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ABSTRACT. In this paper, we define positive functionals by using the Jensen’s
inequality, converse of Jensen’s inequality, and Jensen-Mercer’s inequality on
time scales for superquadratic functions. We give mean-value theorems and
introduce related Cauchy-type means by using the functionals mentioned above
and show the monotonicity of these means. We also show that these functionals
are exponentially convex and give some applications of them by using the log-
convexity and exponential convexity.

1. INTRODUCTION

Recently, the authors have presented time scales analogues of many important
and well-known integral inequalities (Jensen’s and its related inequalities) for
convex functions [4] and superquadratic functions [6]. Also, in [5], Jensen’s func-
tionals are defined on time scales and several refinements and converses of Jensen’s
inequality are obtained by using properties of Jensen’s functionals. Now, in this
paper, we define Jensen type functionals on time scales for superquadratic func-
tions and obtain several refinements, conversions and generalizations of Jensen’s
inequality on time scales for superquadratic functions. First we give some defini-
tions and results which are used in the sequel.

Definition 1.1. A closed set ) # T C R is called a time scale. For a,b € T with
a < b, we denote [a,b) N'T by [a,b)r. Let t € T. Then o : T — T defined by

o(t)=inf{s e T: s>t}
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is called the forward jump operator, and p: T — T defined by
p(t) =sup{seT: s <t}

is called the backward jump operator. Here we put inf ) = sup T and sup® = inf T.
If o(t) = t, then ¢ is called right-dense, and if p(¢) = ¢, then ¢ is called left-dense.
A function f: T — R is called rd-continuous if it is continuous at all right-dense
points in T and its left-sided limits are finite at all left-dense points in T. The
set of all such rd-continuous functions is denoted by C,q, C.q(T), or Cyq(T,R).
Finally, f is called delta integrable if it has an antiderivative F (i.e, F® = f), and
then we define the delta integral by

b
/ f(t)At = F(b) — F(a).
Theorem 1.2. FEvery rd-continuous function is delta integrable.

Theorem 1.3 (See [4, Theorem 3.2]). Let f,g € C.a([a,b)r,R). Then

b b b
/ (af(t)+ Bg(t))At = a/ ft)At + ﬂ/ gt)At  forall «o,f€R
and

b
ft) >0 forall te€]la,b)y implies / f(t)At > 0.

Theorem 1.3 says that the time scales integral is an isotonic linear functional
[8]. For further details of time scales theory, we refer to [7]. In the remainder of
this section, we recall some relevant results from [1, 3, 7].

Definition 1.4 (See [0, Definition 1.6]). A function ¥ : [0,00) — R is called
superquadratic if there exists a function C : [0, 00) — R such that
U(y) —¥(x) —¥(ly—=z|) > C(x)(y —x) forall z,y>0. (1.1)

If for all z,y > 0 with = # y, there is strict inequality in (1.1), then W is called
strictly superquadratic.

Lemma 1.5 (See [0, Lemma 1.7]). Let ¥ be a superquadratic function with C(z)
as in Definition 1./. Then
(i) ¥(0) <0,
(ii) if ¥ is differentiable at x > 0 and ¥(0) = ¥'(0) = 0, then C(x) = V'(z);
(iii) if ¥ > 0, then U is conver and ¥ (0) = ¥'(0) = 0.

In the sequel, for any function ¥ € CY([0,00),R), we define an associated
function ¥ € C'((0,00),R) by

U(r) = Y forall x> 0.

Lemma 1.6 (See [1, Lemma 1]). Let ¥ € C'([0,00),R) such that ¥(0) < 0. If
U is increasing (strictly increasing) or V' is superadditive (strictly superadditive),
then W is superquadratic (strictly superquadratic).
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Lemma 1.7 (See [I, Lemma 3]). Let ¥ € C?([0,00),R) be such that
< V" (x) — V' (x)

my < .~ < M; forall x>0.
Let the functions ®1, @5 be defined by
M 3 3
() = T —W(x), Dolr) = W(x) — o (12)

3 3
Then ®1, ®y are increasing. If also W(0) = 0 then ®;, ®y are superquadratic.

Lemma 1.8. Let s > 0 and ¥, : [0,00) — R be defined by

S

2
8(8—2)’ 8 % )
Uy(r) = (1.3)
) —9
? ogx, S = 4.

Then WV, is superquadratic, with the convention 0log0 := 0.

Lemma 1.9. Let s € R and g5 : [0,00) — R be defined by

sxe’t —e 4+ 1
83 b S # 07

Ps ($) =
-, s =0.
3
Then ¢ 1s superquadratic.

Definition 1.10 (See [3, Definition 1]). A function A : (a,b) — R is called
exponentially conver if it is continuous and

Z vv; A (x; + ;) >0

ij=1
for all n € N and all choices v; € R and z; + z; € (a,b), 1 <i,5 <n.
Proposition 1.11 (See [3, Proposition 1]). Let A : (a,b) — R. The following
are equivalent:

i) A is exponentially convew.
Y
(ii) A is continuous and

Z Vv A (%) >0

ij=1
foralln e N, v; e R and z; + z; € (a,b), 1 <i,j <n.
(iii) A is continuous and

det{A(M)} >0, 1<m<n
2 ij=1
for alln € N and for every x; € (a,b), i =1,...,n.
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Remark 1.12. Let A : (a,b) — (0,00) be an exponentially convex function. Then
A is also log-conver, i.e., log A is convex. If r,s,w € (a,b) such that r < s < w,
then

[A()] < [A)][A(w)]

Lemma 1.13 (See [1, Lemma 2]). Let A : (a,b) — (0,00) be a log-convex func-
tion. Then for any r,l,v,w € (a,b) such thatr < v, | < w, r # 1, v # w, we

have 1 N
() = ()

2. JENSEN-TYPE INEQUALITIES

In order to obtain our main results, we first recall from [6] Jensen’s inequality
and its converses on time scales for superquadratic functions.

Theorem 2.1 (Jensen’s inequality [0, Theorem 2.5]). Let a,b € T. Suppose
f € Cua([a,b)r,[0,00)) and ¥ € C([0,00),R) is superquadratic. Then

<f£ﬂl)§bial Wﬁw»—w( Lf®m>

b—a
Moreover, if U is strictly superquadratic, then strict inequality in (2.1) holds.

f(u) =

Au. (2.1)

Theorem 2.2 (Jensen-Mercer inequality [6, Theorem 5.2]). Let a,b € T. Suppose
f € Cul(la,b)r, [m, M]), where 0 < m < M < oo, and ¥ € C([0,0),R) is
superquadratic. Then

< (b—a)(¥(m) + T(M)) _/ U(f(t)At — K, (22)

(b—a)¥ (m—i—

where

S /ﬁuw—mWWﬁ¢@><M'fm>w<— m)] At

M —m
“a (- 1 [ 1) s

Moreover, if W is strictly superquadratic, then strict inequality in (2.2) holds.

Theorem 2.3 (Converse Jensen inequality [0, Theorem 6.2]). Let a,b € T. Sup-
pose f € Cua([a,b)r, [m, M]), where 0 < m < M < oo, and ¥ € C([0,00),R) is
superquadratic. Then

/b\If(f(t))AtJrR
[? F(t)At —m(b — a)

(M), (2.3)
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1 b
M -—m

Moreover, if W is strictly superquadratic, then strict inequality in (2.3) holds.

[(f(t) = m)T(M — f(t)) + (M — f()T(f(t) —m)] At.

a

Remark 2.4. The above three theorems hold for many other time scales integrals,
such as Cauchy, Riemann, Lebesgue, multiple Riemann, and multiple Lebesgue
delta, nabla, and diamond-« time scales integrals as we know that these integrals
are isotonic linear functionals (see [4]).

Remark 2.5. Weighted version of Theorems 2.1, 2.2, and 2.3 also hold, i.e., we
b b
k(t)f(t)At t)At
LROSOA o IO
[ k(t)At b—a

can take the weighted mean , where

b
k € Cua([a,b)r,[0,00)) is such that / k(t)At > 0.

3. CAucHY-TYPE MEANS

Under the assumptions of Theorems 2.1, 2.2 and 2.3, we define functionals Jy,

j\p, and Jy by
b
W (f) v (‘f(U) 0L )

b

Jv _—/
(fbf(t)At>
—(b—a)¥ [ L)

Au (3.1)

b—a

j@Z(b—@)(\IJ(m)qt\I/(M))—/ W) Al — K

(- o) <m+M—ﬁ/abf(t)At>,

- M(b-a)- [ f(t)A [P F(t)At —m(b — a)
Jv = M—-—m w(m) + M—-—m

W (M)

—/b\IJ(f(t))At—R.

From the inequalities (2.1), (2.2), and (2.3), it is clear that, subject to the relevant
assumptions, Jy, Jy, and Jy are nonnegative.

Theorem 3.1. Leta,b € T. Suppose f € Cia([a,b)r, [0,00)) and ¥ € C'([0, ), R)
is such that ¥(0) =0 and ¥ € C'((0,00),R). Then
oV"(0) — V(o)

. s (3.2)

holds for some ¢ > 0, provided that Jy, # 0, where V3 is defined in (1.3).

Jv =
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Proof. Define
¢, = inf U(z) and ¢*:= sup U(x).
xz€(0,00) 2€(0,00)

Case 1: Suppose
¢, = min U(z) and ¢* = max ¥ (z).

x€(0,00) x€(0,00)

Then

V" (x) — V' (x
ECRE
Hence by Lemma 1.7, ®; and ®, defined in (1.2) are superquadratic. By Theorem
2.1, we have J3,, Jo, > 0. Thus, since J3, = ¥*Jv, — Jv and Js, = Jo — Vs T,

we obtain

<y* forall z>0. (3.3)

VuTvy < Jv <" Ty (3.4)

Now, (3.3) and (3.4) imply that there exists some ¢ > 0 such that (3.2) holds.
Case 2: Suppose

Y, = min @l(x) and 9" # max E/(x)

z€(0,00) z€(0,00)

In this case, ®; is strictly superquadratic. Therefore J, > 0 and J3, > 0. Hence

bo< Y (x)x; V@) _ e (3.5)
and thus
VTv, < Jv < V" Ty,. (3.6)

Now, (3.5) and (3.6) imply that (3.2) holds for some p > 0.
Case 3: Suppose
¥, # min U(z) and ¢* = max U (z).
QDG 0 OO) xE(O,oo)
In this case, ®, is strictly superquadratic. The rest of the proof is analogous to

the proof in Case 2.
Case 4: Suppose

¥, # min U(z) and ¢* # max U (z).

z€(0,00) z€(0,00)

In this case, ®; and ®, both are strictly superquadratic. The rest of the proof is
analogous to the proof in Case 2.

In the case where ¢¥* = oo (i.e., ¥ is not bounded above) and v, exists, using
just ®5, we obtain
2V (x) — ¥'(x)

2

i <
T

in the case of minimum, and strong inequality in the case where 1, is infimum.
The rest of the proof is as above. The remaining cases can be treated analogously.
OJ
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Theorem 3.2. Let a,b € T and f € Cu([a,b)T,[0,00)) such that Jy, # 0.

Suppose ¥, ® € CY[0,00),R) are such that ¥(0) = ®(0) = 0 and ¥, ® €

C'((0,00),R). Then there exists some o > 0 such that
Ju _ 0V"(0) = V'(0)
Je  0®"(0) — ¥'(0)

holds, provided that the denominators in (3.7) are nonzero.

(3.7)

Proof. Define y € C'([0,00),R) by
X(x) = TJoV(z) — Ju®(z) for z>0.

Then X € C'((0,00),R), x(0) = 0, and J, = 0. Therefore, by using x instead of
¥ in Theorem 3.1, we obtain that there exists o > 0 such that

0= 0x"(0) — x'(0) = Ja(0¥"(0) — V'(0)) — Tu(0®"(0) — ?'(0)),

from which (3.7) follows. O
Remark 3.3. In Theorem 3.2, let
oV"(0) — V(0
oo = 220~V
0®"(0) — 9'(0)
and suppose G is invertible. Then we obtain another mean defined by
1 (Tw
()
¢ Jo

Theorem 3.4. Let a,b € T. Suppose f € Cu(la,b)r, [m, M]), where 0 < m <
M < oo, and ¥ € C'([0,00),R) is such that ¥(0) = 0 and ¥ € C'((0,00),R).
Then

_ ! — _
7,0 (@)Q2 (2) T,

holds for some ¢ > 0, provided that j\p3 £ 0.

Proof. The proof is analogous to the proof of Theorem 3.1, where, instead of
using Theorem 2.1, we apply Theorem 2.2 to ®; and ®,. O

Theorem 3.5. Leta,b € T and f € Cya([a, b)r, [m, M]), where 0 < m < M < oo,
such that Jy, # 0. Suppose U, ® € C'([0,00),R) are such that ¥(0) = ®(0) =0
and ¥, ® € C((0,00),R). Then there exists some o > 0 such that

Ju _ 0¥"(0) — V(o)
Jo  02"(0) — ¥'(0)

holds, provided that the denominators in (3.8) are nonzero.

(3.8)

Proof. The proof is analogous to the proof of Theorem 3.2, where, instead of
using Theorem 3.1, we apply Theorem 3.4 to . OJ
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Remark 3.6. In Theorem 3.5, let

5y e¥"(e) — V(o)
9= ()~ 0

and suppose G is invertible. Then we obtain another mean defined by

s~ To
- g 1 = .
’ (J)

Theorem 3.7. Let a,b € T. Suppose f € Cu(la,b)r, [m, M]), where 0 < m <
M < oo, and ¥ € C'([0,00),R) is such that ¥(0) = 0 and ¥ € C'((0,00),R).

Then o v
7 0 (9)@2— (o) T,

holds for some o > 0, provided that j\pd # 0.

Proof. The proof is analogous to the proof of Theorem 3.1, where, instead of
using Theorem 2.1, we apply Theorem 2.3 to ®; and ®,. (]

Theorem 3.8. Leta,b € T and f € Cya([a, b)r, [m, M]), where 0 < m < M < oo,
such that Jy, # 0. Suppose U, ® € C'([0,00),R) are such that ¥(0) = ®(0) =0
and U, ® € C'((0,00),R). Then there exists some o > 0 such that

Ty _ 0¥"(0) — V(o)
Js  0P"(0) — (o)

holds, provided that the denominators in (3.9) are nonzero.

(3.9)

Proof. The proof is analogous to the proof of Theorem 3.2, where, instead of
using Theorem 3.1, we apply Theorem 3.7 to x. 0

Remark 3.9. In Theorem 3.8, let
Glo) = 0¥ (o) — V(o)
0®"(0) — ®'(0)

and suppose G is invertible. Then we obtain another mean defined by

o [ Tu
o=6"1%)
(%)

4. GENERALIZED MEANS

Definition 4.1 (See [, Definition 3.1]). Let a,b € T. Let a € C(I,R) be strictly
monotone, where I C R is an interval. If f € Cyq([a,b)r, I), then the generalized
mean of f is defined by

Mo(f) = o (f“ @2 DY At) , (@)

provided that (4.1) is well defined.



CAUCHY-TYPE MEANS FOR SUPERQUADRATIC FUNCTIONS 67

Theorem 4.2. Let a,b € T and f € C.q([a,b)T, [0,00)). Suppose, moreover, that
a, 3,7 € C?([0,00),R) are strictly monotone such that

aoy~l Boy 1 e Cl((0,00),R) and (aovy )(0)=(B30o~")(0)=0.

1
,, o oA 2o pwar)
/(<vof>3<u> (o f)(w — 22 DOA )Au( o ) 4o

then

a(Ma(f) — a@a (v (1(v o f) = v ())) — a(D,(f))
BMs(f) = BOMs(y=H([(v o f) =y, (£)]))) — BOR,(f))
_ (O"(E)Y(Q) = o' ($)7"(Q)) = (O (V(€)?
OBV () = B(O"(C) = BV (€))?

holds for some ¢ € f(|a,b)r), provided that the denominators in (4.2) are nonzero.

(4.2)

Proof. Replace the functions f, ¥ and ® in Theorem 3.2 by yo f, a o y~! and
3 o~~1, respectively, so there exists some o > 0 such that

a(Ma(f)) — a@Ma (v (v 0 f) =7 () — oD, (f))

BMs(f)) = BMa(y=([(v 0 ) = 7vO())))) = B (/)
_0@"(H (@) (7)) — ' ( (@)Y (v (@) — &' (" (0) (v (v (0)))?
o(B"(yH ()Y (7)) = B (v )" (v (0) = B (v (e) (V' (v (e)*
By putting v !(g) = ¢, there exists some ¢ € f([a, b)) such that (4.2) holds. O

Remark 4.3. In Theorem 4.2, let

Y(Q)(@" (€)Y (¢) — &'()"(¢)) — (O (V(¢))*
(B (€) = F(O"(Q) = B () (v (€))?

and suppose F is invertible. Then, since ( is in the image of f, we obtain a new
mean defined by

f_1<04(9ﬁa(f))—04(9ﬁa(71(|(70f)—7(9ﬁv(f))|))) a(Mm ()))
Bs(f)) = BEM(y Iy 0 f) = v (NID) = BON(f)) )

Definition 4.4 (See [5, Definition 3.4]). Let a,b € T and f € Cy([a,b)r, ),
where [ C R is an interval. If » € R, then the generalized power mean of f is

defined by
. :
(fa gft;At> s T 7é 07
M, (f) = (4.3)

provided that (4.3) is well defined.

F(Q) =
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Corollary 4.5. Leta,b € T and f € Cq([a,b)r, I) be positive. Supposer,l,s > 0
are such that r # 1, r # 2s, | # 2s, and

b b s 3 INEGIY; ’
/ (f?)s(u)_fs(u)_faéf—(i&f )Au—< (b—a)2> # 0
Then
) = M = MDD =) _rr=29)
! ! — ’
M(f) — M(|f= = M(F)]*) —M(f) U= 25)
holds for some ¢ € f([a,b)T), provided that the denominators in (4.4) are nonzero.

Proof. Equation (4.4) directly follows from Theorem 4.2 by taking a(x) = z”,
B(x) = 2! and y(z) = 2* in Theorem 4.2. O

Remark 4.6. From Corollary 4.5, since ¢ € f([a,b)r), we obtain a new mean

defined by

1

omnls) _ I(1—2s) MI(f) — (| f5 — S(f)| ) f)ﬁr(f)> L |
ri(f) <7’(T —25) M (f) — M| f5 — Ms(f)|+ ) ()

where r,1,s > 0, r # 2s, | # 2s. We can extend these means to the limiting cases.
To do so, let r,1, s > 0. We define

o P 2(l—s
e e e

ML () =W =0 (o) - 172

where P, ), P, and (), are

1 b
p:_/ fL(t) log f(t) At — 9L (f) log M(f)

- 10 - s - )
Q=) - M) M),
= / 725(2)log (1) At — () log 90, f)
e [ @ - el - i
Q= / F22(1) hog £ (1) A — 902°( ) (log M, )

s [ > log | (1) — M())? At
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Theorem 4.7. Leta,b € T and f € Cya([a, b)r, [m, M]), where 0 < m < M < cc.
Suppose a, 3,y € C([0,00),R) are strictly monotone such that

aoy~t, foyleCl(0,00),R) and (aoy™)(0)=(B30o77")(0)=0.

If
= a)(m)* + GONP) - [ (o PP
~=a (30w 4900 - 22 [ Genmar)

2 b 5

s [ e DO = Am) 600 — (e 1))
HO0I) — (vo HIEN((r o F(E) — A(m))F] At
- [ e nw - 5= [ e nmat auzo

then

b(t)(aoy~")(a(t))At — Z,

h(t)(Bo~y=1)(g(t)At — Z5
7' (€) = & ()"({)) = () (V' () (4.5)
Y(¢) = B (") = B ()2

(v
holds for some ¢ € f([a,b)T), provided that the denominators in (4.5) are nonzero,
where

W = alom) + a(M) — a9, (),
Xo = (o y ) (y(m) +~v(M) — (9, (f))),
Zo =@ (0 0.0) 1O ¥ = o

g=(yof)—v(m), b=vM)—(yof)

Proof. Replace the functions f, ¥ and ® in Theorem 3.5 by yo f, a oy~ ! and
B o~7L, respectively. The rest of the proof is analogous to the proof of Theorem
4.2. ]

Remark 4.8. In Theorem 4.7, let

Fo) - 19"Q7(Q) = (Or"() = (O ()
Y(O)(B"(C)Y'(C) — B(O)Y"(C)) — F(C)('(€))?

and suppose F is invertible. Then, since ( is in the image of f, we obtain a new
mean defined by

(W — X = 25 Jyla0) e o) ))+h(t)(aov‘l)(g(t))]At—Za>‘
Wi = X — % [ la()(B o2 )(b(t) +B(6)(3 0 1) (a(0)]AL — Zs

a

—~
~+
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Corollary 4.9. Let a,b € T and f € Cya([a,b)T, [m, M]), where 0 < m < M <
00. Suppose r,l,s > 0 are such that r # 1, r # 2s, | # 2s, and

(b—a)(m35+M3s)—/abfgs(t)At—(b—a) (m +MS——/ £t At)

- [ 1 - moar - oy
O = PO)(E) —m)] At — / £ () / o] dusto
Then
W, = X, — YO0 05) 4 Mylbini)) =2 _rlr=25) i 0

Wi— X, — Y,(M(gl0:) + M(hig) — 2 (1—=25)

holds for some ¢ € f([a,b)T), provided that the denominators in (4.6) are nonzero,
where

r
s

Wy =m"+M"=M(f), X, = (m"+ M —M(f)):,

1 2
Z'r‘ — mr s ms < ’ }/; ’
(-, Vo=
= emt b= M
Remark 4.10. From Corollary 4.9, since ¢ € f([a,b)r), we obtain a new mean
defined by

T f) = (l(l —25) W, — X, — Y (M2 (gi b)) + Mo(higs)) — Zr> !
.l - _ T 1 1 1 )
r(r=25) X, — v.(9M(gl bi) + M(bl 7)) — Z

where r,1,s > 0, r # 2s, [ # 2s. We can extend these means to the limiting cases.
To do so, let r,1, s > 0. We define

1) = (g . M) g

where 15, @, P, and @1 are defined by
~ 1 b
P =m!logm + M'log M — b—/ f1(t) log f(t)At

1
— gXl log(m® + M* — M3(f))
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b ) l
- —S<by_s 2) / [95(£): (t) 1og(hs(t)) + bs(t)gs (¢) log(gs(1))] At

b
(bl_a) [f2(t) — M(F)]= log | £2(t) — ME(f)| At

Q=W — X, — V(Mg ) + Mi(bl g:)) — 7,

1 b
P1 :mQS logm + MQS lOgM - m/ fQS(t) log f(t)At

1
— EXQS log(m® + M* — 9M3(f))

b
(bY_s 2) / [95 ()03 (1) log (b () + s (1) g3 (t) log g, (1)) At

e [ 170 - P 0 - i

Gr =m? (logm)” + M*(log M)” — - / 15(t) (log £ ()* Mt

— 5 X, (log(m + M* — M(1)))?
Ys ’ ) ,
= [ T (00200t 0.(4) + (0121 (a4
ey [ 1770 - Pl 70 -

Theorem 4.11. Let a,b € T and f € Cyy([a,b)r, [m, M]), where 0 < m < M <
0o. Suppose a, 3,y € C*([0,00),R) are strictly monotone such that

aoy~l,Boqyt € C((0,00),R) and (aoy™')(0)=(Boy")(0)=0.

If
[ e DOA (GODY + (1 m))? +1(01)3(m)

b
— (b — @y (M)y(m) (7(M) + A(m)) — / (vo FY(8) A

- = /| (G0N =2m)6Gn - (o e’
(M) = (o f)O)((70 F)(O) ~2(m)*] At £0,
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holds for some ¢ € f([a,b)T), provided that the denominators in (4.7) are nonzero,
where g and by are defined as in Theorem 4.7 and

Eo = (v(M) = v(D,(f))a(m) + (7O, (f)) = 7(m))a(M),
Fo = (v(M) —~(m))a(Ma(f))-

Proof. Replace the functions f, ¥ and ® in Theorem 3.5 by yo f, o y~! and
3o~ respectively. The rest of the proof is analogous to the proof of Theorem
4.2, (]

Remark 4.12. In Theorem 4.11, let

F(0) = Y(Q)(@" (€)Y (¢) — &'()"(€)) — (O (V'(€))?
(B (€) = F(O"(C) = B () (v (€))?

and suppose F is invertible. Then, since ( is in the image of f, we obtain a new
mean defined by

ﬁqommm—ﬁmmeﬂu» (Wwv(wmﬁ—wﬂwﬁ'
(b—a)Bs = [19(t)(5 v )(B(t) +5(t)(B 07 ) (6(t)] AL — (b= a)F
)

Corollary 4.13. Let a,b € T and f € Cyy([a,b)r, [m, M]), where 0 < m < M <
0o0. Suppose r,l,s > 0 are such that r # 1, r # 2s, | # 2s, and

-1

)
)

/ FPOAL (M* +m* 4+ (Mm)*) — (b — a)(Mm)*(M* +m®) —/ 3 At

T =) (M = fr () (M — f2(0))(f* () — m*)*] At
Ms — ms

# 0.
Then
11 11
E, — M (gihs) — M (bsgs) — F.  r(r —2s)
(olhs (T o2 (- 2s)
_mlms [Js)—fml(hsgs)—Fl

holds for some ¢ € f([a,b)T), provided that the denominators in (4.8) are nonzero,
where g5 and b, are defined as in Corollary 4.9 and

By = (M® = 9(f))m" + (M(f) —m*)M",  F, = (M* —m*)I(f).

¢! (4.8)

Remark 4.14. From Corollary 4.13, since ¢ € f([a, b)), we obtain a new mean
defined by

=)

“Uﬁ—(““”ﬁﬁ%—wﬂﬁw>—mﬂww)—ﬂ>H
il N 11 11 )
r(r=25) b —ol(al i) — (bl ) —

where r,[,s > 0, r # 2s, [ # 2s. We can extend these means to the limiting cases.
To do so, let r,1, s > 0. We define

ﬁ%ﬂzm«g—%hﬂ>,l%%

[(I —2s)
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where ]3, @, ﬁl and @1 are defined by

P =(M* — 9 (f))m' logm + (M(f) — m*) M log M

b . z
N (bl_a) / [9:(1)b3 (¢) log (s (%)) + bs(t)gs (£) log(gs(t))] At

W [ o 0

Q = — Mi(glb5) — M(big:) — B,
Py =(M* = 93(f))m> logm + (IM(f) — m*) M log M

1

b
——S<b 2 / [9: ()03 (1) log(h, (1)) + bs(t)g3 (1) log(g, (1)) At

-t /“ﬁs Jlos £(1)

Qv =(M* = I (f))m* (log m)* + (M(f) — m*) M** (log M)

—QijfmUMWMMD%WMﬁWM%WﬂN

M-
”ﬂ/FSI%f
b—a

5. EXPONENTIAL CONVEXITY AND LOGARITHMIC CONVEXITY

Applying the functional Jy to the function W, defined in Lemma 1.8, we obtain

ﬁfqig{fpm%fw—Qf?tAu 5.1)
4mm(%gﬁY}s%z
and
7o =3{ [ (P08 s0) (52
—Pw—ﬂia mk@—%@?fAu
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L BN ONY;
- log [ Za /20 L
b—a(/a f(t)At) og( P

Theorem 5.1. Let Jy, be defined as in (5.1)—(5.2). Then

(i) for all n € N and for all p; > 0, p;; = Di + pj

, 1 <4, <n, the matrix
n
[jqu.j] is positive semidefinite;
i ]4,j=1

(ii) the function s +— Jy, is exponentially convex;
(iii) if Ju, > 0, then the function s — Ty, is log-convez, i.e., for 0 <r < s <
w, we have

(Jw,)" " < (Ju,)" " (Jw,) -

Proof. To show (i), let

Then

n n 2
N(z) = Z vivjx%_?’ = (Z szm23> >0

i,j=1

and A(0) = 0. Thus A is superquadratic. Now using A instead of ¥ in (3.1), we
obtain

n

Ja=Y v J,,, > 0. (5.3)
ij=1
Hence the matrix [jq,p_]} is positive semidefinite.
i 145=1
Now we show (ii). Because lin; Jv, = Ju,, the function s — Ty, is con-

tinuous on R,. Hence by (5.3) and Proposition 1.11, the function s — Jy, is
exponentially convex.

Finally, we show (iii). Because the function s — Jy, is exponentially convex,
it Jg, > 0, then by Remark 1.12, the function s — Jy, is log-convex. 0
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Corollary 5.2. Let a,b € T and f € Cq([a,b)r, I) be positive and define

(o] Jy (o)At
K [f (w) = |flu) = = — Au
_(b—a) (fabfit)aAt> | ot
D= g | P tog ) — | ) — LD
G
log | f(u) — r— Au
9 b
_ﬁ (fabf(t)At) log <fabf£t)aAt) , Ss=2.
Then
(i) for s >4,
Rt (R) <t [ - B0 o
s(s —2) (3D4\°°
oo () P
(ii) for 1 < s <2,
b rs b s b b s
Rt () it [po- B2 o

s—1

RN

s(s —2) D, b
L !
o e o

(iii) for2 < s < 3,

INAGE (fff(t)At)s+ ! /

b—a b—a b—a

b S
/. bfﬁt)aAt A

fu) =

(iv) for 3 < s <4,

JLrmar_ (fff(t)At)stL /

b—a b—a b—a

[P rwatl
" b—a

f(u)
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B (2 o,

Proof. The results follow from Theorem 5.1 (iii). O

Example 5.3 (See [2]). Let us consider the discrete form of Dy. For this, let
la,b) ={1,2}, f(1) =, f(2) = y such that y > 2 > 0. Then D, becomes

x—i—ys y—xs
D, =d, = x° 52 -2 .
-2 () -2 (1)

For s > 4, we obtain the inequality

_9 s—3
bz (),

3 8ds
s(s — 2) (32@ + x)? ) Ty — 1)y + 22)
3 42(y + 2x) 2 '

If 3 < s <4, we have
1< 55=2) (Bt )\ (v —2)(y + 20)
T3 42(y + 2x) 2 '

Therefore for s = 1, the inequality becomes

1 (42 (y+22)°(y — 2)?
~(y—2)<—2— (32) (y + )t :

1 1
Theorem 5.4. Suppose p,q € R are such that 1 < p < 2 and — 4+ — = 1. Let
P 4q

a,be T and f,g € Ca([a,b)r, [0,00)) be such that f g% (t)At > 0. Then

Zﬁ <<(/b s /abg(“)h““)ﬂ“); (/b gq(tmt) ;>p
-(/ bf(t)g(tmt)”)
o ([ i m)“

/bgq At(/ P06 (1) log(f (£)g" (1)) At

| A

VR

- [ et osts' oo ()

(f s s (000
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holds, where
f f()
J, gt

Proof. In Theorem 5.1 (iii), let r =1, s = p, w = 2, so that 1 < p < 2. Then we
have

h(u) = | f(u) — g** (u)

( p) S (‘-7‘I’1>2 p<j‘1>2)
IO fbku )f(H)AL
h—a J2 ()AL

that 7 k(t)At > 0, we get
b b
— ( | roroac- [ | -

—/bk(t)At INOVIOISAY
a [P k(t)At

By replacing , where k € Cyq([a, b)T, [0,00)) is such

[P k() Ft) AL
[P k()AL

L Ly k®FOA] N
Szp_l (/a k(t) f(U)_W A ) </a E(t)f2(t) log f(t)At
ol R@F@ALS L ROf@A]
/“ K Ji k(B)At tog | () [P k(t)At A

s ([ roros) e (FEEE))

Now replacing k by ¢ and f by fg'~9, after some calculation, we get the required
result. OJ

Remark 5.5. Theorem 5.4 refines the time scales Holder inequality for superqua-
dratic functions as given in [0].

Theorem 5.6. Let Jy, and Jy, be positive. Then for r,l,v,w > 0 such that
r<wv,l <w, we have

Ml (f) < aml ().

Proof. Since Jy, is positive, by Theorem 5.1, Jy, is log-convex. Now by using
Lemma 1.13, for r,[,v,w > 0 such that r<wv,l <w,r#Il,v#w, we have

(F) = (%)

\7\111 j\I/w
e T [ u v o

By substituting — for r, — for [, — for u, — for v, f® for f and from the continuity

s s
of Jy., we obtain our required result. O

Theorem 5.7. Theorem 5.1 is still valid if we replace V4 by s as defined in
Lemma 1.9.
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Proof. As in the proof of Theorem 5.1, consider

n

Qz) = Z V0 Pp,; (T).

ij=1
Then
n 2
O (z) = (ZU ki ) >0
i=1
and ©(0) = 0. Thus 2 is superquadratic. Now using 2 instead of ¥ in (3.1), we
obtain our required result. 0

Corollary 5.8. Let a,b € T and f € Cy4([a,b)r,I) be positive. Let r,s € R,
r # s. Then we have

M,s(f)
( f fr(t)log f(t )At—AT—rf:Bte’”B(t)At—i-fbeTB t—l)

7“3< f fS lng )At—AS—sf;B eth)At—l—f esBOAE — 1

provided that the occurring denominators are nonzero, where

t
Ay = (6= )+ MG low( ) - 1), 50 = g (s )|
Proof. The proof follows from Theorem 3.2 by replacing ¥, ® and f with ¢,, @,
and log f, respectively. 0

Remark 5.9. For the limiting cases of Cauchy-type means defined in Corollary
5.8, we have

B 3

M,s(f) = exp <5 B ;) , 570 and IMyo(f) = exp (2—51) :

where

B s ( || 7008 50t (b - )05 1) Qog(a( 1)

b
— / 62(t)e55<”At) ,

C =s /b F2(t) log f(t)At — (b—a)AS—s/bB(t)eSB(t)At+/besg(t)At— 1,
B = [ (g £(0)! 50 = (6= a)lox(Ma( ) ~ [ B0,
Ch = / (log f(£))*At — (b — a)(log(Mo(f / B (1)

Theorem 5.10. Let Jy, be positive. Then for r,l,v,w > 0 such that r < v,
[ < w, we have

M (f) < My f)-
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Proof. See the proof of Theorem 5.6. 0J

We can obtain corresponding results for j\y and jq; analogously as in the
case of Jy..

Pi + D

Theorem 5.11. (i) For all n € N and for all p; > 0, p;; = , 1 <

n

1,7 <n, the matrix [j\pp LJ ) s positive semidefinite;

(ii) the  function s — .7\1,5 is exponentially convex;

(iii) of ._7\1,5 > 0, then the function s — j\ps 15 log-convex, i.e., for0 <r < s <
w, we have

\I'lj)s—’r S ‘75)7‘_8 \;;7"
Corollary 5.12. Let a,b € T and f € Cya([a,b)r, [m, M]), where 0 < m < M <

00. Suppose
)

(b—a)(m® + M) =[] f()AE
—(b—a) <m+M—ﬁfabf(t)At> ~ K, 542

B= {0 amlogm + VElog M) — 2 0w S0
—(b—a)<m+M——f fHA )

\log<m+M—mfaf )—Kz, s =2,
where
K=t O = S+ (34 = FNO
—|—/a / f(t)At Au
and
Ko =g [ [0 = m)(M = 0) g (M = f10)
(M = F(0)(F(E) — m)* log(£(£) — m)] At
+/a flu) - bia/a £ og | £(u) — bia/a f(t)At’ Au.
Then
(i) for s >4,

~ ~ ~ s—3
b B (sB)"
s(s—2) = 3 \ 8D, ’

~ ~ s—1
b _ 5 ( D\
s(s —2) 2D,

(ii) for 1l <s <2,
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~ ~ ~ s—2
D, Dy [ 2D4
s(s —2) 2 \ 3D,

~ ~ ~ s—3
D, < Ds [ 3D,
s(s—2) = 3 \ 8D, '
1 1
Theorem 5.13. Suppose p,q € R such that 1 < p < 2 and — + — = 1. Let

p q
a,b € T and f,g € Cya([a,b)r, [m, M]), where 0 < m < M < oo, be such that
f gl (t)At > 0. Then

]ﬁ ((/abgq(t)At>p (mP + MP) — (/abgq(tmt)pl /ab FP(6) A
— Uy — A i — (/abgq(t)At>pl Us
- [ stmsa( [ gq(t)At)p_1>
1

— VP ((m2 logm + M?*log M) ( / b gq(t)m)

- / HAL / F2(1)g7 (1) log(f (H)g (1)) At

(m+M tAt—/ f(t)g(t)At>2
o (42 f_) e [(owan,
/bgq / (u)2(u) log(g" () >>Au)p1,

holds, where

Uy =(m + M) / gU(H)AL — / F(Hg(t)At
b

U, — / g1(t) (F(£)g () —m) (M — f(t)g"~9(1))" At

(iii) for2 <s <3,

(iv) for 3 <s <4,

2

+ [ g0 (M = 1091 0) (50910~ m)” At
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b b
Vi =/ g(u)h(w)Au + i m/ g'(t) (M — f(t)g' (1)) (f(t)g'~"(t) —m) At,

Vo= [ g0 [(7(09™"(®) ~ m) (M = 5(0)g"1(6)* og (31 ()" (1)
+ (M - f(t)glfq(t)) (f(t)glfq(t) — m)2 log (f(t)gl’q(t) — m)] At.

Theorem 5.14. Let jys be positive. Then for r,l,v,w > 0 such that r < v,
[ <w, we have

MEN(f) < ML (f).
Di T Dj

Theorem 5.15. (i) For all n € N and for all p; > 0, p;; = , 1 <

o~ n
1,7 <n, the matrix |:j\1;p L] ) 15 positive semidefinite;

(ii) the functzon S j\p is ea:ponentmlly convex;
(iii) of j\y > 0, then the function s — j\ps is log-conver, i.e., for0 <r < s <
w, we have

o < Ty Ten
Corollary 5.16. Let a,b € T and f € C([a,b)r, [m, M]), where 0 <m < M <
00. Suppose

( > J f®AL +ff<>AA4t m(b=a) 5 rs
~ —R, — fjfs 52
D, =
b—a)—fff(t m2log m + 4= HOA-mb-a) pra1o0
| —R: - fjf? t)log f(t)At s=2,
where
b
R, M — = f@)"+ (M — f()(f(t) —m)*] At
and
Ry = M - J(M — f(t))*log(M — f(t))
+(M (f(t) —m)*log(f(t) —m)] At.
Then
(i) for s >4,
s(s—2) = 3 \ 8D, ’

(ii) for 1l < s <2,
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(iii) for2 <s <3,

~

—~ s—2
D, D, 22)3
— < :
s(s —2) 3D,

~ ~ s—3
Dy D5 (3Ds
s(s—2) 7 3 \ 8D,
1 1
Theorem 5.17. Suppose p,q € R such that 1 < p < 2 and — + — = 1. Let
p

q
a,b € T and f,g € Cya([a,b)T, [m, M]), where 0 < m < M < oo, be such that
f g1(t)At > 0. Then

[\]

(iv) for 3 <s <4,

(W)

5@;:§S(WGWW-FMGA4P
- [ s+ v o] ac— 01 —m) [ o)
< 22;_3 ( bgq(t)a(t)b(t)At> (WP logm + WM log M

~r-m) [ g "

holds, where
a=fg'""—m, b=M-—fg" "

W = M/ At—/f At W = /f At—m/

Theorem 5.18. Let ._7\1/5 be positive. Then for r,l,v,w > 0 such that r < v,
[ < w, we have

MEN(f) < M, (/).
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