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Abstract. In recent years, the problem of learning and methods for learning
functions have received increasing attention in Machine Learning. This prob-
lem is motivated by several applications in which it is required to estimate a
function representation from available data. Recently, an extension of hypercir-
cle inequality to data error (Hide) was proposed by Kannika Khompurngson
and Charles A. Micchelli and the results on this subject have constructed a
new learning method. Unfortunately, the material on Hide only applies to
circumstances for which all data are known within error. In this paper, our
purpose is to extend the hypercircle inequality to circumstances for which data
set contains both accurate and inaccurate data.

1. Introduction

In recent years, the problem of learning and methods for learning functions have
received increasing attention in Machine Learning. This problem is motivated by
several applications in which it is required to estimate a function representation
from available data. There are several methods that can be used to determine a
function representation from given data [1, 3]. Specifically, the well-known hy-
percircle inequality, which has a long history in applied mathematics, has been
applied to kernel-based learning when data are known exactly. Recently, an ex-
tension of hypercircle inequality to data error (Hide) was proposed by Kannika
Khompurngson and Charles A. Micchelli and the results on this subject have
constructed a new learning method. Unfortunately, the material on Hide only
applies to circumstances for which all data are known within error. In real−world
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problems, there are several types of data. An example of this includes partially-
corrupted data. In this paper, our purpose is to extend the hypercircle inequality
to circumstances for which data set contains both accurate and inaccurate data.

Let H be the Hilbert space over the real numbers with inner product 〈·, ·〉.
Consequently, we choose a linearly independent finite set X = {xj : j ∈ Nn} in
H, where we use Nn = {1, 2, · · · , n}. We shall denote by M the n−dimensional
subspace of H spanned by the vectors in X . That is, we have that

M :=
{ ∑

i∈Nn

aixi : a ∈ Rn
}
.

We define the linear operator Q : H → Rn as for x ∈ H

Q(x) :=
(
〈xj, x〉 : j ∈ Nn

)
.

Consequently, the adjoint map QT : Rn → H is given at a = (aj : j ∈ Nn) ∈ Rn

as
QT (a) =

∑
i∈Nn

aixi. (1.1)

Given d ∈ Rn, the hyperplane of codimension n is defined by

P (d) := {x : x ∈ H, Q(x) = d}.
That is, for all x ∈ P (d) we have that 〈xi, x〉 = di for all i ∈ Nn. For each d ∈ Rn,
it is well-known that there exists a unique vector x(d) ∈ M such that

x(d) := arg min{||x|| : x ∈ H, Q(x) = d}. (1.2)

Clearly, the vector x(d) is the element of P (d) nearest to the origin. The portion
of H common to P (d) and to the unit ball ||x|| ≤ 1 is called the hypercircle and
we use the following notation

H(d) := {x : ||x|| ≤ 1, Q(x) = d}.
Therefore, the hypercircle inequality states that:

Let x(d) be the element of P (d) which is nearest the origin and x0 ∈ H. Then for
any x ∈ H(d)

|〈x(d), x0〉 − 〈x, x0〉| ≤ dist(x0, M)
√

1− ||x(d)||2,
where dist (x0, M) := min

{
||x0−y|| : y ∈ M

}
. Moreover, if H(d) 6= ∅, then there

is an x±(d) ∈ H(d) for which equality above holds.

The inequality above ensures the existence of an approximate value which is
the vector in the nearest point to the origin in the hyperplane. Moreover, it is in-
dependent of the vector x0. Geometrically speaking, the value of 〈x(d), x0〉 is the
best estimator to estimate 〈x, x0〉 when x ∈ H(d). It is easily seen that the best es-
timator 〈x(d), x0〉 is the midpoint of the interval of uncertainty which is defined by
I(x0, d) := {〈x, x0〉 : x ∈ H(d)}. Indeed, the inequality above ensures that there
exists x±(d) ∈ H(d) such that 〈x+(d), x〉 = m+(x0, d) := max{〈x, x0〉 : x ∈ H(d)}
and 〈x−(d), x〉 = m−(x0, d) := min{〈x, x0〉 : x ∈ H(d)} respectively. The detailed
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proofs appear in [4, 10].

In [7, 8], Kannika Khompurngson and Charles A. Micchelli have extended the
hypercircle inequality to data error. First, we assume E = {e : e ∈ Rn, |e| ≤ ε},
where | · | : Rn → R+ is some prescribed norm on Rn and ε > 0. From now on, we
follow the notation of [7] and recall the definition of the hyperellipse as follows

H(d|E) := {x : ||x|| ≤ 1, Q(x)− d ∈ E}.
In the general observation, we found that

H(d|E) =
⋃
e∈E

H(d + e).

That is, each element x ∈ H(d|E) verifies the following properties:

Q(x) = d + e for some e ∈ E

and ||x|| ≤ 1. Specifically, the uncertainty set defined by

I(x0, d|E) := {〈x, x0〉 : x ∈ H(d|E)}
fills out a closed and bounded interval in R. We obtain that

I(x0, d|E) := [m−(x0, d|E), m+(x0, d|E)],

where m+(x0, d|E) := max
{
〈x, x0〉 : x ∈ H(d|E)

}
as well as m−(x0, d|E) :=

min
{
〈x, x0〉 : x ∈ H(d|E)

}
= −m+(x0,−d|E). Furthermore, our result provides

that the best estimator to estimate 〈x, x0〉 when x ∈ H(d|E) still has the form of
linear combination of the vectors in X but the choice of the coefficients depends
on the vector x0. Therefore, we investigated that the learned function still has
the form of Representer Theorem (1.1) but the choice of the coefficients is gen-
erally different from those obtained from a regularization method, which is the
standard method for learning problem. As we said earlier, the best estimator is
the midpoint of the interval of uncertainty. We then provided the useful duality
formula for the right hand endpoint of the uncertainty interval. The result state
as the following.

If H(d) 6= ∅, then

m+(x0, d|E) = min
{
||x0 −QT (c)||+ ε|c|∗ + (d, c) : c ∈ Rn

}
, (1.3)

where | · |∗ : Rn −→ R+ is the conjugate norm of | · | which is used to measure
data error and (·, ·) is the Euclidean inner product on Rn.

Therefore, the extreme on the right hand side of equation (1.3) is a finite
dimensional convex optimization problem. In summary, the midpoint of the
uncertainty interval is given by

m(x0, d|E) =
m+(x0, d|E)−m+(x0,−d|E)

2
.

Furthermore, we discussed some results of numerical experiments of learning the
value of a function in a reproducing kernel Hilbert space and also compared the
midpoint estimator to the regularization estimator. We refer the reader to the
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papers [7, 8] for more detailed information on the theory and practice of midpoint
algorithms for learning the value of a function from inaccurate data.

The paper is organized in the following manner. In section 2, we introduce our
notations and show the results of hypercircle inequality for partially-corrupted
data. The main result in this section is Theorem 2.9, which establishes that the
best estimator still has the form of Representer Theorem. In addition, we provide
three important cases of the existence of the minimum of the convex function
which is used to obtain the midpoint estimator. In section 3, we specialize the
result of section 2 to the case of data error measured with lp norm and a conclusion
appears in section 4.

2. Hypercircle inequality for partially-corrupted data

In this section, we will restrict our attention to the study of hypercircle in-
equality with partially-corrupted data. We start with I ⊆ Nn which contains m
elements (m < n). Consequently, we use the notations X

I
= {xi : i ∈ I} ⊂ X and

X
J

= {xi : i ∈ J} ⊂ X , where we denote J = Nn\I. For each e = (e1, · · · , en) ∈
Rn, we also use the notations e

I
= (ei : i ∈ I) ∈ Rm and e

J
= (ei : i ∈ J) ∈ Rn−m

respectively. We choose ||| · ||| : Rn−m −→ R+ is a prescribed norm on Rn−m and
define E = {e : e ∈ Rn : e

I
= 0, |||e

J
||| ≤ ε}, where ε is some positive number.

For each d ∈ Rn, we define the partial hyperellipse as follows

H(d|E) :=
{
x : x ∈ H, ||x|| ≤ 1, Q(x)− d ∈ E

}
. (2.1)

Here, E contains our a priori information about data error and our notation differs
from [7]. For example, if ||| · |||2 : Rn−m −→ R+ is the Euclidean norm on Rn−m,
then E is chosen to be the set

E2 = {e : e ∈ Rn : e
I

= 0, |||e
J
|||2 ≤ ε}

and the partial hyperellipse is given by

H(d|E2) :=
{
x : x ∈ H, ||x|| ≤ 1, Q(x)− d ∈ E2

}
.

Before we add some relation between (2.1) and our previous work on Hide, let
us introduce the notations for the linear operator

Q
I
(x) :=

(
〈xj, x〉 : j ∈ I

)
∈ Rm and Q

J
(x) :=

(
〈xj, x〉 : j ∈ J

)
∈ Rn−m

respectively. According to the definition of hyperellipse and hypercircle, we
observe that

H(d|E) = H(d
I
) ∩H(d

J
|E

J
),

where we denote the hypercircle with the constant d
I

as

H(d
I
) =

{
x : ||x|| ≤ 1, Q

I
(x) = d

I

}
and the hyperellipse with the constant d

J
as

H(d
J
|E

J
) =

{
x : ||x|| ≤ 1, Q

J
(x)− d

J
∈ E

J

}
,

where we define E
J

= {c : c ∈ Rn−m : |||c||| ≤ ε}. With this notation, we write
E

J
instead of E.
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We point out that the partial hyperellipse is a convex subset of H which is
sequentially compact in the weak topology on H. Consequently, we obtain the
uncertainty interval

I(x0, d|E) :=
{
〈x, x0〉 : x ∈ H(d|E)

}
is bounded and closed on R. To find the best predictor, we only need to evaluate
the two numbers m±(x0, d|E) and compute the midpoint m(x0, d|E), where we
define m+(x0, d|E) = sup{〈x, x0〉 : x ∈ H(d|E)} and m−(x0, d|E) = inf{〈x, x0〉 :
x ∈ H(d|E)} respectively. According to X ⊆ H, the Gram matrix of the vectors
in X is defined by

G = QQT = (〈xj, xl〉 : j, l ∈ Nn),

which is symmetric and positive definite. Again, we follow the notation of (1.2)
and point out that for each e ∈ E there is a unique element x(d+ e) ∈ M defined
as

x(d + e) := arg min{||x|| : x ∈ H, Q(x) = d + e} (2.2)

and it is well known that

x(d + e) = QT
(
G−1(d + e)

)
∈ M and ||x(d + e)||2 = (d + e,G−1(d + e))

(see [9]). The first Theorem below provides the existence of right and left hand
end point of the uncertainty interval.

Theorem 2.1. If H(d|E) 6= ∅, then there exist x± ∈ H(d|E) such that

〈x±, x0〉 = m±(x0, d|E).

Proof. Our proof start with the observation that H(d|E) is a sequentially com-
pact subset of H and the function x → 〈x0, x〉 is weakly continuous. Therefore,
there exist x± ∈ H(d|E) such that 〈x±, x0〉 = m±(x0, d|E). �

Here is another way to obtain the right hand end point of uncertainty interval
with different hypotheses. First, we recall the notion of conjugate norm, denoted
by ||| · |||∗ corresponding to a prescribed norm ||| · ||| on Rn−m. The conjugate
norm of ||| · ||| is defined for all c ∈ Rn−m as

|||c|||∗ = max
{
(c, w) : w ∈ Rn−m, |||w||| ≤ 1

}
,

which appears in [6]. Moreover, if c 6= 0, then there is a ĉ ∈ Rn−m such that
|||ĉ||| = 1 and |||c|||∗ = (c, ĉ). We also required a useful version of the Von Neu-
mann Minimax Theorem which appears in [2].

Theorem (VN)[2] Let f : C × U → R where C is a closed convex subset of a
Hausdorff topological vector space X and U is a convex subset of a vector space
Y. If for any x ∈ U the function c → f(c, x) is convex and lower semi-continuous
on C and for every c ∈ C x → f(c, x) is concave on U and there is an x̂ ∈ U such
that for all λ ∈ R the set

{c : c ∈ C, f(c, x̂) ≤ λ}
is a compact subset of X, then there is a c0 ∈ C such that

sup
x∈U

f(c0, x) = sup
c∈C

inf
x∈U

f(c, x).
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In particular, we have that

min
c∈C

sup
x∈U

f(c, x) = sup
x∈U

inf
c∈C

f(c, x).

We are almost ready to describe the duality formula for the right hand end
point of the uncertainty interval and the result may be proved in much the same
way as in the paper [7]. Before doing we prepare the following lemma.

Lemma 2.2. If H(d|E) contains more than one point, then there exists ê ∈ E
and |||ê

J
||| < ε such that x(d + ê) ∈ H(d|E), where x(d + ê) = QT

(
G−1(d + ê)

)
.

Proof. By our assumption and (2.2), we obtain that there exists e ∈ E such that
x(d + e) ∈ H(d|E) and

||x(d + e)||2 = (d + e,G−1(d + e)) < 1.

Let αn ∈ (0, 1) and αn → 1 as n →∞. We define en = αne and get that en → e
as n →∞. Consequently, we obtain that

(d + en, G
−1(d + en)) → (d + e, G−1(d + e)) < 1

as n → ∞. Thus, there is ê = en and |ê
J
| < ε for some n ∈ Nn such

that (d+ ê, G−1(d+ ê)) ≤ 1. Using (2.2) again, we conclude that there is a vector
x(d + ê) = QT (G−1(d + ê)) ∈ H(d|E). �

Theorem 2.3. If H(d|E) contains more than one element, then

m+(x0, d|E) = min
{
||x0 −QT (c)||+ ε|||c

J
|||∗ + (d, c) : c ∈ Rn

}
, (2.3)

where ||| · |||∗ : Rn−m −→ R+ is the conjugate norm of ||| · ||| which is used to
measure data error. Moreover, if either x0 /∈ M or ||| · |||∗ is strictly convex, then
the right hand side of equation (2.3) has a unique solution.

Proof. For any x ∈ H(d|E), c ∈ Rn and x0 ∈ H we have that

〈x0, x〉 = 〈x0 −QT (c), x〉+ (c, Q(x)− d) + (c, d)

= 〈x0 −QT (c), x〉+ (c
J
, Q

J
(x)− d

J
) + (c, d)

≤ ||x0 −QT (c)||+ ε|||c
J
|||∗ + (c, d).

Thus, we conclude that

m+(x0, d|E) ≤ inf
{
||x0 −QT (c)||+ ε|||c

J
|||∗ + (c, d) : c ∈ Rn

}
. (2.4)

In order to get this inequality, we define the function f : Rn−m×H(d
I
) −→ R by

for each b ∈ Rn−m and x ∈ H(d
I
) as

f(b, x) := 〈x0 −QT
J
(b), x〉+ ε|||b|||∗ + (b, d

J
).

Consequently, we obtain that

inf
{
||x0 −QT (c)||+ ε|||c

J
|||∗ + (c, d) : c ∈ Rn

}
= inf

b∈Rn−m
max

x∈H(d
I
)
f(b, x).

This follows by the same method as in [7]. We then identify C = Rn−m and
U = H(d

I
). Clearly, for each x ∈ H(d

I
) the function b −→ f(b,U) is convex and
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for b ∈ Rn−m, x −→ f(b, x) is a linear function of U . Also, it is jointly continuous
in (b, x) ∈ C × U . The task is now to show that the set{

b : b ∈ Rn−m, f(b, x̂) ≤ λ
}

is a compact subset of Rn. By our assumption and lemma 2.2 , there is an x̂ ∈ B
and ê ∈ E such that Q(x̂) = d + ê and |||ê

J
||| < ε. So, we observe that

f(b, x̂) = 〈x0 −QT
J
(b), x̂〉+ ε|||b|||∗ + (b, dJ)

= 〈x0, x̂〉+ ε|||b|||∗ − (ê, b) ≤ λ.

By the Cauchy Schwarz inequality, we obtain that

|||b|||∗ ≤
λ− 〈x̂, x0〉
ε− |||ê|||

.

Therefore, {b : b ∈ Rn−m, f(b, x̂) ≤ λ} is a bounded subset of Rn−m. Hence,
{b : b ∈ Rn−m, f(b, x̂) ≤ λ} is a compact subset of Rn. Applying Theorem VN,
we conclude that

min
{
||x0 −QT (c)||+ ε|||c

J
|||∗ + (c, d) : c ∈ Rn

}
= sup

x∈H(d
I
)

inf
b∈Rn−m

f(b, x).

To this end, it remains to prove that

inf
{
ε|||b|||∗ + (b, d

J
−Q

J
(x)) : b ∈ Rn−m

}
=

{
−∞, |||Q

J
(x)− d

J
||| > ε

0, |||Q
J
(x)− d

J
||| ≤ ε.

First, let us assume that |||Q
J
(x)− d

J
||| ≤ ε. Then we see that

ε|||b|||∗ + (b, d
J
−Q

J
(x)) ≥ ε|||b|||∗ − |||b|||∗ · |||QJ

(x)− d
J
|||

= |||b|||∗(ε− |||Q
J
(x)− d

J
|||) ≥ 0

and so in this case, the infimum on the left hand side is achieved for b = 0. Next
we consider in the case that |||Q

J
(x)− d

J
||| > ε. We choose b̂ ∈ Rn−m \ {0} such

that

(b̂, d
J
−Q

J
(x)) = |||b̂|||∗ · |||dJ

−Q
J
(x)|||.

Hence, for all t > 0 we have that

inf{ε|||b|||∗ + (b, d
J
−Q

J
x) : b ∈ Rn−m} ≤ ε||| − tb̂|||∗ + (−tb̂, d

J
−Q

J
x)

= ε||| − tb̂|||∗ − (tb̂, d
J
−Q

J
x)

≤ ε||| − tb̂|||∗ − ||| − tb̂|||∗ · |||dJ
−Q

J
x|||

= t
(
ε− |||d

J
−Q

J
x|||

)
· |||b̂|||∗

Letting t −→ ∞, we have that inf{ε|||b|||∗ + (b, d
J
− Q

J
x) : b ∈ Rn−m} = −∞.

Therefore, we can conclude that

min
{
||x0 −QT c||+ ε|||c

J
|||∗ + (c, d) : c ∈ Rn

}
= max

{
〈x, x0〉 : x ∈ H(d|E)

}
.

What is left is to show that the right hand side of equation (2.3) has a unique
solution. This follows by the same method as in [7]. �
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Using the fact that m−(x0, d|E) = −m+(x0,−d|E), we obtain the following
formula

m(x0, d|E) =
m+(x0, d|E)−m+(x0,−d|E)

2
,

where m(x0, d|E) is the midpoint of the uncertainty interval. Before we add an
important example, let us define the convex function V : Rn −→ R defined for
c ∈ Rn

V (c) := ||x0 −QT (c)||+ ε|||c
J
|||∗ + (d, c).

As the assumption of theorem 2.3, if we drop the assumption H(d|E) 6= ∅, then
the convex function V above does not assume its minimum.

Example If H = R3, x1 = (1, 0, 0), x2 = (0, 1, 0), d1 = 0, d2 = 1.5, x0 = (0, 0, 1)
and ε = 0.5. It is easy to check that H(d|E) 6= ∅ and it contains only one element
as follows

H(d|E) =
{
x : ||x|| ≤ 1, 〈x, x1〉 = 0, |〈x, x2〉 − 1.5| ≤ ε

}
=

{
(0, 1, 0)

}
and m+(x0, d|E) = 0. Next, we claim that inf{

√
c2
1 + c2

2 + 1 + 1.5c2 + 0.5|c2| : c ∈
R2} = 0 and the infimum is not achieved. For any c = (c1, c2) ∈ R2, we observe
that √

c2
2 + 1 + 1.5c2 + 0.5|c2| ≤

√
c2
1 + c2

2 + 1 + 1.5c2 + 0.5|c2|.

Then, we obtain that

inf{
√

c2
1 + c2

2 + 1+1.5c2+0.5|c2| : c ∈ R2} = inf{
√

c2
2 + 1+1.5c2+0.5|c2| : c2 ∈ R}.

We observe that the mapping c →
√

c2 + 1 + 1.5c + 0.5|c| is increasing. Next, we
claim that

inf{
√

c2 + 1 + 1.5c + 0.5|c| : c ∈ R} = 0.

This follows from the fact that

lim
c→−∞

√
c2 + 1 + 1.5c + 0.5|c| = 0.

Therefore, inf{
√

c2
1 + c2

2 + 1 + 1.5c2 + 0.5|c2| : c ∈ R2} = 0 and the infimum is
not achieved.

It is important to pay attention to the special case that the convex function V
achieves its minimum at c∗ = 0.

Theorem 2.4. If x0 6= 0, then 0 = arg min{V (c) : c ∈ Rn} if and only if
x0

||x0||
∈ H(d|E).

Proof. We observe that 0 = arg min{V (c) : c ∈ Rn} holds if and only if

||x0|| = V (0) ≤ V (c) = ||x0 −QT (c)||+ ε|||c
J
|||∗ + (d, c)
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for all c ∈ Rn. Since the function V is convex this inequality holds if and only if
for all c ∈ Rn

−ε|||c
J
|||∗ − (c, d) ≤ inf{||x0 − λQT (c)|| − ||x0||

λ
: λ > 0}

which means for all c ∈ Rn that

−ε|||c
J
|||∗ − (c, d) ≤ −(

Qx0

||x0||
, c).

That is, we have that for all c ∈ Rn

(
Q(x0)

||x0||
− d, c) ≤ ε|||c

J
|||∗. (2.5)

First, we claim that Q
I
( x0

||x0||) = d
I
. We then choose ĉ ∈ Rn such that ĉ

I
=

Q
I
( x0

||x0||)− d
I

and ĉ
J

= 0. Then we have that(
Q

I
(

x0

||x0||
)− d

I
, ĉ

I

)
=

(
Q(

x0

||x0||
)− d, ĉ

)
≤ ε|||ĉ

J
|||∗ = 0.

We obtain that Q
I
( x0

||x0||) = d
I
. This means that x0

||x0|| ∈ H(d
I
). According to (2.5),

we obtain that for each c ∈ Rn(
Q

J
(

x0

||x0||
)− d

J
, c

J

)
≤ ε|||c

J
|||∗,

which is equivalent to saying that |||Q
J
( x0

||x0||) − d
J
||| ≤ ε. This means that

x0

||x0|| ∈ H(d|E) which completes the proof. �

In addition, we provide the necessary and sufficient condition on H(d|E) which
provides that V achieves its minimum at c∗ with c∗

J
= 0. Let us recall a useful

theorem,[7], before providing the proof of the following fact.

Theorem 2.5. If H(d
I
) contains more than one point, then

m+(x0, d) = min
{
||x0 −QT

I
(a)||+ (a, d

I
) : a ∈ Rm

}
,

where m+(x0, dI
) = max{〈x, x0〉 : x ∈ H(d

I
)}. Moreover, the minimum a∗ ∈ Rm

is unique and

x+(d
I
) :=

x0 −QT
I
(a∗)

||x0 −QT
I
(a∗)||

satisfies

x+(d
I
) := arg min{〈x, x0〉 : x ∈ H(d

I
)}.

Now we are ready to state the result.

Theorem 2.6. If x0 /∈ M
I

:=
{
QT

I
(a) : a ∈ Rm

}
and H(d

I
) contains more

than one point, then c∗ = arg min{V (c) : c ∈ Rn} with c∗
J

= 0 if and only if

x0 −QT
I
(a∗)

||x0 −QT
I
(a∗)||

∈ H(d|E).
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Proof. We first prove that
x0 −QT

I
(a∗)

||x0 −QT
I
(a∗)||

∈ H(d|E). Under the assumption, we

observe that c∗ = arg min{V (c) : c ∈ Rn} with c∗
J

= 0 if and only if

||x0 −QT
I
(a∗)||+ (a∗, d

I
) = min{||x0 −QT

I
(a)||+ (a, d

I
) : a ∈ Rm}

= min{V (c) : c ∈ Rn},

which is equivalent to saying that

||x0 −QT
I
(a∗)||+ (a∗, d

I
) ≤ V (c)

for all c ∈ Rn. Since the function V is convex this inequality holds if and only if
for all c ∈ Rn with c

I
= a∗ we obtain that

−ε|||c
J
|||∗ − (c

J
, d

J
) ≤ inf{

||x0 −QT
I
(a∗)− λQT

J
(c

J
)|| − ||x0 −QT

I
(a∗)||

λ
: λ > 0},

which means for all c
J
∈ Rn−m that

−ε|||c
J
|||∗ − (c

J
, d

J
) ≤ −(

Q
J
(x0 −QT

I
(a∗))

||x0 −QT
I
(a∗)||

, c
J
).

That is, we have that(Q
J
(x0 −QT

I
(a∗))

||x0 −QT
I
(a∗)||

− d
J
, c

J

)
≤ ε|||c

J
|||∗.

Therefore, we have that
x0 −QT

I (a∗)

||x0 −QT
I (a∗)||

∈ H(d|E). Conversely, for each x ∈

H(d|E) = H(d
I
) ∩H(d

J
|E

J
) we observe that

〈x, x0〉 ≤ m+(x0, dI).

This means, we have that m+(x0, d|E) ≤ m+(x0, dI). Since
x0 −QT

I
(a∗

I
)

||x0 −QT
I
(a∗

I
)||

∈

H(d|E) and m+(x0, dI) = ||x0 −QT
I
(a∗

I
)||+ (a∗

I
, d

I
), we obtain that

m+(x0, d|E) = m+(x0, dI
) = ||x0 −QT

I
(a∗

I
)||+ (a∗

I
, d

I
).

From (2.4), it follows that

||x0 −QT
I
(a∗)||+ (a∗, d

I
) = min{V (c) : c ∈ Rn}

which completes the proof. �

The following result may be proved in much the same way as in theorem 2.6.
To this end, let us recall an important fact for the proof, [7].

Theorem 2.7. If x0 /∈ M
J

:=
{
QT

J
(b) : b ∈ Rn−m

}
and H(d

J
|E

J
) contains more

than one point, then

m+(x0, dJ
|E

J
) = min{||x0 −QT

J
b||+ ε|||b|||∗ + (b, d

J
) : b ∈ Rn−m},
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where m+(x0, dJ
|E

J
) = max{〈x, x0〉 : x ∈ H((d

J
|E

J
)}. Moreover, the minimum

b∗ ∈ Rn−m is unique and

x+(d
J
|E

J
) :=

x0 −QT
I
(b∗)

||x0 −QT
I
(b∗)||

satisfies

x+(d
J
|E

J
) := arg min{〈x, x0〉 : x ∈ H(d

J
|E

J
)}.

.

Theorem 2.8. If x0 /∈ M
J

and H(d
J
|E

J
) contains more than one point, then

c∗ = arg min{V (c) : c ∈ Rn},
where c∗

I
= 0 if and only if

x0 −QT
J
(b∗)

||x0 −QT
J
(b∗)||

∈ H(d|E).

Proof. We begin by proving
x0 −QT

J
(b∗)

||x0 −QT
J
(b∗)||

∈ H(d|E). First, we observe that

c∗ = arg min{V (c) : c ∈ Rn} with c∗
I

= 0 if and only if for all c ∈ Rn

||x0 −QT
J
(b∗)||+ ε|||b∗|||∗ + (b∗, d

J
)

= min{||x0 −QT
J
(b)||+ ε|||b|||∗ + (b, d

J
) : b ∈ Rn−m}

≤ V (c).

For all c ∈ Rn with c
J

= b∗, we obtain that

−(c
I
, d

I
) ≤ inf{

||x0 −QT
J
(b∗)− λQT

I
c

I
|| − ||x0 −QT

J
(b∗)||

λ
: λ > 0},

which means that

−(c
I
, d

I
) ≤ −(

Q
I
(x0 −QT

J
(b∗))

||x0 −QT
J
(b∗)||

, c
I
).

That is, we have that

(
Q

I
(x0 −QT

J
(b∗))

||x0 −QT
J
(b∗)||

− d
I
, c

I
) ≤ 0.

Therefore, we have that
Q

I
(x0 −QT

J
(b∗))

||x0 −QT
J
(b∗)||

∈ H(d|E). Conversely, for each x ∈

H(d|E) = H(d
I
) ∩H(d

J
|E

J
) we observe that

〈x, x0〉 ≤ m+(x0, dJ
|E

J
).

This means, we have that m+(x0, d|E) ≤ m+(x0, dJ
|E

J
). Using (2.4) again, we

obtain that

||x0 −QT
J
b∗||+ ε|||b∗|||∗ + (b∗, d

J
) = min{V (c) : c ∈ Rn}.
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�

We add a final result which is the key to construct the best predictor.

Theorem 2.9. If H(d|E) 6= ∅, then there is an e0 ∈ E such that

〈x(d + e0), x0〉 = m(x0, d|E),

where x(d + e0) = QT
(
G−1(d + e0

)
∈ H(d|E).

Proof. According to theorem 2.1, there exists x± ∈ H(d|E) such that

〈x±, x0〉 = m±(x0, d|E).

Consequently, there exists e± ∈ E such that x± ∈ H(d + e±) and

〈x±, x0〉 = 〈x(d + e±), x0〉 ± dist (x0, M)
√

1− ||x(d + e±)||2 = m±(x0, d|E).

We can follow the proof from the paper [7] to obtain the vector e0 ∈ E which is
on the line segment joining the vector e− and e+. �

Therefore, the Hypercircle inequality for partially-corrupted data error becomes
in the following way. If x0 ∈ H and H(d|E) 6= ∅, then there is an e0 ∈ E such
that for any x ∈ H(d|E)

|〈x(d + e0), x0〉 − 〈x, x0〉| ≤
1

2
(m+(x0, d|E)−m−(x0, d|E)),

where x(d + e0) = QT
(
G−1(d + e0)

)
∈ H(d|E).

3. Hypercircle inequality for partially-corrupted data error
measured with lp norm

In this section, we consider the case that the data error is measured with lp

norm. Firstly, let us denote the notation of partial hyperellipse for data error
measured with lp norm (1 < p < ∞) by Ep =

{
e : e ∈ Rn−m, |||e|||p ≤ ε

}
where

||| · |||p is the lp norm on Rn−m. For any d ∈ Rn, the partial hyperellipse is defined
by

H(d|Ep) := {x : x ∈ B, Q(x)− d ∈ Ep}.
We point out that if 1 < p1 ≤ p2 < ∞, then H(d|Ep1) ⊆ H(d|Ep2). To prove

this, we observe that for all x ∈ H(d|Ep1) it holds that |||QJ(x) − dJ |||p1 < ε.

That is, |||QJ(x)− dJ

ε
|||p1

p1
< 1. Since p1 ≤ p2, this inequality implies that

|||QJ(x)− dJ

ε
|||p2

p2
< 1 which means that x ∈ H(d|Ep2).

In this case, we provide the different hypotheses for the unique minimum of
the function Vq : Rn → R which is defined by for c ∈ Rn

Vq(c) := ||x0 −QT c||+ ε|||c
J
|||q + (c, d).



HYPERCIRCLE INEQUALITY FOR PARTIALLY-CORRUPTED DATA 107

Theorem 3.1. Suppose that H(d|Ep) contains more than one point, x0 /∈ M, and
x0 −QT

I
(a∗)

||x0 −QT
I
(a∗)||

/∈ H(d|Ep). Then

m+(x0, d) = min{||x0 −QT c||+ ε|||c
J
|||q + (c, d) : c ∈ Rn}, (3.1)

where ||| · |||q : Rn−m → R+ is the conjugate norm of the lp−norm which is used to
measure data error, Ep. Moreover, the minimum c∗ ∈ Rn is the unique solution
of the nonlinear equation

−Q(
x0 −QT c∗

‖ x0 −QT c∗ ‖
) + εw∗ + d = 0, (3.2)

where w∗ is the vector in Rn with components given by the formula

w∗
i =


0, i ∈ I
|c∗i |q−1sgn c∗i

(|||c∗
J
|||q)

q
p

, i ∈ J

and

x+(d|Ep) :=
x0 −QT c∗

||x0 −QT c∗||
satisfies

x+(d|Ep) = arg max{〈x, x0〉 : x ∈ H(d|Ep)}. (3.3)

Proof. According to our hypotheses, the minimum c∗ ∈ Rn is the unique solution
of the function Vq and c∗

J
6= 0. Hence, computing the gradient of Vq gives equation

(3.2). Therefore, we obtain

Q(x+(d|Ep))− d = εw∗

which confirms that x+(d|Ep) ∈ H(d|Ep). Also, we have that 〈x0, x+(d|Ep)〉 =
〈x0 − QT c∗, x+(d|Ep)〉 + (Q(x+(d|Ep)) − d, c∗) + (c∗, d) = Vq(c

∗) which proves
(3.1), (3.3) and the Theorem. �

We end this section by considering the special case that X = {xj : j ∈ Nn}
is an orthonormal set of vectors. Consequently, the Gram matrix is the identity
matrix and we have the following for any x(d + e) ∈ H(d|Ep) ∩M

x(d + e) = x(d
I
) + x(d

J
+ e

J
) and ||x(d + e)||2 = ||x(d

I
)||2 + ||x(d

J
+ e

J
)||2,

where x(d
I
) ∈ H(d

I
) and x(d

J
+ e

J
) ∈ H(d

J
|E

J
). Moreover, we observe that

H(d|Ep) 6= ∅ if and only if

min
{
(d

J
+ c, d

J
+ c) : c ∈ Rn−m, |||c|||p ≤ ε

}
≤ 1− ||x(d

J
)||2.

For p = 2, we recall the formula of the minimum of quadratic polynomial on

sphere as presented in [5]. Let Λ = ε2 −
√∑

i∈J

d2
i .Then we have the following

H(d|E2) 6= ∅ if and only if

min
{
(d

J
+ c, d

J
+ c) : c ∈ Rn−m, |||c|||2 ≤ ε

}
= Λ + Λ

∑
j /∈I

d2
j

Λ− ε2
≤ 1− ||x(d

J
)||2,
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where I := {j : dj = 0, j ∈ J}. Summarizing, we obtain the useful formula for

checking whenH(d|Ep) 6= ∅. If Λ+Λ
∑
j /∈I

d2
j

Λ− ε2
≤ 1−||x(d

J
)||2, thenH(d|Ep) 6= ∅

for all p ≥ 2.

4. Conclusion

In this paper, we presented the existence of learned function from partially-
corrupted data which is obtained by the midpoint algorithm. This framework is
also specified to the important case of a reproducing kernel Hilbert space. Within
the proposed, we provided three important cases of the existence of the minimum
of the convex function V which is useful for practice.

Acknowledgement. This research is supported by the Centre of Excellence
in Mathematics, the Commission on Higher Education, Thailand.

References

1. R. Akgün, Approximation by polynomials in rearrangement invariant quasi Banach function
spaces, Banach J. Math. Anal. 6 (2012), no. 2, 113–131.

2. J.P. Aubin, Mathematical methods of game and economic theory, Studies in Mathematics
and its Application, Volume 7, North Holland, 1982.

3. H.H. Cuenya, F.E Levis and C.N. Rodriguez, Optimal bondles in normed spaces, Ann.
Funct. Anal. 4 (2013), no. 2, 87–96.

4. P.J. Davis, Interpolation and approximation, J Dover Publications, New York, 1975.
5. G.E. Forsythe and G.H. Golub, On the stationary values of a second-degree polynomial on

the unit sphere, SIAM J. Appl. Math 13 (1965), 1050–1068.
6. R.A. Horn and C.R. Johnson, Matrix analysis, Cambridge University Press, 1985.
7. K. Khompurngson and C.A. Micchelli, Hide, Jaen J. Approx. 3 (2011), no. 1, 87–115.
8. K. Khompurngson, B. Novaprateep and Y. Lenbury, Learning the value of a function from

inaccurate data, East-West J. Math. 2010, Special Vol., 128–138.
9. C.A. Micchelli and T.J. Rivlin, A survey of optimal recovery in: Optimal estimation in

approximation theory, C.A Micchelli, and T. J. Rivlin, eds., Plenum Press, 1977.
10. H.L. Royden, Real analysis, Macmillan Publishing Company, 3rd edition, New York, 1988.

1 Division of Mathematics, School of Science, University of Phayao, THAI-
LAND and Centre of Excellence in Mathematics, PERDO, CHE, THAILAND.

E-mail address: kannika.kh@up.ac.th

2 Department of Mathematics, Faculty of Science, Mahidol University, THAI-
LAND and Centre of Excellence in Mathematics, PERDO, CHE, THAILAND.

E-mail address: scbnv@mahidol.ac.th


	1. Introduction
	2. Hypercircle inequality for partially-corrupted data
	3. Hypercircle inequality for partially-corrupted data error measured with lp norm
	4. Conclusion
	References

