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A BURENKOV’S TYPE RESULT FOR FUNCTIONS OF
BOUNDED κ-VARIATION

JOSÉ GIMÉNEZ1∗, LORENA LÓPEZ1, NELSON MERENTES2 AND J. L. SÁNCHEZ2

Communicated by V. Valov

Abstract. In this paper, we give a sufficient condition for a linear composi-
tion operator to map the space of functions of bounded Koremblum variation,
κBV [a, b], into itself. We present several results concerning quasi monotonic
properties of the functionals of κ-variation and prove a Burenkov’s type result
for functions belonging to κBV [a, b].

1. Introduction and preliminaries

The class of all real valued functions (defined on an closed real interval) of
bounded variation was introduced by C. Jordan in 1881 ([9]), who established
the relation between these and the class of all monotone functions; namely,

A function f is of bounded variation if and only if it is the difference of two
monotone functions.

This fact has many important implications For instance, every function of
bounded variation, may only have jump discontinuities; on the other hand, a
function of bounded variation is differentiable almost everywhere (a celebrated
Theorem of H. Lebesgue).

Historically one of the most important implications of Jordan’s characteriza-
tion is that it permits to extend Dirichlet’s criterium (for the convergence of
the Fourier series of piecewise monotone functions) to the class of functions of
bounded variation.

In order to recall the basic definitions, we first introduce some notations.
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Given two sets A and B, the notation AB stands for the set of all functions
from B to A. Given a closed interval [a, b] ⊂ R and a function f ∈ R[a,b], if
I = [c, d] ⊂ [a, b], we will use the following notations:

|I| := d− c

f [I] := f(d)− f(c).

|f [I]| := |f(d)− f(c)|.
The notation π[a, b] will be used for the set of all partitions ξ = {ti}n

i=0 of
[a, b] : i.e., n is some positive integer and a = t0 < t1 < · · · < tn = b. When it
is clear from the context that we refer to a given partition ξ we will also write
ξ = {Ij}n

1
, where Ij = Ij(ξ) := [tj−1, tj] (j = 1, 2, . . . , n).

A function f : [a, b] → R is said to be of bounded variation, on [a, b], if there
is a constant M > 0 such that

n∑
j=1

|f [Ij]| ≤ M (1.1)

for all ξ = {Ij}n
1
∈ π[a, b].

The total variation of f on [a, b], is denoted as V (f ; [a, b]), or simply by V (f),
and it is the supremum of the sums (1.1) over π[a, b].

We will call a sum such as (1.1) a Jordan’s sum and denote it as Σ(f ; ξ).
The unvarying interest generated by the classical notion of function of bounded

variation has lead to some generalizations of the concept, mainly, intended to the
search of bigger classes of functions whose elements have pointwise convergent
Fourier series, see e.g., [5, 14, 15, 16, 17, 18]. As in the classical case, these
generalizations have also found many applications in the study of certain (partial)
differential and integral equations (see e.g., [3]) and also in the theory of linear
and nonlinear composition operators; namely, to find necessary and sufficient
conditions guaranteeing that such an operator maps a given space of functions
of generalized bounded variation (or a subset of it) into itself. Other conditions,
called acting conditions involve: boundedness, continuity, compactness (in the
linear case), to satisfy a local or global Lipschitz condition, etc., see e.g., [1, 6, 8,
10].

In 1975, B. Korenblum [12], introduced the notion of κ-variation of a function,
while studying the problem of representation of harmonic functions defined on
the unit disk of the complex plane by means of generalized Poisson integrals
involving, so-called, premeasures defined on sub-intervals of [0, 2π]. This notion
differs from the classical notion, and other known variations, in that Korenblum’s
concept maximizes ratios between Jordan’s sums and the so-called κ-entropies
generated by a distortion function1 κ, which measures lengths in the domain of the
functions. A weak point of this notion, as we will show later, is that the associated
κ-variation functionals need not be monotone with respect to enlargements of
partitions or additive on union of intervals. An advantage, on the other hand, is
that a function of bounded κ-variation can be decomposed into the difference of
two, so called, κ-decreasing functions (see [7]).

1Actually the letter κ stands for Carleson, according to Korenblum, [12].
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Definition 1.1. A function κ : [0, 1] −→ [0, 1], is called a distortion function if it
is continuous, nondecreasing, concave on [0, 1] and such that κ(0) = 0, κ(1) = 1,
and

lim
x→0+

κ(x)

x
= +∞.

That is, κ have infinite slope at the origin.

Note that any distortion function κ satisfies

κ(x + y)− κ(y)

(x + y)− y
≤ κ(x)− κ(0)

x− 0
(x, y, x + y ∈ [0, 1])

and therefore it is subadditive; that is, if x, y ∈ [0, 1] are such that x + y ∈ [0, 1]
then

κ(x + y) ≤ κ(x) + κ(y);

in particular, if x ∈ [0, 1] and n, m ∈ N, µ ∈ [0, +∞) are such that nx ∈
[0, 1], µx ∈ [0, 1] then

1

m
κ(x) ≤ κ

( x

m

)
, κ(nx) ≤ nκ(x) and κ(µx) ≤ [[µ + 1]]κ(x), (1.2)

where [[a]] denotes the integer part of a positive real number a; that is,

[[a]] := max{n ∈ N : n ≤ a}.
The set of all distortion functions will be denoted as K.
Throughout the paper, unless explicitly stated otherwise, we will assume that

κ is a distortion function and [a, b] ⊂ R is a closed interval.

Definition 1.2. ([13]) Let κ ∈ K and let ξ = {Ij}n
1
∈ π[a, b]. The quantity

κ(ξ) := κ(ξ; [a, b]) =
n∑

j=1

κ

(
| Ij |
b− a

)
is called the κ-entropy of ξ, relative to [a, b].

Examples ([13]):

• κ(s) := s(1 − log s). The corresponding entropy is called the Shannon
entropy.

• κ(s) := sα (0 < α < 1). The corresponding entropy is called the Lipschitz
entropy.

• κ(s) := (1 − 1
2
log s)−1. The corresponding entropy is called the Dini en-

tropy.

Notice that for any ξ = {ti}n
i=0 ∈ π[a, b] we have

1 = κ(1) = κ

( n∑
i=1

ti − ti−1

b− a

)
≤ κ(ξ). (1.3)

Let κ ∈ K. A function f ∈ R[a,b] is said to be of bounded κ-variation if there is
a positive constant C such that, for every partition ξ of [a, b],

Σ(f ; ξ) ≤ C κ(ξ; [a, b]). (1.4)
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The total κ-variation of f in [a, b] is defined as

κV (f) = κV (f, [a, b]) := inf{C : Σ(f ; ξ) | ≤ C κ(ξ; [a, b]) : ξ ∈ π[a, b]}.

The set of all functions of bounded κ−variation on [a, b] will be denoted by
κBV [a, b]. It is readily seen that this is a linear space. Equipped with the norm

‖f‖κBV [a,b] := |f(a)|+ κV (f ; [a, b])

the space κBV [a, b] is a Banach space (see [2, 11]); in fact, it readily follows from
the definitions that if f, g ∈ κBV [a, b] then

‖fg‖κBV [a,b] ≤ ‖f‖∞‖g‖κBV [a,b] + ‖g‖∞‖f‖κBV [a,b]. (1.5)

Considering the partition ξ := {a, s, b}, for fixed s, it is readily seen that every
f ∈ κBV [a, b] is bounded with

‖f‖∞ ≤ 2‖f‖κBV . (1.6)

On the other hand, from (1.3) it is quite easy to show that every function of
bounded (Jordan) variation on [a, b] is in κBV [a, b], and

κV (f) ≤ V (f).

Also, from (1.3) and the fact that the trivial partition {a, b} is optimum for
(1.4), it follows that if f is a monotone function on [a, b] then

κV (f) = V (f) = |f(b)− f(a)|. (1.7)

In his seminal 1975 paper, [12, Theorem 4.2], B. Korenblum proves a canonical
decomposition theorem for the functions in the space κBV [a, b], when κ is the
Shannon distortion. Later, Cyphert and Kelingos ([7]) generalized that result by
showing, for any κ ∈ K, that every function in κBV [a, b] can be expressed as the
difference of two κ-decreasing functions.

A function f ∈ R[a,b] is said to be κ-decreasing if there is a constant A ≥ 0 such
that for every interval I = [x, y] ⊂ [a, b],

f(y)− f(x) ≤ Ak

(
y − x

b− a

)
(1.8)

From this decomposition theorem it follows that every function f ∈ κBV [a, b] is
regulated; that is, it has one sided limits f(t+) y f(t−) at every point t ∈ (a, b)
and the limits f(a+) and f(b−) exist. Thus, we have the following chain of
inclusions

BV [a, b] ⊆ κBV [a, b] ⊆ R[a, b] (1.9)

where R[a, b] denote the set of all regulated functions on [a, b].
That the inclusions in (1.9) are strict can be seen, for instance, in [1, 7].
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2. Quasi-monotonic properties of the functionals κV (f ; ·)

As mentioned above, a weak point of the notion of (bounded) κ-variation,
is that the κ-variation functional associated to it, need not be monotone with
respect to enlargements of partitions or additive on union of intervals.

In [7], the following example was given to show that the functional κV (f ; x) :=
κV (f ; [0, x]),
x ∈ (0, 1], need not be increasing with x.

For the sake of notational simplicity, we will also denote by κV (f ; ·), the par-
titions functional

κV (f ; ξ) = κV (f ; ξ, [a, b]) :=
Σ(f ; ξ)

κ(ξ; [a, b])
,

where f ∈ R[a,b] and ξ = {Ij}n
1
∈ π[a, b].

Fix 0 < a < 1 and 0 ≤ b ≤ 1. Let f be the continuous function which is linear
on the intervals [0, a] and [a, 1] and such that f(0) = 0, f(a) = 1 and f(1) = b.
Then, from the piecewise linearity of f and the subadditivity of κ it follows that

κV (f) = max

{
b,

2− b

κ(a) + κ(1− a)

}
.

Choose 2
κ(a)+κ(1−a)

< b < 1. Let ξ := {0, 1} and let η := {0, a, 1}. Then

κV (f ; ξ) = b >
2− b

κ(a) + κ(1− a)
= κV (f ; η);

therefore, κV (f ; ·) need not be increasing with respect to partition enlargements.
On the other hand, from (1.7) it follows that κV (f ; [0, a]) = 1 and V (f ; [a, 1]) =

1− b. Hence

κV (f ; [0, a]) + V (f ; [a, 1]) = 2− b > b = V (f ; [0, 1]).

This shows (for b as above) that κV (f ; ) need not be additive on union of intervals.
In the rest of this section we examine what we may call quasi-monotonic prop-

erties of the functionals κV (f ; ·). The designation “quasi-monotonic” refers to the
fact that given two real valued functionals A, B defined on a subspace X ⊂ R[a,b],
there is a positive number M such that A(f) ≤ M B(f), for all f ∈ X.

Theorem 2.1. Suppose f ∈ κBV [0, 1]. Then, for all [a, b] ⊆ [0, 1], f |
[a,b]

∈
κBV ([a, b] and

κV (f |[a,b]; [a, b]) ≤
(

κ(a) + κ(1− b)

κ(b− a)
+ 1

)
κV (f ; [0, 1]).

Proof. Let ξ = {ti}n
0

= {Ii}n
1
∈ π[a, b] and set ξ

′
= ξ ∪ {0} ∪ {1}.

First of all, notice that κ(x−y
b−a

) ≥ κ(x− y) (since b− a < 1, for all x, y ∈ [a, b]
with x > y). Thus

κV (f |
[a,b]

; ξ) =
Σ(f ; ξ)

κ(ξ)
≤ Σ(f ; ξ)∑n

i=1 κ(| Ii |)
. (2.1)
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Notice also that
∑n

i=1 κ(| Ii |) ≥ κ(
∑n

i=1 | Ii |) = κ(b − a). Let λ :=
κ(a)+ κ(1−b)

κ(b−a)
. Then (2.1) implies that

κV (f |
[a,b]

; ξ) ≤ (λ + 1)

(λ + 1)

Σ(f ; ξ)∑n
i=1 κ(| Ii |)

=
(λ + 1)Σ(f ; ξ)∑n

i=1 κ(| Ii |) + λ
∑n

i=1 κ(| Ii |)

≤ (λ + 1)Σ(f ; ξ)∑n
i=1 κ(| Ii |) + κ(a) + κ(1− b)

≤ (λ + 1)( Σ(f ; ξ)+ | f(a)− f(0) | + | f(1)− f(b) | )∑n
i=1 κ(| Ii |) + κ(a) + κ(1− b)

= (λ + 1) κV (f ; ξ
′
).

Therefore

κV (f |[a,b]; [a, b]) ≤
(

κ(a) + κ(1− b)

κ(b− a)
+ 1

)
κV (f, [0, 1]).

�

Corollary 2.2. Let f ∈ κBV [0, 1] and let ξ = {xi}n
0
∈ π[a, b], where [a, b] ⊂ [0, 1].

For all i = 1, 2, . . . , n, put Li := [xi−1, xi]. Then
n∑

i=1

κV (f |Li
, Li) ≤ Mκ(ξ) κV (f, [0, 1]),

where Mκ(ξ) = n +
n∑

i=1

(
κ(xi−1) + κ(1− xi)

κ(|Li|)

)
.

Theorem 2.3. Let f ∈ κBV [0, 1] and let ξ = {xi}n
0
∈ π[0, 1]. For all i =

1, 2, . . . , n, put Li := [xi−1, xi]. Then

κV (f, [0, 1]) ≤ Nκ(ξ)
n∑

i=1

κV (f |
Li

; Li),

where Nκ(ξ) = 3 max
i
{[[((xi − xi−1)

−1 + 1)]]}.

Proof. Let η = {yj}m
0
∈ π[0, 1].

For each i = 1, 2, . . . , n, put ηi := η
⋂

Li = {yi
j}ni

0
.

It is clear that ηi need not be a partition of Li, since, except 0 and 1, some of
the points x1, x2, . . . , xn−1 might not belong to η. To get partitions in each Li,
set

η′i := ηi

⋃
{xi−1, xi} = {zi

j}n′i
0

, i = 1, 2, . . . , n.

Notice that if ηi = ∅, then

κV (f ; η′i, Li) := |f(xi)− f(xi−1)|. (2.2)
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Clearly η′ :=
n⋃

i=1

η′i ∈ π[a, b], and (since Jordan’s sums are increasing with

respect to refinements of partitions)

κV (f ; η, [0, 1]) =
Σ(f ; η)

κ(η)
≤ Σ(f ; η′)

κ(η)
=

n∑
i=1

Σ(f |
Li

; η′i)

κ(η)
(2.3)

Now suppose that for some i ∈ {1, 2, . . . , n} ηi 6= ∅ and that, in the worst case
scenario, neither xi−1 nor xi are in ηi. Then, if λi := κ(xi − yi

ni
) + κ(yi

0 − xi−1),
the fact that κ(η) satisfies

κ(η) ≥ 1 and κ(η) ≥
ni∑

j=1

κ(yi
j − yi

j−1)

implies

3 κ(η) ≥ (λi + 1)κ(η) = λiκ(η) + κ(η) ≥ λi + κ(η) ≥
n′i∑

j=1

κ(zi
j − zi

j−1). (2.4)

And, from (1.2), we obtain

n′i∑
j=1

κ(zi
j − zi

j−1) ≥
n′i∑

j=1

[[((xi−xi−1)
−1 +1)]]−1κ

(
zi

j − zi
j−1

xi − xi−1

)
≥ m κ(η′i, Li), (2.5)

where m := min{[[((xi − xi−1)
−1 + 1)]]−1 : i = 1, 2, . . . , n}.

Taking into account the fact that that 3
m
≥ 1, (2.2), (2.3), (2.4) and (2.5), we

get

κV (f ; η, [0, 1]) ≤
n∑

i=1

3

m

Σ(f |
Li

; η′i)

κ(η′i, Li)
≤ 3

m

n∑
i=1

κV (f |
Li

; Li), (2.6)

which completes the proof. �

The same proof of Theorem 2.3 may be used to prove the following result.

Corollary 2.4. Let f ∈ R[0,1] and suppose that f is of bounded κ-variation on
every (closed) interval determined by a fixed partition ξ = {Li}. Then f ∈
κV B[0, 1] and κV (f, [0, 1]) ≤ N

n∑
i=1

κV (f |
Li

; Li), where N is a constant depending

only on ξ.

Proof. Indeed, in this case the result follows from (2.6) and the facts that the
partition η is arbitrary and f is of bounded κ-variation on each Li. �

Clearly, we can easily adapt the proofs of Theorems 2.1 and 2.3 to obtain
versions of them for arbitrary closed intervals.

Corollary 2.5. Let f ∈ R[a,b] and suppose that [a, b] can be decomposed into
finitely many closed intervals on which f is monotone. Then f ∈ κV B[a, b].

Proof. It is immediate from Corollary 2.4 and (1.9). �
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3. Composing Functions of bounded κ-variation

Let X be a subspace of R[a,b]. Given a function g : R → R, the autonomous
(non-linear) superposition operator Sg : X → R[a,b], generated by g, is defined as

Sg(f)(t) := (g ◦ f)(t) = g
(
f(t)

)
(t ∈ [a, b]).

In [1] J. Appel and N. Merentes, show that, in general, the composition of two
functions of bounded κ-variation need not be of bounded κ-variation. Moreover,
they show that a superposition operator, Sh, maps the space κV B[a, b] into itself
if and only if the function h satisfies a local Lipschitz condition.

A linear composition operator, on the other hand, is defined as follows:
Suppose that D and E are given sets, X is a linear subspace of RE and f is a

map from D to E, the composition operator C
f

: X → RD is defined by

Cf (g) := g ◦ f.

Despite the obvious differences in acting conditions of these operators, they
share some attributes and it often happens (see e.g, [4, 8]) that certain properties
of one them can be deduced from the properties of the other.

In our next result we give a sufficient condition for an operator Cf to map
κBV [a, b] into κBV [c, d]. Recall that a function f : [c, d] → R is said to be
Lipschitz continuous iff

L(f) := sup

{
f(x)− f(y)

x− y
: x, y ∈ [c, d], x 6= y

}
< ∞.

Theorem 3.1. Suppose that f : [c, d] → [a, b] is an injective Lipschitz continuous
function. Then C

f
maps κBV [a, b] into κBV [c, d] and is bounded (continuous).

Proof. It follows from the hypothesis that f is continuous and injective, hence it is
strictly monotonic on [c, d]. Assume, that f is increasing and that g ∈ κBV [a, b].

Let ξ = {ti}n
0

= {Ii}n
1
∈ π[c, d]. Since f is Lipschitz, there is a real number

L ≥ 0 such that f(y)− f(x) ≤ L(y − x) for all x, y ∈ [c, d], such that x < y.
Hence, for each i = 1, 2, . . . , n

| f [Ii] |
b− a

≤ L (d− c)

(b− a)

| Ii |
(d− c)

≤
(
[[ L(d− c)(b− a)−1 ]] + 1

) | Ii |
(d− c)

= N

(
| Ii |
d− c

)
where N := [[ L(d− c)(b− a)−1 ]] + 1.

It follows from the monotonicity and subadditivity of κ that

κ

(
| Ii |

(d− c)

)
≥ κ

(
1

N

f [Ii]

b− a

)
≥ 1

N
κ

(
f [Ii]

b− a

)
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Hence

κV (g ◦ f, ξ) ≤ N

∑n
i=1 | (g(f(ti))− g(f(ti−1)) |∑n

i=1 κ

(
f(ti)−f(ti−1)

b−a

) .

By using a “λ + 1-argument” as in the proofs of Theorems 2.1 and 2.3, with

λ := κ

(
f(c)− a

b− a

)
+ κ

(
b− f(d)

b− a

)
,

we obtain

κV (g ◦ f, ξ) ≤ (λ + 1)N κV (g, η) ≤ (λ + 1)N κV (g; [a, b])

where η = {f(ti)}n
i=0 ∪ {a, b}.

Therefore,

κV (g ◦ f ; [c, d]) ≤ (λ + 1)N κV (g; [a, b]). (3.1)

From (3.1) it follows that C
f

maps κBV [a, b] into κBV [c, d] and that there is
a real number M ≥ 0 such that

‖C
f
(g)‖ ≤ M‖g‖

for all g ∈ κBV [a, b]; that is, C
f

is bounded.
The case in which f decreasing is treated similarly. �

Notice that if f is as in the statement of Theorem 3.1 then it is a κ-decreasing
function (cf. (1.8)).

As mentioned earlier, the property of functions in R[a,b] of being of bounded
κ-variation is not closed under compositions. However, the fact that κV B[a, b] is
an algebra, suggest us to look for variations of the following procedure:

Suppose that D and E are given sets, X is a linear subspace of RE and f is
a map from D to E. By enhancing the intrinsic properties (smoothness) of the
inner function f , we expect that the acting properties of the linear composition
operator C

f
will actually improve, and this improvement should be transferred

to a product of the form Cf (g) · h, where g, h ∈ X. A common instance, when
the spaces under consideration are algebras, is to ask that the function f has a
derivative, f (k), k ∈ N, which is also in the algebra, and consider the product
(g ◦ f)f (k).

The following result, due to V. I. Burenkov for the case of the algebra BV [a, b],
illustrated this fact. For the proof the reader is referred to [4, Theorem 5] (see
also [8]).

Theorem 3.2 (Burenkov). Suppose that f has a derivative f (k) of order k ev-
erywhere on [a, b]. If f (k) ∈ BV [a, b] and if g ∈ BV [c, d], c := min[a,b] f, d :=

max[a,b] f, then the function (g ◦ f) f (k) is also of bounded variation on [a, b];
moreover, there is number M = M(k) ≥ 0 such that

‖(g ◦ f )f (k)‖BV [a,b] ≤ M‖g‖BV [c,d] ‖f (k)‖BV [a,b].
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In order to get a version of Burenkov’s result for functions of κ-bounded vari-
ation, we will need to impose additional conditions to the inner function of a
composition g ◦ f .

Recall that the support of a real valued function is the set of points where the
function is not zero. We will say that a function f ∈ R[a,b] has cofinite support if
the set {x ∈ [a, b] : f(x) = 0} is finite.

By κBV
CS

[a, b] we will designate the set of all functions in κBV [a, b] with
cofinite support. Notice that this is a large subset (actually a cone) of κBV [a, b]
since it contains all polynomials.

Theorem 3.3. Suppose that f has a derivative f (k) of order k everywhere on
[a, b]. If f (k) ∈ κBV

CS
[a, b] and if g ∈ κBV [c, d], c := min[a,b] f, d := max[a,b] f,

then the function (g ◦ f) f (k) is of bounded κ-variation on [a, b]; moreover, there
is a number M = M(k) ≥ 0 such that

‖(g ◦ f )f (k)‖κBV [a,b] ≤ M‖g‖κBV [c,d] ‖f (k)‖κBV [a,b]. (3.2)

Proof. The hypothesis on f (k) imply that we can express the set S = supp(f (k)) as
a finite union of intervals, say S = ∪n

i=1 (ai, bi), where ai < bi and n ∈ N. Now,
since f (k) 6= 0 on S, given i ∈ {1, . . . , n} there is a nonnegative integer mi ≤ k such
that [ai, bi] can be decomposed into mi intervals, [a1

i , b
1
i ], [a2

i , b
2
i ], . . . , [ami

i , bmi
i ],

on which f is strictly monotone (this follows from finitely many successive appli-
cations of Rolle’s Theorem). Since f ′ is bounded, it is monotone and Lipschitz
continuous on each [aj

i , b
j
i ], j = 1, 2, . . . ,mi. It follows from Theorem 3.1 that for

each i = 1, 2, . . . , n, j = 1, 2, . . . ,mi

g ◦ f |
[a

j
i
,b

j
i
]
∈ κBV [a, b]

and that there are constants Ni such that

‖g ◦ f‖κBV ([aj
i ,bj

i ])
≤ Ni‖g‖κBV (f([aj

i ,bj
i ]))

.

From this fact, we conclude, after successive applications of Corollary 2.4 and
Corollary 2.2 that g ◦ f ∈ κBV [a, b] and

‖g ◦ f‖κBV ([a,b]) ≤ M‖g‖κBV [c,d]

for some constant M.
The estimate (3.2) then follows from (1.6) and (1.5). �

By using an argument similar to the one given in the proof of Theorem 3.3 we
obtain the following result. We omit the details of the proof.

Theorem 3.4. Suppose that P : [c, d] → [a, b] is a polynomial. Then Cp maps
κBV [a, b] into κBV [c, d] and is bounded.
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