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Abstract

We investigate the algebras for the double-power monad on the Sierpisnki space in the category
Equ of equilogical spaces, a cartesian closed extension of Top

0
introduced by Scott, and the

relationship of such algebras with frames. In particular, we focus our attention on interesting
subcategories of Equ . We prove uniqueness of the algebraic structure for a large class of
equilogical spaces, and we characterize the algebras for the double-power monad in the category
of algebraic lattices and in the category of continuous lattices, seen as full subcategories of Equ .
We also analyse the case of algebras in the category Top

0
of T0-spaces, again seen as a full

subcategoy of Equ , proving that each algebra for the double-power monad in Top
0
has an

underlying sober, compact, connected space.

1 Introduction

The category Equ of equilogical spaces, introduced by Scott in [Sco96], provides a useful extension

of the category Top
0

of T0-spaces; indeed, Equ is locally cartesian closed, see [CR00], and the

inclusion functor Top
0
↪→ Equ preserves the (existing) cartesian closed structure.

Considering the Sierpinski space Σ as an equilogical space, the self-adjoint functor Σ(−): Equ →
Equop

gives rise to a monad on Equ : the double-power monad on Σ, which we denote Σ2 in the
following. Monads of this kind have been widely studied in different contexts: Taylor developed
Abstract Stone Duality investigating certain double-power monads under the weak assumption
that in category C the object Σ can be exponentiated, see [Tay02a, Tay02b]. Townsend and
Vickers analysed the double-power monad for Σ seen as a locale—aka the frame of open subsets of
Σ—and they compared it to other important constructions in the category of locales, see [VT04,
Vic04]. Such monads played an important role also in the abstract approach to semantics of
computations, see e.g. [PR97, PT97, Thi97b, Füh99] and connections with the computational idea
of continuations, explored in particular in Hayo Thielecke’s PhD thesis [Thi97a], certainly require
further consideration.

In investigating the double-power monad on the Sierpinski topological space in a cartesian
closed extension of the category of T0-spaces, one must take into account how fundamental a role
the functor Σ(−) plays in the study of exponentiability in Top, as it is well-known that a topological

space X is exponentiable if and only if the exponential ΣX exists in Top. The starting point of our

investigation is a connection between Σ2-algebras in Equ and frames; we know from [Dub70] that,

since Equ is cartesian closed, the algebras for the double-power monad in Equ are the internal

models of the algebraic theory of Σ in Equ . As a consequence of this, in [FRS17] it was shown

that the Σ2-algebra structure on an equilogical space E induces a frame structure on the global
sections of E. On the other hand, the Lawvere finitary algebraic theory in Equ of Σ is precisely

that of internal frames in Equ . The basic question we address in the present paper is whether the
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internal theory of Σ coincide with its finitary part. In principle, one would expect a positive answer
since frames appear as the “algebrization” of open subsets, but to get such a positive answer has
proved extremely difficult. After all the work we put into the question, we suspect that the answer
is more subtle and we conjecture that the Σ2-algebras in Equ are only particular frames.

The study in the present paper focuses on certain subcategories of Equ on which one can

restrict the double-power monad in order to analyse the Σ2-algebras in these subcategories. These
include the category AlgLatt of algebraic lattices and the category ContLatt of continuous lattices,

together with two other important subcategories, REqu and SEqu , introduced in section 2, which

are very relevant for the structure of the category Equ .

In section 3, after briefly recalling known facts about the double-power monad Σ2 and its
algebras, we characterize ContLatt as the intersection of the two subcategories SEqu and REqu .

In section 4 we outline some properties of the frame structure of a Σ2-algebra in AlgLatt and

in REqu , and we characterize Σ2-homomorphisms between them. We also prove the uniqueness

of the structure map for Σ2-algebras in AlgLatt , in REqu and in ContLatt .

In section 5, we apply the previous results to obtain a characterization for Σ2-algebras in
AlgLatt and ContLatt , involving algebraic frames and continuous frames.

Finally, in section 6, we investigate the case of Σ2-algebras in Top
0
, analysing the topological

space Σ(ΣX) for a T0-space X. We show that every Σ2-algebra in Top
0

is a sober, compact and
connected space, but not necessarily locally compact.

2 Preliminaries

Recall from [BBS04, Sco96] that an equilogical space is a triple E = (|E|, τE ,≡E), where (|E|, τE)
is a T0-space and ≡E is an equivalence relation on |E|. Given equilogical spaces (|E|, τE ,≡E) and
(|F |, τF ,≡F ), we say that a continuous function f : (|E|, τE)→ (|F |, τF ) is equivariant if, for every
x, x′ ∈ |E| such that x ≡E x′, one has that f(x) ≡F f(x′). Two continuous equivariant functions
f, f ′: (|E|, τE) → (|F |, τF ) are equivalent—and we shall write f ≡FE f ′—if for all x ∈ |E|, one
has that f(x) ≡F f ′(x).

The category Equ of equilogical spaces consists of

objects are the equilogical spaces E = (|E|, τE ,≡E);

an arrow [f ] :E → F from the equilogical space E to the equilogical space F is an equivalence
class of continuous equivariant functions with respect to the equivalence relation ≡FE . We
may refer to such an arrow as an equivariant map in Equ , often confusing a map with one
of its representatives;

composition of equivariant maps is defined by composition of a(ny) pair of continuous represen-
tatives. Hence, composition is associative and has identities.

The category Equ is locally cartesian closed (see [CR00]) and it fully extends the category Top
0

of T0-spaces and continuous functions; the functor

Top
0

Y // Equ
(|X|, τX) � // (|X|, τX ,=)
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is a full embedding and preserves products and all the exponentials which exist in Top
0
, see [Sco96].

Note that if [f ] is an equivariant map whose target is in the image of the functor Y, then the
equivalence class of f is a singleton.

Since the cartesian closed structure of Equ plays an essential role in what follows, it is useful

to recall also Scott’s equivalent presentation of Equ from [Sco96]. It involves algebraic lattices and
partial equivalence relations on them. In order to keep the presentation reasonably self-contained,
in the following we review some basic concepts from the theory of lattices and universal algebra.
We shall refer mainly to [GHK+80].

On a complete lattice L = (|L|,≤) one can introduce a T0-topology, called the Scott topology
which consists of those subsets U of |L| such that:

U is upward closed : if x ∈ U and y is an element of |L| such that x ≤ y, then y ∈ U ;

U is inaccessible by directed joins: for every directed subset D ⊆ |L|, if
∨
D ∈ U , then there

exists d ∈ D such that d ∈ U .

It is easy to check that this collection of sets is closed under arbitrary unions and finite intersections;
we will denote that topology with τSc. Moreover, given L and M complete lattices, a function
f : |L| → |M | is continuous with respect to the Scott topologies on L and M respectively, if and
only if f preserves directed joins, i.e. for every directed subset D ⊆ |L|,

f
(∨

d∈D d
)

=
∨
d∈D f(d).

In that case, we shall say that the function f : |L| → |M | is Scott-continuous. In the following we
may sometimes confuse a complete lattice L with the topological space (|L|, τSc).

Let L be a complete lattice and x, y ∈ |L|. One says that x is way-below y, in symbols x� y,
if, for every directed subset D ⊆ |L| such that y ≤

∨
D, there exists d ∈ D such that x ≤ d. It is

easy to see that the relation � is finer than ≤, and that � is transitive.
An element k of a complete lattice L is compact if k � k, i.e. for every directed subset D ⊆ |L|

such that k ≤
∨
D, there is d ∈ D such that k ≤ d. The least element of a complete lattice is

compact and a finite join of compact elements is again compact. Note that a compact element k
determines a Scott-open subset k≤ :=

{
y ∈ |L|

∣∣ k ≤ y} of L. Denote by K (L) the subset of the
compact elements of L. It is a ∨-subsemilattice of L.

A complete lattice L is algebraic if every element a ∈ |L| is the join of the compact elements
less than or equal to it:

a =
∨
k∈K(L)
k≤a

k.

Note that the join in the formula above is directed.
The category AlgLatt of algebraic lattices and Scott-continuous functions is the full subcategory

of Top
0

on the algebraic lattices endowed with the Scott topology.

Recall from [Sco76, GHK+80] that an algebraic lattice endowed with the Scott topology is
injective with respect to the subspace inclusions in the category Top

0
and that every T0-space

X = (|X|, τX) embeds as a subspace into the algebraic lattice on the powerset P (τX) ordered by in-
clusion: the embedding maps a point x ∈ |X| to its neighbourhood filter Ux: =

{
U ∈ τX

∣∣ x ∈ U} ∈
P (τX).
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Remark 2.1. Let L and M be algebraic lattices considered as topological spaces with the respective
Scott topologies. Let X be a T0-space and f :L ×X → M a function which is continuous in each
variable. Then f is continuous from L × X into M . Indeed, suppose that a ∈ |L|, x ∈ |X| and
f(a, x) ∈ V which is Scott-open in M . Since L is algebraic, a =

∨
k∈K(L)
k≤a

k. The hypothesis that f

is continuous in the first variable ensures that

f(a, x) =
∨
k∈K(L)
k≤a

f(k, x).

Hence there is a compact k ≤ a such that f(k, x) ∈ V because V is Scott-open. Since f is continuous
in the second variable, there is an open neighbourhood U of x such that the image of {k}×U under
f is all contained in V . Therefore f(k≤ × U) ⊆ V .

Note that the argument just presented does not extend to arbitrary complete lattices with the
Scott topology.

It follows from 2.1 that, given algebraic lattices L and M , the set of Scott-continuous functions
from L to M endowed with the compact-open topology is the exponential ML of the two spaces in
Top

0
. It is clear that ML is also a complete lattice, and it is easy to see that it is algebraic and

the compact-open topology coincides with the Scott topology. So the embedding Y restricted to the
subcategory of algebraic lattices

AlgLatt � � I // Equ
A

� // (|A|, τSc,=)

preserves products and exponentials.

Remark 2.2. Given algebraic lattices A and B, every order-preserving function f : K (A)→ B has
a unique extension to a Scott-continuous function f̃ :A→ B mapping

a 7−→
∨
k∈K(A)
k≤a

f(k).

Thus, there is an order isomorphism between the set of Scott-continuous functions from A to B
and the order-preserving functions from K (A) to B.

A complete lattice L is continuous if every element is the join of the elements way-below it,
i.e. for every x ∈ |L| it is

x =
∨
y∈|L|
y�x

y.

On a continuous lattice the way-below relation is interpolative; in fact, � is interpolative on the
complete lattice L if and only if L is continuous.

A continuous retract of a continuous lattice is clearly continuous, and every continuous lattice
is a retract of an algebraic lattice, e.g. for a continuous lattice L, the function

P (|L|) //P (|L|)

P � //
{
y ∈ |L|

∣∣ y � ∨
P
}
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is Scott-continuous and the lattice of its fixpoints is (isomorphic to) L, see [Sco76].
So the category ContLatt of continuous lattices and Scott-continuous functions is (equiva-

lent to) the full subcategory of Top
0

on the injectives with respect to subspace inclusion. It is

also equivalent to the idempotent splitting of AlgLatt , so the full embedding I extends to a full
embedding

ContLatt � � I // Equ
C

� // (|C|, τSc,=)

which preserves products and exponentials.
We are now in a position to introduce the category PEqu of partial equilogical spaces.
A partial equilogical space is a pair A = (LA,≈A), where LA is an algebraic lattice and ≈A

is a symmetric and transitive relation on |LA| (not necessarily reflexive). We denote the domain of
≈A as DA :=

{
a ∈ |LA|

∣∣ a ≈A a}.
Given partial equilogical spaces (LA,≈A) and (LB ,≈B), for Scott-continuous functions g, g′:LA →

LB , write g ≈BA g′ when

for all a, a′ ∈ |LA| such that a ≈A a′, it is g(a) ≈B g′(a′). (1)

For a Scott-continuous function f :LA → LB say that it is equivariant from (LA,≈A) to (LB ,≈B)
when f ≈BA f . So ≈BA is an equivalence relation on equivariant functions from (LA,≈A) to
(LB ,≈B). Also, if f is equivariant from (LA,≈A) to (LB ,≈B), then it applies DA into DB .

The category PEqu consists of

objects are partial equilogical spaces;

an arrow [f ] :A→ B from (LA,≈A) to (LB ,≈B) is an equivalence class of equivariant functions
f :A → B with respect to the equivalence relation ≈BA . We refer to such an arrow as an
equivariant map in PEqu ;

composition of equivariant maps is defined by composition of a(ny) pair of continuous represen-
tatives.

Hence, composition is associative and has identities.

Remark 2.3. The category PEqu is the quotient completion of the elementary doctrine

P : AlgLattop −→ InfSL where P (|L|) is the powerset of the underlying set of L and P (f) := f−1

for f :L→M a Scott-continuous function, see [MR13, MR15].

It follows from symmetry and transitivity that the partial equivalence relation ≈A is contained



126 G. Frosoni, G. Rosolini

in DA ×DA and so reflexive on DA. That allows to define a functor

PEqu Z // Equ

(LA,≈A) � //

[f ]

��

(DA, τsub,≈A)[
f �DBDA

]
��

(LB ,≈B) � // (DB , τsub,≈B)

� //

where τsub denotes the appropriate subspace topology.
There is also a functor W: Equ //PEqu which exploits the facts, recalled from [Sco76, GHK+80]

on p. 123, that the continuous function x 7→ Ux: (|X|, τX)→ (P (τX), τSc) is a topological embed-
ding and algebraic lattices are injectives with respect to topological embeddings. The action of W
on the objects is

Equ W // PEqu
(|E|, τE ,≡E) � // (P (τE),≈P(τE))

where ≈P(τE) is the image under U(–) of the equivalence relation ≡E ; the action on the maps is
obtained by injectivity.

Theorem 3.4 in [Sco96] gives the equivalence of categories.

Theorem 2.4. The functors Z: PEqu → Equ and W: Equ → PEqu are an adjoint equivalence.

The following proposition explains how to compute exponentials in PEqu . From this, using the

functors Z and W, one derives a construction of exponentials in Equ .

Proposition 2.5. Let A and B be objects in PEqu . Then

(i) their categorical product is
A×B = (LA × LB ,≈A×B)

where (a, b) ≈A×B (a′, b′) if a ≈A a′ and b ≈B b′, with the obvious projections;

(ii) their exponential is
BA = (LLAB ,≈BA)

where LLAB is the algebraic lattice (ordered pointwise) of the Scott-continuous functions from
LA to LB introduced in 2.1, ≈BA is the relation (1), and the evaluation map is that on the
algebraic lattices.

Finally, we introduce two subcategories of PEqu which play a fundamental role in the following,
see [FRS17].

Let REqu be the full subcategory of PEqu consisting of those pairs A = (LA,≡A) such that
≡A is reflexive, i.e. DA = |LA|. In other words ≡A is an equivalence relation on |LA|.
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Furthermore, SEqu is the full subcategory of PEqu consisting of those pairs A = (LA,∼A),
where ∼A is a subreflexive relation on |LA|, i.e. for all a, a′ ∈ |LA|, if a ∼A a′, then a = a′. The
category SEqu is equivalent, under the restriction of the functor Z: PEqu → Equ , to the image of

the embedding Y: Top
0
↪→ Equ .

Recall from [FRS17] the following result.

Proposition 2.6. For S an object in SEqu and R an object in REqu ,

(i) SR is in SEqu ;

(ii) RS is in REqu .

Remark 2.7. Though the proof of 2.6 is not difficult, it is hard to evaluate its structural meaning.
In order to explain what we mean, consider how an object A = (LA,≈A) in PEqu appears in the
following diagram

(LA,∆|LA| ∩ (DA ×DA))

[idA]
_��

� � [idLA ]
// (LA,∆|LA|)

(LA,≈A)

(2)

where ∆|LA| denotes the diagonal relation on |LA|. The horizontal map is a subspace inclusion and
the vertical map is a coequalizer of the two parallel maps

(LA × LA,∆≈A) ////(LA,∆|LA| ∩ (DA ×DA))

represented by the two projections.
A partial equilogical space A is in REqu if and only if the horizontal map in (2) is iso; it is in

SEqu if and only if the vertical map in (2) is iso.
So 2.6(i) is a direct computation using the properties with limits and colimits of an exponential

bifunctor. On the other hand, while 2.6(ii) is certainly correct, we failed to find a general justification
for it.

From now on, we shall work preferably with partial equilogical spaces. Therefore we shall refer
to the category PEqu rather than the category Equ , as well as its full subcategories SEqu and

REqu . We remark once more that, via the equivalence between Equ and PEqu , the image of the

embedding of Top
0

into Equ is equivalent to SEqu . We shall show in section 3 that the category

of continuous lattices is equivalent to the intersection of SEqu and REqu .

3 The monad of the double power of Σ

The Sierpinski space Σ is the T0-space with two points ⊥ and > and the only non-trivial open
subset is {>}. Clearly, Σ is an algebraic lattice, with the order ⊥ < > with the Scott topology.
So, the pair (Σ,=) is a partial equilogical space. For simplicity, in the following, we will write the
partial equilogical space (Σ,=) simply as Σ.

The self-adjoint functor

PEqu Σ(−)
// PEquop
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gives rise to a strong monad on PEqu of the form of those studied in [Tay02a, Tay02b, Vic04, VT04],

whose endofunctor Σ(Σ(−)) maps each partial equilogical space E into Σ(ΣE)—hence the name
double-power of Σ for the monad.

The unit of the monad has components ηE :E → Σ(ΣE), the exponential adjunct of the composite

E × ΣE
〈π2, π1〉 // ΣE × E ev // Σ.

Since typed λ-calculus can be interpreted in any cartesian closed category, in λ-notation the
above map is written

λF : ΣE .Fx in context x:E.

The multiplication component µE : Σ(Σ(Σ(ΣE))) −→ Σ(ΣE) is the map ΣηΣE . In λ-notation

λF : ΣE .G(λU : Σ(ΣE).UF ) in context G: Σ(Σ(Σ(ΣE))).

We shall sometimes adopt the notation of [Tay02a, Tay02b] and write the action ΣX as Σ (X),

so that Σ(ΣX) is written Σ (Σ (X)) = Σ2 (X) and so on. In this way the multiplication above is
written µE : Σ4 (E) −→ Σ2 (E).

In line with the new notation Σ2 for the underlying functor of the double-power monad, we shall
denote the monad as Σ2 so that the category of the Eilenberg-Moore algebras for it in PEqu is

PEquΣ2

. A Σ2-algebra is (E,α), where α: Σ2 (E)→ E is a structure map on the partial equilogical
space E.

Note that Σ
∼= //Σ(Σ0) is the underlying object of the initial Σ2-algebra (Σ,Ση1). So, for each

partial equilogical space E, (ΣE ,ΣηE ) is a Σ2-algebra in PEqu on the power ΣE of Σ.

Since Σ is both in REqu and in SEqu , by 2.6 the functor Σ(−): PEqu //PEquop
can be

restricted and corestricted to the subcategories REqu and SEqu in the following way:

REqu Σ(−)
// SEquop SEqu Σ(−)

// REquop

Hence, the monad Σ2 gives rise to a monad on REqu and a monad on SEqu . As usual, we denote

the categories of the algebras for the double-power monad of Σ on REqu and SEqu with REquΣ2

and SEquΣ2

, respectively.
Since a continuous lattice is a retract of an algebraic lattice, the embedding

W ◦ I: ContLatt � � //PEqu

maps into both subcategories REqu and SEqu .

Lemma 3.1. Let X = (LX ,∼X) be an object in SEqu isomorphic to an object in REqu . Then
X is a retract of an algebraic lattice.
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Proof. Suppose X = (LX ,∼X) with ∼X⊆ ∆|LX | is isomorphic to an object of REqu ; this means

that there are an object A = (LA,≡A) in REqu and equivariant maps [f ] :X → A and [g] :A→ X
such that

(LX ,∼X)
[f ]

&&

idLX //

f
��

(LX ,∼X).

(LA,∆|LA|)
[idLA ]

// (LA,≡A)
[g]

88

So X is a retract of the algebraic lattice LA since ∼X⊆ ∆|LX |. q.e.d.

Theorem 3.2. The intersection of REqu and SEqu is (equivalent to) the image of the embedding

ContLatt ↪→ PEqu .

Proof. It follows from 3.1 since ContLatt is equivalent to the full subcategory of injectives of Top
0

with respect to subspace inclusion as mentioned on p. 125. q.e.d.

Hence the functor Σ(−) restricts to the category ContLatt as well as AlgLatt and we shall

also consider the categories of Σ2-algebras in these subcategories.

4 Σ2-algebras and frames

In [FRS17] Theorem 5.5 shows that a Σ2-algebra inherits a unique frame structure in PEqu ,

induced by the frame structure of Σ. Indeed, by [Dub70], every Σ2-algebra (E,α) can be seen as
a PEqu-enriched cotensor-preserving functor

(
PEqu

Σ2

)op E(−)
// PEqu

D � // ED

Note that
(

PEqu
Σ2

)op
is equivalent to the theory of Σ in PEqu , i.e. Th (Σ) is the category

whose objects are the objects of PEqu and an arrow f :F → G is an equivariant map f : ΣF → ΣG;

composition and identities of Th (Σ) are as in PEqu . Thus, applying the functor E(−) to the
distributive lattice structure of Σ, given by the Scott-continuous functions

∧: Σ2 → Σ ∨: Σ2 → Σ,

we obtain distributive lattice operations on the underlying object E of the Σ2-algebra (E,α).

Remark 4.1. We should remind the reader that the notation E(−) is only suggestive, the action
on the arrows is not just by pre-composition and uses the structure map α, see [FRS17]. Indeed, if
f :C → D is an arrow in Th (Σ), then it is an equivariant map f : ΣC → ΣD and Ef is represented
by the equivariant function

EC
(ηE)C

// (Σ(ΣE))C ∼= (ΣC)(ΣE)
f (ΣE)

// (ΣD)(ΣE) ∼= (Σ(ΣE))D
αD // ED
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In particular, the order determined on E is given as follows: let 2 = 1 + 1 be the discrete
equilogical space on the set {0, 1} and

(⊥
>
)
: 1 + 1 → Σ the function which maps 0 to ⊥ and 1 to

>. Then Σ(⊥>): ΣΣ → Σ1+1 is monic and isomorphic to the order relation on Σ. An easy diagram

chase shows that EΣ(⊥>)
is represented by the equivariant function

EΣ // E2 ∼= E × E

f
� // (f(⊥), f(>))

which is indipendent of the structure α. Hence the internal distributive lattice determined in PEqu
on E depends only on the existence of a structure map α on E that turns it into a Σ2-algebra. For
this reason we shall denote the maps E∧:E2 → E and E∨:E2 → E, obtained by applying E(−) to
the maps

∧: Σ2 → Σ ∨: Σ2 → Σ,

simply as ∧E :E2 → E and ∨E :E2 → E.
Moreover, for every set I, seen as a discrete topological space, the join

∨
I : ΣI → Σ is Scott-

continuous, so they induce (arbitrary) join operations∨
E I :EI → E

which make E an internal frame in PEqu . If it causes no confusion, we omit the index I.
The following is an explicit description of the induced lattice operations in terms of representa-

tives of the equivariant maps of partial equilogical spaces:

∧E : (e1, e2) 7→ α (ηE(e1) ∧ ηE(e2))∨
E I : (ei)i∈I 7→ α

(∨
i∈I ηE(ei)

)
where ∧ and

∨
which appear on the right-hand side in the definition above are the pointwise finite

meet and arbitrary join of continuous functions.
Again, in terms of representatives, if h: (E,α) → (D,β) is a Σ2-homomorphism, then h is a

frame homomorphism up to the partial equivalence relation ≈D, in the sense that

h(e1 ∧E e2) ≈D h(e1) ∧D h(e2) for e1, e2 ∈ DE

h

(∨
E ei

)
≈D

∨
D h(ei) for (ei)i∈I ∈ (DE)I .

As a direct consequence, the global section functor Γ: PEqu → Set extends to a faithful functor

PEquΣ2 Γ // Frm
(E,α) � // DE/ ≈E

where Frm is the category of frames and frame homomorphisms. We denote the frame operations

on Γ(E,α) = DE/ ≈E with uE and E .
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Remark 4.2. Clearly, the frame structure of Γ(E,α) is unique and depends only on the existence
of a Σ2-structure on the object E.

Consider the particular case of Σ2-algebras in AlgLatt and suppose that (A,α) is in AlgLatt Σ2

,
i.e. A = (LA,=). Then the frame structure determined on A coincides with that given by the com-
plete order on LA = (|LA|,∧,

∨
) since the mono

AΣ(⊥>)
:AΣ // //A2

is (isomorphic) to the order relation of the algebraic lattice A. Therefore, every Σ2-homomorphism

h: (A,α)→ (B, β) preserves arbitrary joins and finite meets. Since each structure map α: Σ(ΣA) →
A is a Σ2-homomorphism from (Σ(ΣA), µA) to (A,α), it preserves finite meets and arbitrary joins.
This allows us to prove the following.

Lemma 4.3. Let (A,α) and (B, β) be objects in AlgLatt Σ2

. If h:LA → LB is a frame homomor-

phism, then it is a Σ2-homomorphism from (A,α) to (B, β).

Proof. We have to prove that, given h:LA → LB a frame homomorphism, the following diagram is
commutative:

Σ(ΣA) Σ(Σh)
//

α
��

Σ(ΣB)

β
��

A
h

// B

Since the lattices involved are algebraic and all the maps in the diagram are Scott-continuous, it is

sufficient to prove that the diagram commutes on the compact elements of Σ(ΣLA ); they are finite
joins of step functions, so they are of the form

n∨
i=1

m∧
j=1

k̂ij ,

for appropriate compact elements kij of LA. The function k̂ij = ηA(kij) maps f ∈ |ΣLA | into the
function f(kij). Thus, computing the two paths on a step function, we obtain

∨n
i=1

∧m
j=1 k̂ij

� Σ(Σh)
//

_

α

��

∨n
i=1

∧m
j=1 ĥ(kij)

_

β

��∨n
i=1

∧m
j=1 kij

�
h
// h(
∨n
i=1

∧m
j=1 kij)

∨n
i=1

∧m
j=1 h(kij)

which completes the proof. q.e.d.

We shall extend the previous results to Σ2-algebras in REqu . First we need a result about the

Σ2-algebras which are powers of Σ.
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Theorem 4.4. Let E = (LE ,≈E) be a partial equilogical space. For all f1, f2 ∈ DΣE and {fi}i∈I ⊆
DΣE ,

f1 ∧
ΣE
f2 ≈ΣE f1 ∧ f2

∨ΣE
fi ≈ΣE

∨
fi,

where the operations ∧ and
∨

which appear on the right-hand side of the identities are the pointwise
meet and join of the algebraic lattice ΣLE .

Proof. Write L for the partial equilogical space (LE ,=LE )—in other words, L is the algebraic
lattice LE seen as a partial equilogical space. Assume first that E is in SEqu . Note that[
id|LE |

]
:E // //L . Since the following commutative diagram

Σ2
(
ΣL
) ΣηL //

Σ2
(

Σ[id|LE |]
)
��

ΣL

Σ[id|LE |]
��

Σ2
(
ΣE
) ΣηE // ΣE

and the vertical maps are surjections by 2.6, given f1, f2 ∈ |ΣLE |,

f1 ∧
ΣE
f2 = ΣηE (ηΣE (f1) ∧ ηΣE (f2)) ≡ΣE ΣηL(ηΣL(f1) ∧ ηΣL(f2)) = f1 ∧ f2

where ∧ is the pointwise meet of the algebraic lattice ΣLE .

The proof is similar for
∨ΣE

.
For the general case of E a partial equilogical space, write X for the partial equilogical space
(LE ,∆|LE | ∩ (DE × DE)), see 2.7. Note that

[
id|LE |

]
:X //E and consider the commutative

diagram

Σ2
(
ΣE
) ΣηE //

Σ2
(

Σ[id|LE |]
)
��

ΣE

Σ[id|LE |]
��

Σ2
(
ΣX
) ΣηX // ΣX

where the vertical maps are monic by 2.6. The result follows immediately. q.e.d.

Consider now (A,α) and (B, β) in REquΣ2

. If h: (A,α) → (B, β) is a Σ2-homomorphism,

then h is an internal frame homomorphism from (A,∧A ,
∨
A ) to (B,∧B ,

∨
B ) in REqu . So, up to the

equivalence relation ≡B , for all a1, a2 ∈ |LA| and for all {ai}i∈I ⊆ |LA|

h (a1 ∧A a2) ≡B h(a1) ∧B h(a2) and h

(∨
A ai

)
≡B

∨
B h(ai).

Since each structure map α: Σ(ΣA) → A is a Σ2-homomorphism, it is a frame homomorphism

from Σ(ΣA) to A in REqu . By Theorem 4.4, for allG1, G2 ∈ |Σ(ΣLA )| and for all {Gi}i∈I ⊆ |Σ(ΣLA )|,

α(G1 ∧G2) ≡A α(G1) ∧A α(G2) and α
(∨

Gi

)
≡A

∨
A α(Gi).
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Theorem 4.5. Let (A,α) and (B, β) be objects in REquΣ2

. If h is an equivariant map from A to

B which, in addition, is an internal frame homomorphism from (A,∧A ,
∨
A ) to (B,∧B ,

∨
B ) in REqu ,

then it is a Σ2-homomorphism from (A,α) to (B, β).

Proof. In order to prove that h is a Σ2-homomorphism, it is sufficient to prove that the following
diagram commutes

Σ(ΣA) Σ(Σh)
//

α
��

Σ(ΣB)

β
��

A
h

// B

Each function G in Σ(ΣLA ) is the directed join of the compact elements below it. Since each compact

element in Σ(ΣLA ) is of the form
∨n
i=1

∧m
j=1 k̂ij where for all i and j, kij is a compact element of

LA, G is of the form
∨
∧k̂, where the meet in the formula is finite. Therefore,

∨
∧k̂ � Σ(Σh)

//
_

α
��

∨
∧ĥ(k)

_

β
��∨

A ∧A k �
h

// h(
∨
A ∧A k)≡B

∨
B ∧B h(k)

q.e.d.

Remark 4.6. The previous result does not extend directly to the general case of Σ2-algebras in
PEqu because, for a compact element k of LA, the value h(k) need not be in the domain of the

partial equivalence relation ≈B . Furthermore, if (A,α) is a Σ2-algebra in PEqu and G ∈ DΣ(ΣA) ,

then G =
∨
∧k̂ for some appropriate k ∈ K

(
Σ(ΣA)

)
, but we do not know if every k̂ is in DΣ(ΣA) .

So, we cannot conclude that α(
∨
∧k̂) ≡A

∨
A ∧A k.

Theorem 4.7. Let (A,α) be a Σ2-algebra in REqu . Then the canonical surjection

qA:LA → (|LA|/ ≡A, A )

preserves directed joins.

Proof. Let (ad)d∈D be a directed family in LA = (|LA|,∧,∨). Then

qA

(∨
ad

)
=
[∨

ad

]
=

[
α

(∨̂
ad

)]
=
[
α
(∨

âd

)]
=

[∨
A ad

]
= A qA(ad),

where the third equality follows from the fact that ηA preserves directed joins. q.e.d.

We conclude this section proving uniqueness of a structure of Σ2-algebra on particular partial
equilogical spaces A.
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Theorem 4.8. Let A be an object of REqu , and let (A,α1) and (A,α2) be Σ2-algebras. Then
α1 = α2.

Proof. Suppose A = (LA,≡A) is an object of REqu and α1, α2: Σ(ΣA) → A are structure maps on
A. Since they are equivariant maps, in order to prove that they coincide, it is sufficient to show

that for every G ∈ |Σ(ΣLA )|, α1(G) ≡A α2(G). Since Σ(ΣLA ) is an algebraic lattice, each G is an

arbitrary join of finite meets of functions of the form k̂, where k is a compact element of LA. The

fact that α1 and α2 are frame homomorphisms from Σ(ΣA) to A in REqu implies that

α1(G) = α1

(∨
∧k̂
)
≡A

∨
A ∧A α1

(
k̂
)
≡A

∨
A ∧A k ≡A α2

(∨
∧k̂
)

= α2(G). q.e.d.

By 3.2, the previous result applies directly to the categories AlgLatt Σ2

and ContLatt Σ2

.

Corollary 4.9. Let A be an object of AlgLatt , and let (A,α1) and (A,α2) be Σ2-algebras. Then
α1 = α2.

Corollary 4.10. Let A be an object of ContLatt , and let (A,α1) and (A,α2) be Σ2-algebras.
Then α1 = α2.

5 A characterization for ContLatt Σ2

and AlgLatt Σ2

In this section, we show a characterization for the categories of Σ2-algebras in ContLatt and in
AlgLatt . In the following, we denote with ContFrm the category of continuous frames and frame

homomorphisms, and with AlgFrm the category of algebraic frames and frame homomorphisms.

Theorem 5.1. The categories ContLatt Σ2

and ContFrm are equivalent.

Proof. One of the functors involved in the equivalence is the restriction to ContLatt Σ2

of the
global section functor

PEquΣ2 Γ // Frm

For every (C,α) in ContLatt Σ2

, the continuous lattice Γ(C,α) is a frame and the same argument to
that for algebraic lattices proves that the frame structure on C given by the Σ2-structure coincides
with that given by the order on the continuous lattice structure of Γ(C,α). In other words, Γ(C,α)

is a continuous frame, and Γ maps ContLatt Σ2

into ContFrm .
As for the other functor, we shall employ the construction of the space of points of a frame from
[GHK+80, Joh82]. For F a frame, consider the sober topological space pt(F ): its points are the
frame homomorphisms p:F → Σ; its topology consists of the sets O(a) for a ∈ |F | where a frame
homomorphism p:F → Σ is in O(a) if p(a) = >. It is easy to check that these are closed under
finite intersections and arbitrary unions and that

F
O // pt(F )

a
� // O(a)
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is a frame homomorphism. Also the assignment F 7→ pt(F ) easily extends functorially, mapping a
frame homomorphism f :F → G to precomposition with f

pt(G)
pt(f)

// pt(F )

p
� // p ◦ f.

It is also well-known, see loc.cit., that, when F is a continuous frame, the space pt(F ) is locally
compact and O is an isomorphism. So pt(F ) is an exponentiable topological space and Σpt(F ) is in
ContLatt and a Σ2-algebra. So consider the functor

ContFrm Σpt
// ContLatt Σ2

F � //

f
��

(
Σ(pt(F )),Σηpt(F )

)
Σpt(f)

��
G � //

(
Σ(pt(G)),Σηpt(G)

)� //

Now suppose that F is a continuous frame. Then

Γ(Σpt(F )) ∼= F.

If (C,α) is in ContLatt Σ2

, then Σpt(Γ(C,α)) ∼= C as continuous lattices, hence as partial equilogical
spaces. By 4.10, they are isomorphic as Σ2-algebras. q.e.d.

Theorem 5.2. The categories AlgFrm and AlgLatt Σ2

are equivalent

Proof. Since an algebraic lattice is continuous and Σ is algebraic, the functors involved in the proof

of Theorem 5.1 can be restricted and corestricted to the categories AlgFrm and AlgLatt Σ2

AlgFrm

Σpt

++

AlgLatt Σ2

Γ

jj

q.e.d.

6 Σ2-algebras in Top
0

Our final aim is to investigate the category TopΣ2

0 of Σ2-algebras in Top
0
. We identified Top

0
with

the full subcategory SEqu of PEqu consisting of those partial equilogical spaces whose relation is
contained in the diagonal. As noted in section 3 using subreflexive partial equivalence relations,

although, for a T0-space X, ΣX need not be a topological space, Σ(ΣX) is always a topological space
and the double power of Σ gives rise to a monad on Top

0
.
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We do not see if the arguments that prove the uniqueness of the structure map in the cases of
the categories AlgLatt , ContLatt and REqu can be applied to SEqu . Indeed, if α is a structure

map on the object A of SEqu , we only know that α is a frame homomorphism on the elements of

DΣ(ΣA) . But, for G ∈ DΣ(ΣA) , it is G =
∨{

c ∈ K
(

Σ(ΣLA )
) ∣∣ c ≤ G}. Alas, the compact elements

below G need not belong to DΣ(ΣA) .

In order to outline some properties of Σ2-algebras in Top
0
, we move back to Equ and compute

in Equ the exponential Σ(Σ(|X|,τX,=)) for X = (|X|, τX) a T0-space. Thus,

Σ(|X|,τX ,=) = (ΣP(τX), τSc,≡ΣX )

where

• ΣP(τX) is the algebraic lattice of Scott-continuous functions from P (τX) to Σ;

• for Scott-continuous functions f, g: P (τX) → Σ, f ≡ΣX g if for every x ∈ |X|, one has that
f(Ux) = g(Ux).

We next compute

Σ(Σ(|X|,τX,=)) = (|Σ(ΣX)|, τsub,=)

where

• |Σ(ΣX)| is the set of Scott-continuous functions G: ΣP(τX) → Σ such that, for all f, g ∈ ΣP(τX)

with f ≡ΣX g, it is G(f) = G(g);

• τsub is the subspace topology with respect to the inclusion |Σ(ΣX)| ⊆ Σ(ΣP(τX)) into the
algebraic lattice.

Remark 6.1. |Σ(ΣX)| is a subframe of Σ(ΣP(τX)). Suppose that {Gi}i∈I ⊆ |Σ(ΣX)| and take
f, g ∈ ΣP(τX) such that f ≡ΣX g. Then, for all i ∈ I, Gi(f) = Gi(g). Since joins are computed

pointwise,
∨
i∈I Gi(f) =

∨
i∈I Gi(g); so

∨
i∈I Gi ∈ |Σ

(ΣX)|. Similarly for finite meets.

Lemma 6.2. The identity function id|Σ(ΣX )|: (|Σ(ΣX)|, τSc)→ (|Σ(ΣX)|, τsub) is continuous.

Proof. Let V ⊆ |Σ(ΣX)| be an open subset with respect to the subspace topology τsub. So there is a

Scott-open set U ⊆ Σ(ΣP(τX)) such that V = |Σ(ΣX)| ∩U . Let F ∈ V and G ∈ |Σ(ΣX)| be such that
F ≤ G. Since F ∈ U and U is upward closed, G ∈ U . Therefore, G ∈ V . So, V is upward closed in

|Σ(ΣX)|. Suppose now that {Gd}d∈D is a directed family of functions in |Σ(ΣX)| and suppose that∨
d∈D Gd ∈ V . Then

∨
d∈D Gd ∈ U . Since U is inaccessible by directed joins, there exists d ∈ D

such that Gd ∈ U and, consequently, Gd ∈ V . So, V is inaccessible by directed joins and it is a

Scott-open subset of |Σ(ΣX)|. q.e.d.

Theorem 6.3. The topological space Σ(ΣX) = (|Σ(ΣX)|, τsub) is compact and connected.



Equilogical spaces and algebras for a double-power monad 137

Proof. Let {Ui}i∈I ⊆ |Σ(ΣX)|, open with respect to τsub, and suppose that |Σ(ΣX)| =
⋃
i∈I Ui. Since

const⊥ ∈ |Σ(ΣX)|, there exists j ∈ I such that const⊥ ∈ Uj . But, for all i ∈ I, Ui is upward closed,

so |Σ(ΣX)| ⊆ Uj and (|Σ(ΣX)|, τsub) is compact.

Suppose now that there exists a disconnection for (|Σ(ΣX)|, τsub), namely there are U1, U2 ⊆ |Σ(ΣX)|
in τsub such that

|Σ(ΣX)| = U1 ∪ U2 U1 ∩ U2 = ∅ U1 6= ∅ 6= U2.

Say const⊥ belongs to U1; then |Σ(ΣX)| = U1. Then U1 ∩ U2 6= ∅ which is a contradiction. q.e.d.

Corollary 6.4. If (X,α) is a Σ2-algebra in Top
0
, then X is a compact, connected topological

space.

Proof. For a Σ2-algebra (X,α) in Top
0
, the following diagram commutes

XidX
'' � �

ηX
// (|Σ(ΣX)|, τsub)

α

yy

Therefore, by 6.3, X is the image through α of a compact, connected space, so it is a compact,
connected space. q.e.d.

Theorem 6.5. If (X,α) is a Σ2-algebra in Top
0
, then X is a sober space.

Proof. For the space of the proof, we denote with Σ2(ΣX ,Σ) the set of Σ2-homomorphisms from
ΣX to Σ. Recall from [BR14] that

(Σ2(ΣX ,Σ), τsub) �
� e // Σ(ΣX)

Σ(ΣηX )
//

ηΣ(ΣX ) //
Σ(Σ(Σ(ΣX )))

is an equalizer in Top
0
, where τsub is the subspace topology with respect to the inclusion e. There-

fore, we have
X

ηX ''
j
��

(Σ2(ΣX ,Σ), τsub)
� �

e
// Σ(ΣX)

Σ(ΣηX )
//

α
kk

ηΣ(ΣX ) //
Σ(Σ(Σ(ΣX )))

We shall show that the functions j and α ◦ e are inverse of each other, hence that X and
(Σ2(ΣX ,Σ), τsub) are homeomorphic. By the properties of structure map, (α◦e)◦j = α◦ηX = idX .
To prove the other identity, we shall compose it with e and show that ηX ◦ α ◦ e = e. Consider

f ∈ Σ2(ΣX ,Σ); so, for all g ∈ |Σ(Σ(ΣX ))|, it is g(f) = f(g◦ηX). We have to prove that ηX(α(f))(t) =

f(t) for all t ∈ |ΣX |. Suppose t ∈ |ΣX |, thus t ◦ α ∈ |Σ(Σ(ΣX ))|. Therefore

ηX(α(f))(t) = t(α(f)) = (t ◦ α)(f) = f((t ◦ α) ◦ ηX) = f(t ◦ idX) = f(t),

as required. By [BR14] (Σ2(Σ(|X|,τX ,=),Σ), τsub) is sober, so also X is a sober space. q.e.d.
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Proposition 6.6. There are Σ2-algebras (X,α) in Top
0

such that X is not an exponentiable
topological space.

Proof. We shall show that if X is a non-exponentiable topological space, then Σ(ΣX) is a Σ2-algebra

in Top
0

which is not exponentiable. Indeed, if Σ(ΣX) is exponentiable, then Σ(Σ(ΣX )) is a topological
space and, in addition, it is injective because Σ is injective with respect to subspace inclusions and,
if Y is an exponentiable T0-space, then the functor (−)Y preserves injectives. But ΣX is a retract

in Equ of Σ(Σ(ΣX )), as

ΣX

idΣX

��
� �

ηΣX
// Σ(Σ(ΣX )).

ΣηX

yy

Therefore, ΣX is an injective topological space and so X is exponentiable. q.e.d.

Remark 6.7. If X is sober, then X is exponentiable if and only if X is locally compact. So, the
previous proposition equivalently states that there are Σ2-algebras (X,α) in Top

0
such that X is

not locally compact.
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