Ann. Funct. Anal. 6 (2015), no. 2, 116-132
http://doi.org/10.15352/afa/06-2-11
unctional  JSYN: 2008-8752 (electronic)

nalysis http://projecteuclid.org/afa

nnals of

APPLICATIONS OF AN ANALOGUE OF CONDITIONAL
WIENER INTEGRALS

IL YONG LEE, HYUN SOO CHUNG AND SEUNG JUN CHANG*

Communicated by C. Cuevas

ABSTRACT. In this paper, we obtain formulas for the analogue of conditional
Wiener integrals for the functional F' of the form

F(x) =exp { /OT V(x(t))dt}, x € C[0,T)

where V : R — R is a potential function. We then apply this formula to ob-
tain several integration formulas for the functionals involving various potential
functions which is used in quantum mechanics and other physical theories.

1. INTRODUCTION

For T > 0, let Cy[0,T] denote the one-parameter Wiener space; i.e., the space
of real-valued continuous functions = on [0,7] with z(0) = 0. We consider the
partial differential equation

0 I
with the initial condition 1(u,0) = ¢(u), where V' : R — R is a potential
function. Many mathematicians have attempted to solve (1.1), which is known as

the diffusion equation. One popular method involves solving the Wiener integral

/CO[O . oA V22(T)) exp{ B /OT V()rl/2x(s))ds}dW(a:) (1.2)
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for A > 0, where W is the standard Wiener measure on Cy[0,7]. This integral is
obtained from the Feynman-Kac formula [1, 2, 10]. In previous works [7, 9, 11],
the authors introduced Fourier-type functionals. In [7], the authors studied an
approach to solving the equation (1.1) using Fourier-type functionals and equation
(1.2). Many physical problems can be formulated in terms of the conditional

Wiener integral of a functional of the form

Flz) = exp{ - /OT V(m(t))dt}, z € Cy[0,T]. (1.3)

In other words, we can solve equation (1.2) by using the conditional Wiener
integral of a functional of the form (1.3).

Let C[0, T be the space of all real-valued continuous functions on [0, 7] with the
supremum norm. In [18; 19], the authors introduced an analogue of the Wiener
measure w,, on (C[0, 7], B(C|[0,T7])), using a probability measure ¢ on (R, B(R)).
Furthermore, in [5, 6, 17, 20], the authors studied various topics pertaining to
this analogue of the Wiener measure, together with related topics concerning an
analogue of Wiener space. In particular, the authors derived a simple formula for
the conditional w,-integral and then used this formula to evaluate the conditional
w,-integral of various functionals [3, 16].

In this paper, we introduce three functionals involving potential functions used
in quantum mechanics. Functionals such as these have appeared in many papers
8, 14, 15, 21]. We then evaluate the analogue of conditional Wiener integral of
the functionals such as these. In Section 3, we derive a series representation of
an analogue of conditional Wiener integral for the functional F' given by (1.3).
In Section 4, we express the analogue of conditional Wiener integral ‘n’ terms
of the potential function V(u) = u*(k € N). We then evaluate the analogue of
conditional Wiener integral for functionals that involve potential functions.

2. DEFINITIONS AND PRELIMINARIES
In this section, we list some definitions and properties from [3, 4, 5, 6, 16, 17,
18, 19, 20).
For t = (to,ty, -+ ,t,) With0 =ty < t; < --- <t, < T, let Jy: C[0,T] — R
be the function given by

Jx) = (x(to), x(tr), - -+ x(tn))-
For B; (j =0,1,2,--- ,n) in B(R), the subset J{_I(H?:O B;) of C[0,T] is called

an interval and let Z be the set of all such intervals. For a probability measure ¢
on (R, B(R)), let

mﬁﬂ(‘]gl(H BJ)) = / / Wn-&-l(t_g Ug, Uy~ - - aun>d(u1a"' 7un)d90(u0)
=0 Bo JTI7_, B;
where

Wn+1(EUQ,U1, o 7un) = (

n 1 ”(
]:

1 )EeXp{— Uj—u]'_l) }
L 2m(t — i) — 2(t; —tj1) )
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By Theorem 5.1 [12, p.144] and Theorem 2.1 [12, p.212], the set of all Borel
subsets in C[0, T'], coincides with the smallest o-algebra generated by Z and there
exists a unique probability measure w, on B(C[0,T]) such that w,(I) = m(I)
for all I in Z. This measure w,, is called an analogue of Wiener measure associated
with the probability measure ¢ and the space (C[0,T],B(C|0,T)),w,) is called
an analogue of Wiener space.

We denote the analogue of Wiener integral of a B(C[0, T'])-measurable function
F by

E[F] = / F(x)dwy(z)
co,T]
whenever the integral exists.

The following formula follows easily from the Change of Variables Theorem.

Let f : R*! — C be a Borel measurable function. Then

/C . f(x(to), x(t1), -, z(t,))dwy(z)
071 n (2.1)
= /R[ o f(uo,ul, s ,un)WnH(F; Ug, Uy, * * - aun)dHuJ} d@(uo)

Jj=1

where dl_[?:1 uj = duy - - - du, and = means that if either side exists, then both
sides exist and they are equal. Then the equation (2.1) is reduced to the well-
known Wiener integration formula if ¢ is the Dirac measure concentrated at 0.
For a more detailed study of this, see [18, 19].

We conclude this section with some simple examples of the analogue of Wiener
integral.

Example 2.1. For 0 <t < T, let F(x) = exp{z(t)}. Then

[, eteoanto = [ {u+ st

If ¢ is the Dirac measure dy at the origin in R, then
t

/C[o,T} exp{z(t) }dw,(x) = exp {5}

Hence, in this case the analogue of Wiener integral is equal to Wiener integral.
If ¢ has a normal distribution with mean a and variance o2, then

/C[O,T] exp{z(t) }dw,(z) = /Rexp {Uo + %}d(p(uo)

1 / { +t} { (uo—a)Q}d {02+t+ }
= exX (v — ¢ X —_— Uy = €X o p.
902 Ju P q Uo 5 p 902 0 p 9

Example 2.2. Let M(R) denote the space of all complex-valued Borel measures
on B(R). For v € M(R), the Fourier-transform # of v is defined by the formula

v(u) = /Rexp{iuv}du(v).
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For 0 <t <T,let F(x)=v(x(t)). Then

/C[OI] v(x(t))dw,(r) = /R [/Rexp{ — % + @'uov}dgp(u(})] dv(v).

If © is a Dirac measure y at the origin in R, then

/C[O,T} pa(t))dwy(x) = /Rexp{ - T}dy(v).

Once again, it can be concluded that the analogue of Wiener integral is equal
to the Wiener integral, as described above. If ¢ has a normal distribution with
mean o and variance o2, then

tv?

/CM] D(@(t))dw,(z) = /R [ /R exp{ - +iuov}d4p(u0)] dv(v)

- \/%/R [/Rexp{ - t% +iuov} exp{ — %}duo]dy(v)

— /Rexp{ — @02 + iav}du(v).

3. AN ANALOGUE OF CONDITIONAL WIENER INTEGRAL

In this section, we derive a formula for the analogue of conditional Wiener
integral for functionals F' of the form

T
Flz) = exp{/ Via(t)dt}. = ecl0.T] (3.1)
0
where V : R — R is a potential function.

First, we define the analogue of conditional Wiener integral.

Let X be a R™""!-valued function on C[0,7T] whose probability distribution
w, o X! is absolutely continuous with respect to Lebesgue measure on R™!.
Let F' be a C-valued w,-integrable functional on C[0,7]. Then an analogue of
conditional Wiener integral of F' given X, denoted by E[F|X](7), is a Lebesgue
measurable function of 77, unique up to null sets in R"™!, satisfying the equation

/ F(x)dw,(z) = / E[FIX](i)d(w, o X)(7)
X-1(B)

B
for all B € B(R"™).

For each partition 7 = {tg,t1,--- ,t,} of [0,T] withO =ty <t; <--- <t, =T,
let X, : C[0,T] — R™"! be defined by

X (z) = (z(to), z(tr), - ,x(tn)). (3.2)
Define a function [z] on [0,T] by

[2)(t) = w(tj1) + —2—(x(t;) — 2(t;—1))



120 LY. LEE, H.S. CHUNG, S.J. CHANG

for t;_y <t < t;. Similarly, for 7 = (1m0, m1,- - ,n,) € R"*! define the function

(7] of 77 on [0, T] by

7)) = o+~ () — )

t—t
where t;_; <t <t;. Then both [ ] and [ ] are continuous on [0, T, they are line
segments on each interval [t;_i,¢;], and [z](t;) = =z(t;) and [7](¢;) = n; at each
t.

je

Remark 3.1. In [13], the authors presented a simple formula for expressing con-
ditional Wiener integrals in terms of ordinary Wiener integrals. Also, in [3, 16],
the authors introduced a simple formula for the analogue of conditional Wiener
integral which is essentially similar to Park and Skoug’s simple formula on Wiener
space; in other words,

PRI = | o P ] (), (33

Equation (3.3) is referred to as the simple formula giving a conditioning function
X, on the analogue of Wiener space.

The following lemma was established in [3].

Lemma 3.2. Let t € (tj_1,t;) forj = 1,--- ,n and f : R — R be a Borel
measurable function. Then

[, 10 = o) = (B [ swen{ - 20}aw (s

where

2= o (_tjt)—(ttj_—ltil), (3.5)

We present some examples of the analogue of conditional Wiener integral.

Example 3.3. (1) Let F' be as in Example 2.1 and let X, be given by equation
(3.2). Then the analogue of conditional Wiener integral for F

E[FIX,)(7) = /C exp{a(t) — [2](t) + [7(t) }dw, (z)

0.7]
= (ﬁ) /Rexp {U—I—no + M}exp{ — %ﬁ}du

{T — ¢ tny —
:eXp{ (2T )+77°+ <mT ?70)}'

[NIE
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(2) Let F be as in Example 2.2 and let X, be given by equation (3.2). Then
using equation (3.4), we have

E[F|X:](17) = /C[O . p(x(t) = [2](t) + [7)()) dw, (z)

= (ﬁy/ﬂ&ﬁ(uqtmﬁ_M) exp{—ﬁzﬂ}du
= Grr=g) L[ Lo {i(orme 5o }avo)

- exp { — %lﬁ}du

- fo - i O

In our next theorem, we obtain the analogue of conditional Wiener integral for
the functional F' defined by equation (1.3) above.

N

Theorem 3.4. Let F' be given by equation (3.1) such that fc[o 1] |F(x)]dw,(x) <

oo. Let X, be given by equation (3.2). Then the analogue of conditional Wiener
integral E[F|X.](7]) exists for wyo X t-a.e. 77 € R™™ and is given by the formula

E[F|X;](1)
o) n l]
S Y ) Ty
m=1 114+l =m F=1 A0 )0 =1 v=1
P, (] 1v
| V0t ) e { - u? fdu dHHt] .
R j=1lv=1
where A[tj_1,tj),lj = {(tjfl,lv"' ,tjflvlj)|tj,1 < tj,1’1 < -0 < tj*l,l]’ < t]} fOT’

j=1---.nandty=0.

Proof. From our assumption that F' is w,, integrable, E[F|X,] exists for w,o X -
a.e. 77 € R"™!. By using equation (3.3) and the Dominated Convergence Theorem,
we have

E[F|X:](17)

- [ en{ = [ Ve - o+ e

—i+ m; D / Vialt) - 1)) + (0)) " du, (o)
ey /C . (—n}d)’” ( /0 "V alt)  [2l(0) + 7(0)dt) " duw, ()
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. —t)(z(t)—(t; t—t; 1) (@(t;)—a(t
Since z(t) — [z](t) = (s )(tj(*ij:cl( =) (e tlj)ggjl) 1) ' we have
[NXK7
" z(t) — x(t;_
Clo,7) tj— t‘ —tj-1

m)!
L+§:/Oﬂ m|l+g;:lﬂ“¢g
([ (Ot )
/tn V((tn — t)(z(t) — z(ty_1))
tn—1 tn B tn_l
- o)) o)

Step (I) results from the following formula known as the Multinomial Theorem

. m! )
(o)™ = D e (36)
lt-tlp=m
for any nonnegative integers Iy, - - ,l,,. Note that for each j =1,2,--- ,n,
([ (=00 sl €=t =20) )"
tj—1 tj—tj ti =tz

i tj—l,v Xz tj—l,v —Itj_l
HV( )(lts 1) = 2(t5-1)

tj — tj—l

A

tj— 1t)lJ'v 1

_(@Mf—wﬁ@%@)—w@jL0)+¢ﬂ@ﬁ40>df1@_h”

ti—ti_4

and the last expression in the above is equal to

1+§:/ (—=1)™

clo.1] l14-- +l =m

] /H n HliIV(“j - tj‘l’”)lff(fj;_’j) — a(ty))

G=1 Bl 1,05 j=1v=1

B (tj_l,v - tj—l)(‘r(tj) — ‘T(tj_l’l’)) + [77] (tjl,v>)dﬁ l_jltjl,v] dw@<x>

ti —1;_
J Jj—1 j=1v=1
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Hence, by using Fubini’s Theorem and equation (3.4), we have

E[F|X:](1)

:1+§: > (—1)m/n

(q)y j—1v )
m=111++lp,=m

./Rv(wm(tjm))exp{ @J(ﬂ L) }d dHHtJ Lo-

j=1lv=1

L

.o

j=1A[J 1)l j=1v=1

This proves the desired result. 0

4. APPLICATIONS TO QUANTUM MECHANICS

In this section, we use Theorem 3.4 to evaluate the analogue of conditional
Wiener integral for functionals involving useful potential functions from quantum
mechanics and other areas of physics.

The next two lemmas play a key role in obtaining Theorem 4.3 below.

Lemma 4.1. For0<s<t<T,meNandly,---,l, €N,

l
Lt Hlm < — mL _ v
/ |v] exp{ 2(t—s)}dv < V2r(t—s)+ R|v| exp{ 2(t—s)}dv

and if ¢ is a probability measure on (R, B(R)), then

/ o[+ Hmdp(v) < 1+ / o™ Edp(w)
R R
where L = max{ly,--- L}

Proof. For ly,--- I, € N, we have

/|U\ll+ o exp{ 2(t— )}dv

2 2

v v
< lexps — dv+/ o™ exp { — dv
/|;1|<1 p{ Q(t_8>} [v|>1 | | p{ 2(t_8)}

< 27T(t—s)—|—/R|v]mLexp{—2(tv—iS)}dv

Similarly, we observe that

/|v|l1+'“”mdw(v) S/ 1d%0(v)+/ o™t dp(v) < 1+/|v|de90(v)-
R lv|<1 |o|>1 R

This proves the desired result. 0
Lemma 4.2. For each k € N, let Fi(x) = exp{— fo t)kdt} for x € C[0,T]
with

/exp{Mo(l + |uo|") Yo (ug) < 00
R
for some My > 0. Then Fj, is wy-integrable for all k € N.
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Proof. By using series expansion, the Change of Variable Theorem and the Beppo-
Levi Theorem, it follows that for K =1,2,---,

/o[o,T] [Fiw)ldw, (2) < 1+ Z / o / (o(0)¥dt) " |duwy(x)
- Z /C[O,T} ‘ (_ni')m (m! /Am(T)(w(tl))k s (@ (tn)) oty - 'dtm> ‘dW¢(l’)

<1+ Z/mm [/O[OT] |x(t1)]’“~-]x(tm)|kdw¢(:c)}dt1-~dtm
e [ (M) [t tont

- exp { i u] ) ) }du1 . ~dumdcp(u0)] dty - - dt,,

Jj=1
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where A, (T) = {(t1, -+ ,tn)|0 =to < t; < -+ <t =T}. Next let u; —u;_1 =
vj for 5 =1,--- ,m. Then by using equation (3.6),

<1+ / [( // loy + uo|® -+ [vg + -+ + v + ug?
772:1 A E27Tt _t] 1 m
eXP{ 25253—:;—jj}dvl cdvpdp(ug) | dty - - - dty,
j=1 J
=1 [( // lia l1,2
+Z/ H27rt —ti_1) Z l11'l1 |U1| |uol
m=1 J=1 l11+l1,2=k
2 %iwvﬂivlvwmwm
lo.1+a 5 tls 5=k 2,1:02.2'023
k' lm,1 lm,m l 1
2 Lol - Ll ﬂwm SRR G R (T
b1l 2+ Hommyr=k 0T m,m:im,m+

- exp { i 2 3 }dvl e dvmdgp(uo)] dty---dt,,
tj-

J=1
00 m 1
2
=1+ oi77) > > - X
—1 J A (T) - 27Tt _tJ 1) _ _ _
m=1 m j=1 l1,14+0 2=k l2,1+12 2412 3=k I, 1+ +lm,mt+1=k

k! k! k!
'(hﬂhg>(bﬂbg&y)'”<%uumg-n |>

lm,m!lm,m—l-l .
2

. l1,1+l2 24 +lm,m . U1 }d
/Rm' eXp{ 2t — to) S

l2, 113 24+1lg 34+ Flm,m—1 )
o ugrTET, , exp{ — —}dvg
[ Mo 1)

!
m m,1 d m
/|v | exp (t tm 1)} v

. / |u0‘l1,2+l2,3+l3,4+"‘+lm,m+l dQO(UQ)} dtl e dty,
R

Applying Lemma 4.1 to the last expression in the above equation, we obtain

| @i,

mi/w[(n—wj;jj >y o

Jj=1 l1,1+l 2=k lo,1+l2 2412 3=k Ima++lmmy1=k
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k! k! k!
' (51,1!1172!> (zzllzm!lg,g!) o <zm,11 o zm,mﬂl)
02
(Vo e - Vi)
( 7(t1 — to) /R|vl| exp 3 — 1) vy
2
. _ km __ Y
< 2m(ty — t1) +/ | Vs exp{ 2t — 1) }dw)

.. <\/27r(tm— m—1) /|vm|kmexp e —tm 1)}dvm)
1 + /R \uo|kmd<p(u0))] dty - dt,,

k!
Since Z I 1 (m + 1)k, for all m € N, we have

lpa!---1 !
lm,1+"'+l7n,m+1:k m,1 m,m+1

/C | JAld(e)

2 o [ =) e =g g )
. (3k + <m)2 /]R |y [ exp{ — ﬁ}dw)
) ((m + 1)k + (27?(tm i tm1>>; /R ’Um|km eXP{ - 2(tmli—12ntm1)}dvm>

+ [l dptua)) e+t
R

Now, let M = max{MF,--- Mk} where

M= (e 0+ (5 / o exp { 5 tl)}d%)
- ’ (4.1)

forj=1,--- ,mand for all k£ € N. Then using equation (4.1) and the Beppo-Levi
Theorem, we have

/C[mwk( 2)|dw,(z) < 1+Z/ / 1t o) dip (o) )ty -,
_ 1—|—/Rle(M(1+ g )™ /Amm dt -« dt o (o)
_ 1+/Ri(M(1+|u0|k))m%</oT1dt)mdgp(uo)

= /Rexp{Mo(l + |u0‘k)}d§0(u0) < o0,
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where My = MT. This proves the desired result. O

In our next theorem, as an application of Theorem 3.4, we express the analogue
of conditional Wiener integral E[Fy|X,] in terms of the potential function V' (u) =
k
u®(k € N).

Theorem 4.3. Let F}, be as in Lemma 4.2 and let X, be given by equation
(3.2). Then the analogue of conditional Wiener integral E[Fy|X,|(7) exists for
wy o0 X t-a.e. 7€ R™™ and is given by the formula

E[F|X,)(7) = exp { Z/ Z = 21 () “( J(t)>dt}

tj—1 1—
where ®;(t) is given by equation (3.5).

Proof. In Lemma 4.2, we have shown that Fj, is w,-integrable and so by Theorem
3.4, E[Fy|X,] exists for w, o X '-a.e. 77 € R™™ and for all k = 1,2,---. Now
we evaluate the analogue of conditional Wiener integral. Letting V (u) = u* for
k € N and applying Theorem 3.4, we have

E[Fy| X7](1)
o0 n lJ
:1+mzzu+.;:m(_1)m/”lﬁ[ e Hlv 1( o )
'/R(U‘I’["ﬂ(tj—l,v))kexp{ (I)J(J 1) }dudHHt] 1o

where ®,(t;_1,) is given by equation (3.5). Next using the Binomial Theorem,
we obtain

CEESURIED DD SRNC Iy N |

m=11l1++l,= J=12[t—1,t5):l; j=1v=1

U

q)yjlv)

L

S (D) [ e - 2t T T

j=1lv=1

n

S SR A i)

m=11l14-+lp,=m Hj:1 [tj—1:t5),l5 j=1 v=1
]

_22 (;)([ﬂ(tj_l,v))k_Ql/Ooouﬂexp{ 9 (] 1v u2}dudHHtj Lo
) T ue)

2

/0 u? eXp{ - WQB}M - %<q)j(tj2'1,v>)l<q)j(tfl:v>) F(zl ;r l>

Let w = mu Then [ w 5 Lexp{—w}dw = (2”1) and so
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where I is the Gamma function. Applying this to the last expression in equation
(4.2), we obtain

[e.e] n lJ
SO VD SINC Y [T1(;)"
m=111+-+lp=m =1 A[] 1t5):l j=1v=1

- (n) e () Gy ol T
:1+i > (—1)m/nA ﬁ

m=11l1++lp,=m =120t —1,t5)l5 j=1v=1

L

(5]

Kl B
'Zm(m(tj—l,v))k l( >dHHt] Lo

]1’[}

1=0 j=1v=1
1 A\l
~exp Z / el () @
i1 =
which completes the proof of Theorem 4.3. O

In our next example, we apply the results obtained in Theorem 4.3 to the
following three special cases.

E[F|XA(M)(5 = 1,2,3)

Fy(w) =exp{ = [ (@®)dt} | exp{=3 S5t — 1)+ 751}

Fo(w) = exp { = Jy (@(®)?dt } | exp{~ 71 (t; — ;1)

(t; =t + 207 + 2nm;—1 + 207 )}

Fy(a) = exp { = [} (@()*dt | exp{= S (65 = 0[5 — 1) (0 +7i1)

03+ mini—1 +nni_y + 0oy}

TABLE 1.
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We now apply Theorems 3.4 and 4.3 to three potential functions. Functions
such as these are very important in quantum mechanics and have appeared in
other areas of mathematical physics involving various Feynman integration the-
ories.

[1] Harmonic oscillator

When V(u) = a*u?, a € R — {0} in equation (1.1), this equation is called the
diffusion equation for harmonic oscillator

0 102 5 o
with the initial condition ¥ (u,0) = ¢(u). In this case, the functional F in equa-
tion (1.3) becomes

T
F(z) =exp { — a2/ :rQ(t)dt}. (4.3)
0
[2] Double-well potential

For positive real constants m, a, and w, let V(u) = 7g%;(u2 — a?)?. This is a

double-well potential with minima at v = +a [15]. For sufficiently large a, by
expanding the potential at u = +a, one can obtain following expression

2 2 2
_mw 5 uFa  (uFa)]  mw 5
V(u) = 5 (uFa) {1i " + 10 }_ 5 (uFa).
When V(u) = 22 (4> — %)%, m,a,w € RT in equation (1.1), this equation is
called the diffusion equation for a double-well potential with minima at u = +a
9] 102 mw?, o, o
aqﬁ(uat) = §w¢(u7t) - 8a2 (U —a ) ¢(u7 t)

with the initial condition ¥ (u,0) = ¢(u). In this case, the functional F in equa-
tion (1.3) becomes

F(z) = exp e T(xQ(t)—aQ)Zdt. (4.4)
{5 ) |

8a?

[3] P6schl-Teller potential
When V (u) = — <k St for g = 1,2, -+, in equation (1.1), this equation is

" "2k coshZ(au)
called the diffusion equation for the Poschl-Teller potential

0 102 a?h s(s+1)

—(u,t) = ==——=(u, t) — t

8252/)(“’ ) 2 Ju? () 2k CoshQ(ozu)zMu7 )

with the initial condition ¥ (u,0) = ¢(u). In this case, the functional F' in equa-
tion (1.3) becomes

F(z) =exp {%5(5 +1) /OT mdt}. (4.5)
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We finish this paper by applying Theorem 3.4 for the three potential func-
tions(Equations (4.3), (4.4), (4.5)). The results are summarized in the following;

E[F|X:](1)

Harmonic oscillator exp{ & Z] (= tio)

(t = i+ 207 + 2mm 0 + 277?-_1)}

Double-well potential exp{ =D i [SaQ (55(t; —tj-1)?

+%(tj tj-1 1)? (377]‘—1 + 4n;nj—1 + 377]2‘)
+5 (0 — ) 0y mp_ymy + njoan] + nj-a] + 1))
HIEE (ty — 1) — (5t — )
(t; — tjo1 + 205 4 2m_1m; + 277?)} }

Péschl-Teller potential | 14+, lel—i-...—i-l;:m fH}-”zl TN
T [T (%s(s + 1))
. |:ZZ;O:0 Zq0+ “+q2=2 #@(EO)QO .. (%th
(5] | .
= OW( ) (tj—1))9 2 a?

(@(t] M)) dH] 1Hv 1tj-10

TABLE 2. Analogue of conditional Wiener integrals

In Table 2 above, ®;(t;_1,) is given by equation (3.5), and E», and @) are given
by equation (4.6) below.

Remark 4.4. In Table 2 above, to obtain the analogue of conditional Wiener
integral for Péschl-Teller potential functional F' given by equation (4.5), we use
the following formula

/RSeChQ(u) exp{—u’}du
S T

w=0 go+--+q2w=2
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where QQ = 2¢s + - - - + 2wqa, and FEy, is the Euler number(odd-indexed Euler
numbers are all zero); in other words,

2w+1 k : .
59 kY (=17 (k — 25)* !
EQw =1 < ) ok 7k .

Equation (4.6) follows from the Taylor series expansion of the hyperbolic secant
and the Rg-nominal formula [10, p.441].
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