gupta and Kashyap [13], we say that T ∈ B(X) satisfies property
(Bw) if σ(T )\σBW (T ) = E0(T ). By [13, Theorem 2.5], T ∈ B(X) satisfies
property (Bw) if and only if generalized Browder’s theorem holds for T and
Π(T ) = E0(T ). The following definition, which is introduced in [14] under another
name and can be viewed as the approximate point spectrum version of property
(Bw), describes the spectral property we will study in this paper.

Definition 1.1. An operator T ∈ B(X) is said to satisfy property (aBw) if

σa(T )\σUSBW (T ) = E0
a(T ).

This paper is organized as follows. In Section 2, we study the property (aBw)
in connection with Weyl type theorems. We show that an operator satisfying
property (aBw) satisfies property (Bw), but not conversely. Moreover, we es-
tablish that property (aBw) holds for T if and only if a-Weyl’s theorem holds
for T and σUSBW (T ) = σUSW (T ). In Section 3, the preservation of property
(aBw) is investigated under commuting nilpotent, quasi-nilpotent, power finite
rank or Riesz perturbations. Some concrete examples are also given in this paper
to illustrate the theoretical results.
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2. Property (aBw) and Weyl type theorems

Before stating our results, we need to introduce the following notations. For
each n ∈ N, we set

cn(T ) = dimR(T n)/R(T n+1),

c
′

n(T ) = dimN (T n+1)/N (T n)

and

kn(T ) = dim(N (T ) ∩R(T n))/(N (T ) ∩R(T n+1)).

Let T ∈ B(X) and let d ∈ N. We say that T has uniform descent for n ≥ d if
kn(T ) = 0 for all n ≥ d. If in addition N (T d) + R(T ) is closed in X, then we
say that T has eventual topological uniform descent, and, more precisely, that
T has topological uniform descent for n ≥ d.

Operators with eventual topological uniform descent are introduced by Gra-
biner in [12]. It includes many classes of operators such as operators of Kato
type, quasi-Fredholm operators, semi-B-Fredholm operators, operators with fi-
nite descent and operators with finite essential descent, and so on. One of the
most important results for operators with eventual topological uniform descent
is Grabiner’s punctured neighbourhood theorem [12, Theorem 4.7]. Discussions
of operators with eventual topological uniform descent may also be found in
[6, 9, 12, 17, 18, 26].

The following result shows that property (aBw) entails property (Bw).

Theorem 2.1. If T ∈ B(X) satisfies property (aBw), then it satisfies property
(Bw).

Proof. Suppose that T satisfies property (aBw). Let λ ∈ σ(T )\σBW (T ). We
claim that λ ∈ σa(T ). Otherwise, if λ /∈ σa(T ), then α(T −λI) = 0. Since T −λI
is a B-Weyl operator, there exists m ∈ N such that cm(T −λI) = c

′
m(T −λI) = 0.

From [19, Lemma 3.2] and the fact that N (T − λI) = {0}, it then follows that

β(T − λI) = dim X/R(T − λI)

= dim X/(R(T − λI) +N ((T − λI)m))

= dimR((T − λI)m)/R((T − λI)m+1)

= cm(T − λI)

= 0.

Consequently, λ /∈ σ(T ), which leads to a contradiction. Hence λ ∈ σa(T ). As
T satisfies property (aBw), then λ ∈ E0

a(T ). Since T − λI is a B-Weyl operator,
there exists d ∈ N such that T −λI is an operator of topological uniform descent
for n ≥ d. Hence by [12, Theorem 4.7], there exists a punctured neighbourhood
U1 of λ such that α(T −µI) = c

′
n(T −λI) = cn(T −λI) = β(T −µI) for all n ≥ d

and µ ∈ U1. Since λ ∈ E0
a(T ), there exists a punctured neighbourhood U2 of λ

such that α(T − µI) = 0 for µ ∈ U2. Now if we let U = U1 ∩ U2, we find that
U ∩ σ(T ) = ∅, therefore λ ∈ E0(T ).

Conversely, let λ ∈ E0(T ). Then λ ∈ E0
a(T ), and hence property (aBw) for

T implies that λ /∈ σUSBW (T ). Thus, there exists d ∈ N such that T − λI is an
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operator of topological uniform descent for n ≥ d. Hence by [12, Theorem 4.7],
there exists a punctured neighbourhood V1 of λ such that α(T −µI) = c

′
n(T −λI)

and β(T − µI) = cn(T − λI) for all n ≥ d and µ ∈ V1. Since λ ∈ E0(T ), there
exists a punctured neighbourhood V2 of λ such that α(T − µI) = β(T − µI) = 0
for µ ∈ V2. Now if we let V = V1 ∩V2, we find that c

′
n(T −λI) = cn(T −λI) = 0.

So T −λI is Drazin invertible, and hence λ ∈ σ(T )\σBW (T ). Therefore, property
(Bw) holds for T . �

The converse of Theorem 2.1 does not hold in general, as we can see in the
following example.

Example 2.2. We consider the operator T = U ⊕ 0 defined on l2(N) ⊕ l2(N),
where U : l2(N) −→ l2(N) is the unilateral right shift operator defined by

U(x1, x2, · · · ) = (0, x1, x2, · · · ), for all (xn) ∈ l2(N).

Then we have,
σ(T ) = {λ ∈ C : 0 ≤ |λ| ≤ 1},

σa(T ) = {λ ∈ C : |λ| = 1} ∪ {0},
σBW (T ) = {λ ∈ C : 0 ≤ |λ| ≤ 1}

and
σUSBW (T ) = {λ ∈ C : |λ| = 1}.

It then follows that σ(T )\σBW (T ) = ∅ = E0(T ), i.e. T satisfies property (Bw).
But σa(T )\σUSBW (T ) = {0} 6= ∅ = E0

a(T ), i.e. T does not satisfy property
(aBw).

Definition 2.3. An operator T ∈ B(X) has the single-valued extension property
at λ0 ∈ C (SVEP at λ0 for brevity), if for every open neighborhood U of λ0 the
only analytic solution f : U → X of the equation (T − λ)f(λ) = 0 for all λ ∈ U
is the zero function on U . The operator T is said to have SVEP if T has SVEP
at every λ ∈ C.

It is easy to observe that property (aBw) for T is equivalent to property (Bw)
for T , if T ∗ has SVEP at each λ /∈ σUSBW (T ). The following result shows that
property (aBw) entails a-Weyl’s theorem.

Theorem 2.4. If T ∈ B(X) satisfies property (aBw), then it satisfies a-Weyl’s
theorem.

Proof. Suppose that T satisfies property (aBw). Let λ ∈ σa(T )\σUSW (T ). Then
λ ∈ σa(T )\σUSBW (T ) and hence property (aBw) ensures that λ ∈ E0

a(T ). Con-
versely, let λ ∈ E0

a(T ). Then α(T − λI) < ∞ and property (aBw) implies that
λ ∈ σa(T )\σUSBW (T ). Thus, there exists n ∈ N such that R(T n) is closed, Tn

is upper semi-Fredholm and ind(Tn) ≤ 0. Since α(T − λI) < ∞, [5, Lemma 2.4]
and [8, Proposition 2.1] ensure that R(T ) is closed and ind(T ) = ind(Tn) ≤ 0,
and this implies that λ ∈ σa(T )\σUSW (T ). Therefore, a-Weyl’s theorem holds for
T . �

The converse of Theorem 2.4 does not hold in general, as we can see in the
following example.
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Example 2.5. We consider T as in Example 2.2. Then T does not satisfy
property (aBw). But we have

σa(T ) = {λ ∈ C : |λ| = 1} ∪ {0},

σUSW (T ) = {λ ∈ C : |λ| = 1} ∪ {0}
and

E0
a(T ) = ∅,

hence a-Weyl’s theorem holds for T .

The precise relationship between property (aBw) and a-Weyl’s theorem is de-
scribed by the following theorem.

Theorem 2.6. An operator T ∈ B(X) satisfies property (aBw) if and only if it
satisfies a-Weyl’s theorem and σUSBW (T ) = σUSW (T ).

Proof. Suppose that T satisfies property (aBw). Then by Theorem 2.4, a-Weyl’s
theorem holds for T . And hence, σa(T )\σUSBW (T ) = E0

a(T ) = σa(T )\σUSW (T ).
Thus σUSBW (T ) = σUSW (T ).

Conversely, suppose that T satisfies a-Weyl’s theorem and σUSBW (T ) = σUSW (T ).
Then we have σa(T )\σUSBW (T ) = σa(T )\σUSW (T ) = E0

a(T ). Therefore, property
(aBw) holds for T . �

Noting that a-Weyl’s theorem entails generalized a-Browder’s theorem, by The-
orem 2.4 and Example 2.5, we observe that property (aBw) entails generalized
a-Browder’s theorem, but not vice versa. The following characterization of prop-
erty (aBw) is first established in [14, Theorem 2.5]. And we give here a different
proof for completeness. Moreover, some useful information is also given for prop-
erty (aBw).

Theorem 2.7. An operator T ∈ B(X) satisfies property (aBw) if and only if it
satisfies generalized a-Browder’s theorem and Πa(T ) = E0

a(T ). In this case, we
have

Π0
a(T ) = E0

a(T )

and

σa(T ) = σUSBW (T ) ∪ iso σa(T ).

Proof. Suppose that T satisfies property (aBw). Then generalized a-Browder’s
theorem holds for T . And hence, Πa(T ) = σa(T )\σUSBW (T ) = E0

a(T ). Thus
Πa(T ) = E0

a(T ).
Conversely, suppose that T satisfies generalized a-Browder’s theorem and Πa(T ) =

E0
a(T ). Then we have σa(T )\σUSBW (T ) = Πa(T ) = E0

a(T ). Therefore, property
(aBw) holds for T .

Since Πa(T ) = E0
a(T ), we have

E0
a(T ) = E0

a(T ) ∩ Πa(T ) = Π0
a(T ).

To show the equality σa(T ) = σUSBW (T )∪iso σa(T ), observe first that σUSBW (T )∪
iso σa(T ) ⊆ σa(T ) holds for every T ∈ B(X). To show the opposite inclusion,
suppose that λ ∈ σa(T ) and λ /∈ σUSBW (T ). Then λ ∈ E0

a(T ) because T satisfies
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property (aBw). Therefore λ ∈ iso σa(T ), and so σa(T ) ⊆ σUSBW (T )∪ iso σa(T ).
This shows that σa(T ) = σUSBW (T ) ∪ iso σa(T ). �

Let H(σ(T )) denote the set of functions f which are defined and analytic on
an open neighbourhood of σ(T ).

Theorem 2.8. Let T ∈ B(X). If σp(T ) = ∅, then property (aBw) holds for
f(T ) for all f ∈ H(σ(T )).

Proof. The hypothesis σp(T ) = ∅ ensures from the proof of [2, Theorem 2.5] that
σp(f(T )) is empty. This implies that f(T ) has SVEP, and in particular f(T )
has SVEP at every λ /∈ σUSBW (f(T )). Consequently, f(T ) satisfies generalized
a-Browder’s theorem. To prove property (aBw) holds for f(T ), by Theorem 2.7,
it then suffices to prove that

Πa(f(T )) = E0
a(f(T )).

Evidently, the condition σp(f(T )) = ∅ entails that Ea(f(T )) = E0
a(f(T )) = ∅.

Because Πa(f(T )) ⊆ Ea(f(T )) holds for every operator T ∈ B(X), we also have
Πa(f(T )) = ∅. By Theorem 2.7, it then follows that property (aBw) holds for
f(T ). �

Associated with T ∈ B(X), the analytic core of T is defined by

K(T ) :={x ∈ X : there exist a sequence {xn}n≥1 in X and a constant δ > 0

such that Tx1 = x, Txn+1 = xn and ||xn|| ≤ δn||x|| for all n ≥ 1}.

Corollary 2.9. Let T ∈ B(X). If there exists λ0 ∈ C such that K(T −λ0) = {0}
and N (T − λ0) = {0}, then property (aBw) holds for f(T ) for all f ∈ H(σ(T )).

Proof. Obviously,N (T−λ) ⊆ K(T−λ0) for all complex λ 6= λ0. ThenN (T−λ) =
{0} for all λ ∈ C, and hence σp(T ) = ∅. By Theorem 2.8, f(T ) satisfies property
(aBw). �

The conditions of Corollary 2.9 are satisfy by any injective operator T ∈ B(X)
for which the hyperrange R(T∞) :=

⋂∞
n=1R(T n) is {0}. In fact, K(T ) ⊆ R(T∞)

for all T ∈ B(X), thus K(T ) = {0}. In particular, the conditions of Corollary 2.9
are satisfy by the unilateral weighted right shift operators on the sequence space
lp(N), for any 1 ≤ p < ∞.

3. Property (aBw) under perturbations

In this section, we consider the stability of property (aBw) (resp. property
(Bw)) under commuting nilpotent, quasi-nilpotent, power finite rank or Riesz
perturbations.

Theorem 3.1. (1) If T ∈ B(X) satisfies property (aBw) and N ∈ B(X) is a
nilpotent operator commuting with T , then T + N satisfies property (aBw).

(2) If T ∈ B(X) satisfies property (Bw) and N ∈ B(X) is a nilpotent operator
commuting with T , then T + N satisfies property (Bw).
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Proof. It is well known that

σ(T + N) = σ(T ), σa(T + N) = σa(T ).

Moreover, we know from [24] that

σBW (T + N) = σBW (T ), σUSBW (T + N) = σUSBW (T );

E0(T + N) = E0(T ), E0
a(T + N) = E0

a(T ).

Therefore, property (aBw) and property (Bw) are transmitted from T to T +
N . �

As a-Weyl’s theorem (resp. Weyl’s theorem), property (aBw) (resp. property
(Bw)) is not preserved under commuting quasi-nilpotent perturbations.

Example 3.2. We consider the operator T = V ⊕ I defined on X ⊕ Y , where
V : X −→ X is an injective quasi-nilpotent operator which is not nilpotent and
Y is a non-zero finite-dimensional Banach space. Let Q = −V ⊕ 0. Then Q is
quasi-nilpotent and TQ = QT . Moreover,

σa(T ) = σ(T ) = {0, 1},

σUSBW (T ) = σBW (T ) = {0},
σa(T + Q) = σ(T + Q) = {0, 1}

and
σUSBW (T + Q) = σBW (T + Q) = ∅.

It follows that E0
a(T ) = E0(T ) = {1} and E0

a(T + Q) = E0(T + Q) = {1}.
Therefore, σa(T )\σUSBW (T ) = {1} = E0

a(T ) and σ(T )\σBW (T ) = {1} = E0(T ),
i.e. property (aBw) and property (Bw) hold for T . But σa(T + Q)\σUSBW (T +
Q) = {0, 1} 6= {1} = E0

a(T + Q) (resp. σ(T + Q)\σBW (T + Q) = {0, 1} 6= {1} =
E0(T + Q)), i.e. T + Q does not satisfy property (aBw) (resp. property (Bw)).

As a-Weyl’s theorem (resp. Weyl’s theorem), property (aBw) (resp. property
(Bw)) is not preserved under commuting finite rank perturbations as the following
example shows.

Example 3.3. We also consider the operator T = V ⊕ I defined on X ⊕ Y as
in Example 3.2. Take any non-zero (finite rank) projection P ∈ B(Y ) and let
F = 0 ⊕ −P . Then F is of finite rank, TF = FT and property (aBw) and
property (Bw) hold for T by Example 3.2. But property (aBw) (resp. property
(Bw)) does not hold for T + F because 0 ∈ E0

a(T + F ) ∩ σUSBW (T + F ) (resp.
0 ∈ E0(T + F ) ∩ σBW (T + F )).

Recall that an operator T ∈ B(X) is called isoloid if iso σ(T ) = E(T ), and
a-isoloid if iso σa(T ) = Ea(T ). It is established in [25] that if F ∈ B(X) satisfies
F n ∈ F(X) for some n ∈ N and T ∈ B(X) is an isoloid operator commuting with
F , then property (Bw) is transmitted from T to T + F . Similarly, we have:

Theorem 3.4. Suppose that F ∈ B(X) satisfies F n ∈ F(X) for some n ∈ N and
that T ∈ B(X) is an a-isoloid operator commuting with F . If T satisfies property
(aBw), then T + F satisfies property (aBw).
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Proof. By Theorem 2.6, we know that an operator T ∈ B(X) satisfies property
(aBw) if and only if a-Weyl’s theorem holds for T and σUSBW (T ) = σUSW (T ).
Since F satisfies F n ∈ F(X) for some n ∈ N, T + F satisfies a-Weyl’s theorem
by [20, Theorem 2.6]. Hence it suffices to establish that

σUSBW (T + F ) = σUSW (T + F ).

By [24, Theorem 2.11] and [23, Proposition 5], we have that

σUSBW (T + F ) = σUSBW (T ) = σUSW (T ) = σUSW (T + F ).

Consequently, T + F satisfies property (aBw). �

Corollary 3.5. Suppose that F ∈ F(X) and that T ∈ B(X) is an a-isoloid
operator commuting with F . If T satisfies property (aBw), then T + F satisfies
property (aBw).

Recall that an operator T ∈ B(X) is called finite-isoloid if iso σ(T ) = E0(T ),
and finite-a-isoloid if iso σa(T ) = E0

a(T ). In the following, we denote by acc K
the accumulation points of K ⊆ C.

Theorem 3.6. (1) Suppose that T ∈ B(X) is finite-a-isoloid, R ∈ B(X) is a
Riesz operator commuting with T and acc σa(T ) = acc σa(T + R). If T satisfies
property (aBw), then T + R satisfies property (aBw).

(2) Suppose that T ∈ B(X) is finite-isoloid, R ∈ B(X) is a Riesz operator
commuting with T and acc σ(T ) = acc σ(T + R). If T satisfies property (Bw),
then T + R satisfies property (Bw).

Proof. (1) By Theorem 2.7, we know that an operator T ∈ B(X) satisfies property
(aBw) if and only if generalized a-Browder’s theorem holds for T and E0

a(T ) =
Πa(T ). Since R is a Riesz operator, T+R satisfies generalized a-Browder’s theorem
by [24]. Hence it suffices to establish that

E0
a(T + R) = Πa(T + R).

Let λ ∈ E0
a(T + R). If λ /∈ σa(T ), then T + R− λ is upper semi-Browder by [22,

Theorem 1], and hence λ ∈ Πa(T + R). Suppose that λ ∈ σa(T ). Then from the
assumption

acc σa(T ) = acc σa(T + R)

it follows that λ ∈ iso σa(T ), and so λ ∈ E0
a(T ) because T is finite-a-isoloid.

Thus, Theorem 2.7 implies that λ ∈ Π0
a(T ). Consequently, T − λ is upper semi-

Browder, and hence T + R − λ also is upper semi-Browder by [22, Theorem 1].
So, λ ∈ Πa(T + R).

Conversely, let λ ∈ Πa(T + R). In order to show that λ ∈ E0
a(T + R), it need

only to show that α(T + R − λ) < ∞. If λ /∈ σa(T ), then T + R − λ is upper
semi-Browder by [22, Theorem 1], and hence α(T + R − λ) < ∞. Suppose that
λ ∈ σa(T ). Then from the assumption

acc σa(T ) = acc σa(T + R)

it follows that λ ∈ iso σa(T ), and so λ ∈ E0
a(T ) because T is finite-a-isoloid,

hence λ ∈ Π0
a(T ) by Theorem 2.7. Thus T − λ is upper semi-Browder, and so is
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T + R − λ by [22, Theorem 1], hence α(T + R − λ) < ∞. Consequently, T + R
satisfies property (aBw).

(2) By [13, Theorem 2.5], we know that an operator T ∈ B(X) satisfies property
(Bw) if and only if generalized Browder’s theorem holds for T and E0(T ) = Π(T ).
Since R is a Riesz operator, T +R satisfies generalized Browder’s theorem by [24].
Hence it suffices to establish that

E0(T + R) = Π(T + R).

Let λ ∈ E0(T + R). If λ /∈ σ(T ), then T + R− λ is Browder by [22, Theorem 1],
and hence λ ∈ Π(T + R). Suppose that λ ∈ σ(T ). Then from the assumption

acc σ(T ) = acc σ(T + R)

it follows that λ ∈ iso σ(T ), and so λ ∈ E0(T ) because T is finite-isoloid. Thus,
λ ∈ E0(T )∩Π(T ) = Π0(T ) by [13, Theorem 2.5]. Consequently, T−λ is Browder,
and hence T + R− λ also is Browder by [22, Theorem 1]. So, λ ∈ Π(T + R).

Conversely, let λ ∈ Π(T + R). In order to show that λ ∈ E0(T + R), it need
only to show that α(T +R−λ) < ∞. If λ /∈ σ(T ), then T +R−λ is Browder by
[22, Theorem 1], and hence α(T + R − λ) < ∞. Suppose that λ ∈ σ(T ). Then
from the assumption

acc σ(T ) = acc σ(T + R)

it follows that λ ∈ iso σ(T ), and so λ ∈ E0(T ) because T is finite-isoloid, hence
λ ∈ E0(T )∩Π(T ) = Π0(T ) by [13, Theorem 2.5]. Thus T −λ is Browder, and so
is T + R− λ by [22, Theorem 1], hence α(T + R− λ) < ∞. Consequently, T + R
satisfies property (Bw). �

Corollary 3.7. (1) Suppose that T ∈ B(X) is finite-a-isoloid, K ∈ B(X) is a
compact operator commuting with T and acc σa(T ) = acc σa(T +K). If T satisfies
property (aBw), then T + K satisfies property (aBw).

(2) Suppose that T ∈ B(X) is finite-isoloid, K ∈ B(X) is a compact operator
commuting with T and acc σ(T ) = acc σ(T + K). If T satisfies property (Bw),
then T + K satisfies property (Bw).

Without the assumption acc σa(T ) = acc σa(T+K) (resp. acc σ(T ) = acc σ(T+
K)), the result of Corollary 3.7(1) (resp. Corollary 3.7(2)) will not be true.

Example 3.8. Let T : l2(N) −→ l2(N) be a compact operator defined by

T (x1, x2, · · · ) = (x1,
1

2
x2,

1

3
x3, · · · ), for all (xn) ∈ l2(N).

Let K = −T .
(1) Clearly, T is finite-a-isoloid and T satisfies property (aBw). But T +K = 0

does not satisfy property (aBw).
(2) Clearly, T is finite-isoloid and T satisfies property (Bw). But T + K = 0

does not satisfy property (Bw).

For quasi-nilpotent perturbations, we have:

Theorem 3.9. (1) Suppose that T ∈ B(X) is finite-a-isoloid. If T satisfies prop-
erty (aBw), then so does T + Q for every quasi-nilpotent operator Q commuting
with T .
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(2) Suppose that T ∈ B(X) is finite-isoloid. If T satisfies property (Bw), then
so does T + Q for every quasi-nilpotent operator Q commuting with T .

Proof. Since σa(T ) = σa(T + Q) and σ(T ) = σ(T + Q), the conclusions follow
immediately from Theorem 3.6. �
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