On the generalized orthogonal stability of mixed type additive-cubic functional equations in modular spaces

Iz-iddine El-Fassi*¹, Samir Kabbaj²

E-mail: 1izidd-math@hotmail.fr, 2samkabbaj@yahoo.fr

Abstract

In this paper, we establish the Hyers-Ulam-Rassias stability of the mixed type additive-cubic functional equation

$$f(2x+y) + f(2x-y) - f(4x) = 2[f(x+y) + f(x-y)] - 8f(2x) + 10f(x) - 2f(-x),$$

with $x \perp y$, where \perp is the orthogonality in the sense of Rätz in modular spaces.

2010 Mathematics Subject Classification. **39B52**. 39B55, 39B82, 47H09 Keywords. Hyers-Ulam-Rassias stability, Orthogonality, Orthogonally additive-cubic equation, Modular space.

1 Introduction

The study of stability problems for functional equations is related to a question of Ulam [21] in 1940, concerning the stability of group homomorphisms and affirmatively answered for Banach spaces by Hyers [10]. In 1950, a generalized version of Hyers' theorem for approximate additive mapping was given by Aoki [2]. In 1978, Rassias [17] provided a generalization of Hyers Theorem which allows the Cauchy difference to be unbounded. This stability phenomenon is called the Hyers-Ulam-Rassias stability.

Stability problems for some functional equations have been extensively investigated by several authors, and in particular one of the most important functional equation in this topic is

$$f(x+y) + f(x-y) = 2f(x) + 2f(y), \tag{1.1}$$

which is studied by Adam [1], P. Găvruta [7], M. Eshaghi [6], and A. Najati [13].

Recently, Gh. Sadeghi [19] proved the Hyers-Ulam stability of the generalized Jensen functional equation f(rx + sy) = rg(x) + sh(x) in modular spaces, using the fixed point method, also Iz. EL-Fassi and S. Kabbaj in [5] investigated the Hyers-Ulam-Rassias stability of (1.1) in modular spaces. The theory of modulars on linear spaces and the corresponding theory of modular linear spaces were founded by H. Nakano [14]. In the present time the theory of modulars and modular spaces is extensively applied, in particular, in the study of various Orlicz spaces [15] and interpolation theory [12]. The importance for applications consists in the richness of the structure of modular spaces, that-besides being Banach spaces (or F-spaces in more general setting)- are equipped with modular equivalent of norm or metric notions. Numerous papers on the stability of some functional equations have been published by different authors, we refer, for example, to [3], [4], [11] and [20].

Tbilisi Mathematical Journal 9(1) (2016), pp. 231–243. Tbilisi Centre for Mathematical Sciences.

Received by the editors: 03 January 2016.
Accepted for publication: 10 April 2016.

^{1,2}Department of Mathematics, Faculty of Sciences, University of Ibn Tofail, Kenitra, Morocco.

^{*}Corresponding author.

There are several orthogonality notions on a real normed spaces as Birkhoff-James, Carlsson, Singer, Roberts, Pythagorean, isosceles and Diminnie. Let us recall the orthogonality space in the sense of Rätz; cf. [18].

Suppose E is a real vector space with dim $E \geq 2$ and \perp is a binary relation on E with the following properties:

- (O1) totality of \bot for zero: $x\bot 0$, $0\bot x$ for all $x\in E$;
- (O2) independence: if $x, y \in E \{0\}$, $x \perp y$, then, x, y are linearly independent;
- (O3) homogeneity: if $x, y \in E$, $x \perp y$, then $\alpha x \perp \beta y$ for all $\alpha, \beta \in \mathbb{R}$;
- (O4) the Thalesian property: if P is a 2-dimensional subspace of E, $x \in P$ and $\lambda \in \mathbb{R}^+$, then there exists $y_0 \in P$ such that $x \perp y_0$ and $x + y_0 \perp \lambda x y_0$.

The pair (E, \perp) is called an orthogonality space. By an orthogonality normed space, we mean an orthogonality space having a normed structure. Some interesting examples of orthogonality spaces are:

- (i) The trivial orthogonality on a vector space E defined by (O1), and for nonzero elements $x, y \in E$, $x \perp y$ if and only if x, y are linearly independent.
- (ii) The ordinary orthogonality on an inner product space $(E, \langle . \rangle)$ given by $x \perp y$ if and only if $\langle x, y \rangle = 0$.
- (iii) The Birkhoff-James orthogonality on a normed space (E, ||.||) defined by $x \perp y$ if and only if $||x|| \leq ||x + \lambda y||$ for all $\lambda \in \mathbb{R}$.

The relation \bot is called symmetric if $x\bot y$ implies that $y\bot x$ for all $x,y\in E$. Clearly examples (i) and (ii) are symmetric but example (iii) is not. However, it is remarkable to note, that a real normed space of dimension greater than or equal to 3 is an inner product space if and only if the Birkhoff-James orthogonality is symmetric.

The Orthogonal Cauchy functional equation

$$f(x+y) = f(x) + f(y)$$
 $(x, y \in E, x \perp y)$ (1.2)

in which \bot is an abstract orthogonally was first investigated by S. Gudder and D. Strawther [9]. R. Ger and J. Sikorska discussed the orthogonal stability of the equation (1.2) in [8]. S. Ostadbashi and J. Kazemzadeh [16] investigated the problem of the Orthogonal stability of the mixed additive-cubic functional equation

$$f(2x+y) + f(2x-y) - f(4x) = 2[f(x+y) + f(x-y)] - 8f(2x) + 10f(x) - 2f(-x)(x \perp y), (1.3)$$

in Banach space.

In the present paper, we establish the Hyers-Ulam-Rassias stability of orthogonally mixed additive-cubic functional equation (1.3) in modular spaces. Therefore, we generalized the main results of [16].

2 Preliminary

In this section, we give the definitions that are important in the following.

Definition 2.1. Let X be an arbitrary vector space.

- (a) A functional $\rho: X \to [0, \infty]$ is called a modular if for arbitrary $x, y \in X$,
 - (i) $\rho(x) = 0$ if and only if x = 0,
 - (ii) $\rho(\alpha x) = \rho(x)$ for every scalar α with $|\alpha| = 1$,
 - (iii) $\rho(\alpha x + \beta y) \le \rho(x) + \rho(y)$ if and only if $\alpha + \beta = 1$ and $\alpha, \beta \ge 0$,
- (b) if (iii) is replaced by
- (iii)' $\rho(\alpha x + \beta y) \le \alpha \rho(x) + \beta \rho(y)$ if and only if $\alpha + \beta = 1$ and $\alpha, \beta \ge 0$, then we say that ρ is a convex modular.

A modular ρ defines a corresponding modular space, i.e., the vector space X_{ρ} given by

$$X_{\rho} = \{x \in X : \rho(\lambda x) \to 0 \text{ as } \lambda \to 0\}.$$

Let ρ be a convex modular, the modular space X_{ρ} can be equipped with a norm called the Luxemburg norm, defined by

$$||x||_{\rho} = \inf \left\{ \lambda > 0 : \rho \left(\frac{x}{\lambda} \right) \le 1 \right\}.$$

A function modular is said to satisfy the Δ_2 -condition if there exists $\kappa > 0$ such that $\rho(2x) \le \kappa \rho(x)$ for all $x \in X_{\rho}$.

Definition 2.2. Let $\{x_n\}$ and x be in X_{ρ} . Then

- (i) we say $\{x_n\}$ is ρ -convergent to x and write $x_n \stackrel{\rho}{\to} x$ if and only if $\rho(x_n x) \to 0$ as $n \to \infty$,
- (ii) the sequence $\{x_n\}$, with $x_n \in X_\rho$, is called ρ -Cauchy if $\rho(x_n x_m) \to 0$ as $m, n \to \infty$,
- (iii) a subset S of X_{ρ} is called ρ -complete if and only if any ρ -Cauchy sequence is ρ -convergent to an element of S.

The modular ρ has the Fatou property if and only if $\rho(x) \leq \lim_{n \to \infty} \inf \rho(x_n)$ whenever the sequence $\{x_n\}$ is ρ -convergent to x.

Remark 2.3. If $x \in X_{\rho}$ then $\rho(ax)$ is a nondecreasing function of $a \ge 0$. Suppose that 0 < a < b, then property (iii) of definition 2.1 with y = 0 shows that

$$\rho(ax) = \rho\left(\frac{a}{b}bx\right) \le \rho(bx).$$

Moreover, if ρ is convex modular on X and $|\alpha| \leq 1$ then, $\rho(\alpha x) \leq |\alpha| \rho(x)$ and also $\rho(x) \leq \frac{1}{2}\rho(2x) \leq \frac{\kappa}{2}\rho(x)$ if ρ satisfy the Δ_2 - condition for all $x \in X$.

Throughout this paper, $\mathbb N$ and $\mathbb R$ denote the sets of all positive integers and all real numbers, respectively.

3 Orthogonal Stability of Eq (1.3) in Modular Spaces

In this section we assume that the convex modular ρ has the Fatou property such that satisfies the Δ_2 -condition with $0 < \kappa \le 2$. In addition, we assume that (E, \bot) denotes an orthogonality space and we define

$$Df(x,y) = f(2x+y) + f(2x-y) - f(4x) - 2[f(x+y) + f(x-y)] + 8f(2x) - 10f(x) + 2f(-x),$$

for all $x, y \in E$ with $x \perp y$, on the other hand, we give the Hyers-Ulam-Rassias stability of the equation (1.3) in modular spaces.

Proposition 3.1. Let $(E, \|.\|)$ with dim $E \geq 2$ be a real normed linear space and X_{ρ} is a ρ -complete modular space. Let $f: E \to X_{\rho}$ be an odd mapping satisfying

$$\rho(Df(x,y)) \le \varepsilon(\|x\|^p + \|y\|^p),\tag{3.1}$$

for all $x, y \in E$ with $x \perp y$, $\varepsilon \geq 0$ and $0 . Then there exists a unique orthogonally cubic-additive mapping <math>A_c : E \to X_\rho$ such that

$$\rho(f(2x) - 8f(x) - A_c(x)) \le \frac{\varepsilon}{2 - \kappa^{2p-1}} \|x\|^p$$
 (3.2)

for all $x \in E$. Moreover

$$A_c(x) = \lim_{n \to \infty} \frac{f(2^{n+1}) - 8f(2^n x)}{2^n}$$

Proof. Letting (x, y) = (0, 0) in (3.1), we get f(0) = 0. Put y = 0 in (3.1). We can do this because of (O1). Then

$$\rho(10f(2x) - f(4x) - 16f(x)) < \varepsilon ||x||^p$$

for all $x \in E$. Hence

$$\rho(f(4x) - 8f(2x) - 2(f(2x) - 8f(x))) \le \varepsilon \|x\|^p$$
(3.3)

for all $x \in E$. By letting F(x) = f(2x) - 8f(x) in (3.3), we obtain

$$\rho(F(2x) - 2F(x)) \le \varepsilon \|x\|^p \tag{3.4}$$

for all $x \in E$. We have

$$\rho\left(\frac{F(2x)}{2} - F(x)\right) = \rho\left(\frac{1}{2}(F(2x) - 2F(x))\right) \le \frac{\varepsilon}{2} \|x\|^p \tag{3.5}$$

for all $x \in E$. Replacing x by 2x in (3.5), we arrive to

$$\rho\left(\frac{F(2^2x)}{2} - F(2x)\right) \le \varepsilon 2^{p-1} \|x\|^p$$
 (3.6)

for all $x \in E$. By (3.5) and (3.6), we have

$$\rho\left(\frac{F(2^{2}x)}{2^{2}} - F(x)\right) = \rho\left(\frac{F(2^{2}x)}{2^{2}} - \frac{F(2x)}{2} + \frac{F(2x)}{2} - F(x)\right)
\leq \frac{\kappa}{2}\rho\left(\frac{F(2x)}{2} - F(x)\right) + \frac{\kappa}{2^{2}}\rho\left(\frac{F(2^{2}x)}{2} - F(2x)\right)
\leq \frac{\varepsilon}{2}(1 + \kappa 2^{p-2}) \|x\|^{p}$$
(3.7)

for all $x \in E$. By mathematical induction, we can easily see that

$$\rho\left(\frac{F(2^n x)}{2^n} - F(x)\right) \le \frac{\varepsilon}{2} \sum_{i=0}^{n-1} \kappa^i 2^{i(p-2)} \|x\|^p$$
(3.8)

for all $x \in E$. Indeed, for n = 1 the relation (3.8) is true. Assume that the relation (3.8) is true for n, and we show this relation rest true for n + 1, thus we have

$$\rho\left(\frac{F(2^{n+1}x)}{2^{n+1}} - F(x)\right) = \rho\left(\frac{F(2^{n+1}x)}{2^{n+1}} - \frac{F(2x)}{2} + \frac{F(2x)}{2} - F(x)\right)$$

$$\leq \frac{\kappa}{2}\rho\left(\frac{F(2x)}{2} - F(x)\right) + \frac{\kappa}{2^2}\rho\left(\frac{F(2^{n+1}x)}{2^n} - F(2x)\right)$$

$$\leq \frac{\kappa}{2}\frac{\varepsilon}{2} \|x\|^p + \frac{\varepsilon}{2}\sum_{i=0}^{n-1}\kappa^{i+1}2^{(i+1)(p-2)} \|x\|^p$$

$$\leq \frac{\varepsilon}{2}\sum_{i=0}^n \kappa^i 2^{i(p-2)} \|x\|^p,$$

hence the relation (3.8) is true for all $x \in E$ and $n \in \mathbb{N}^*$ ($\in \mathbb{N}^*$: the set of positive integers). Then (3.8) become

$$\rho\left(\frac{F(2^{n}x)}{2^{n}} - F(x)\right) \le \frac{\varepsilon}{2} \frac{1 - (\kappa 2^{p-2})^{n}}{1 - \kappa 2^{p-2}} \|x\|^{p}$$
(3.9)

for all $x \in E$. Replacing x by $2^m x$ (with $m \in \mathbb{N}^*$) in (3.9), we obtain

$$\rho\left(\frac{F(2^{n+m}x)}{2^n} - F(2^mx)\right) \le \frac{\varepsilon}{2} \frac{1 - (\kappa 2^{p-2})^n}{1 - \kappa 2^{p-2}} 2^{mp} \|x\|^p$$
(3.10)

for all $x \in E$. Whence

$$\rho\left(\frac{F(2^{n+m}x)}{2^{n+m}} - \frac{F(2^mx)}{2^m}\right) \le \frac{1}{2^m}\rho\left(\frac{F(2^{n+m}x)}{2^n} - F(2^mx)\right)$$

$$\le \frac{\varepsilon}{2} \frac{1 - (\kappa 2^{p-2})^n}{1 - \kappa 2^{p-2}} 2^{m(p-1)} \|x\|^p$$
(3.11)

for all $x \in E$. If $m, n \to \infty$ we get, the sequence $\left\{\frac{F(2^n x)}{2^n}\right\}$ is ρ -Cauchy sequence in the ρ -complete modular space X_{ρ} . Hence $\left\{\frac{F(2^n x)}{2^n}\right\}$ is ρ -convergent in X_{ρ} , and we well define the mapping $A_c = \lim_{n \to \infty} \frac{F(2^n x)}{2^n}$ from E into X_{ρ} satisfying

$$\rho(A_c(x) - F(x)) \le \frac{\varepsilon}{2 - \kappa 2^{p-1}} \|x\|^p, \tag{3.12}$$

for all $x \in E$, since ρ has Fatou property. To prove A_c satisfies Df(x,y) = 0, replace (x,y) by $(2^{n+1}x, 2^{n+1}y)$ in (3.1), it follows that

$$\rho\left(\frac{Df(2^{n+1}x, 2^{n+1}y)}{2^n}\right) \le \frac{1}{2^n}\rho(Df(2^{n+1}x, 2^{n+1}y))$$

$$\le \varepsilon 2^{n(p-1)+p}(\|x\|^p + \|y\|^p), \tag{3.13}$$

for all $x, y \in E$. Again replace (x, y) by $(2^n x, 2^n y)$ in (3.1), it follows that

$$\rho\left(\frac{Df(2^{n}x, 2^{n}y)}{2^{n}}\right) \leq \frac{1}{2^{n}}\rho(Df(2^{n+1}x, 2^{n+1}y))$$

$$\leq \varepsilon 2^{n(p-1)}(\|x\|^{p} + \|y\|^{p}), \tag{3.14}$$

for all $x, y \in E$. By (3.13) and (3.14), we get

$$\rho\left(\frac{Df(2^{n+1}x,2^{n+1}y) - 8Df(2^{n}x,2^{n}y)}{2^{n}}\right) \leq \frac{\kappa}{2}\rho\left(\frac{Df(2^{n+1}x,2^{n+1}y)}{2^{n}}\right) + \frac{\kappa^{4}}{2}\rho\left(\frac{Df(2^{n}x,2^{n}y)}{2^{n}}\right)$$

$$\leq \frac{\kappa}{2}\varepsilon 2^{n(p-1)+p}(\|x\|^{p} + \|y\|^{p}) + \frac{\kappa^{4}}{2}\varepsilon 2^{n(p-1)}(\|x\|^{p} + \|y\|^{p})$$

If $n \to \infty$ then, we conclude that $DA_c(x,y) = 0$, for all $x,y \in E$ with $x \perp y$. Therefore $A_c : E \to X_\rho$ is an orthogonally cubic-additive mapping satisfying (1.3). To prove the uniqueness, assume $A'_c : E \to X_\rho$ to be another orthogonally cubic-additive mapping satisfying (3.12). Then, for each $x,y \in E$ and for all $m \in \mathbb{N}$ on has

$$\rho(A_c(x) - A'_c(x)) = \rho\left(\frac{A_c(2^m x)}{2^m} - \frac{A'_c(2^m x)}{2^m}\right)
\leq \frac{\kappa}{2^{m+1}} [\rho(A_c(2^m x) - F(2^m x)) + \rho(A'_c(2^m x) - F(2^m x))]
\leq \frac{\kappa \varepsilon 2^{m(p-1)}}{2 - \kappa 2^{p-1}} ||x||^p$$

If $m \to \infty$, we obtain $A_c = A'_c$.

Proposition 3.2. Let $(E, \|.\|)$ with $\dim E \geq 2$ be a real normed linear space and X_{ρ} is a ρ -complete modular space. Let $f: E \to X_{\rho}$ be an odd mapping satisfying

$$\rho(Df(x,y)) \le \varepsilon(\|x\|^p + \|y\|^p),$$
(3.15)

Q.E.D.

for all $x, y \in E$ with $x \perp y$, $\varepsilon \geq 0$ and $0 . Then there exists a unique orthogonally cubic-additive mapping <math>C_a : E \to X_\rho$ such that

$$\rho(f(2x) - 2f(x) - C_a(x)) \le \frac{\varepsilon}{8 - \kappa^{2p-1}} ||x||^p$$
 (3.16)

for all $x \in E$. Moreover

$$C_a(x) = \lim_{n \to \infty} \frac{f(2^{n+1}) - 2f(2^n x)}{8^n}$$

Proof. By (3.3), we have

$$\rho(f(4x) - 2f(2x) - 8(f(2x) - 2f(x))) \le \varepsilon ||x||^p$$
(3.17)

for all $x \in E$. By letting G(x) = f(2x) - 2f(x) in (3.17), we get

$$\rho\left(\frac{G(2x)}{8} - G(x)\right) \le \frac{\varepsilon}{8} \|x\|^p \tag{3.18}$$

for all $x \in E$. Now replacing x by 2x in (3.18), we find

$$\rho\left(\frac{G(2^2x)}{8} - G(2x)\right) \le \frac{\varepsilon 2^p}{8} \|x\|^p \tag{3.19}$$

for all $x \in E$. Then

$$\rho\left(\frac{G(2^2x)}{8^2} - \frac{G(2x)}{8}\right) \le \frac{\varepsilon 2^{p-3}}{8} \left\|x\right\|^p \tag{3.20}$$

for all $x \in E$. From (3.18) and (3.20), we have

$$\begin{split} \rho\left(\frac{G(2^2x)}{8^2} - G(x)\right) &\leq \frac{\kappa}{2}\rho\left(\frac{G(2^2x)}{8^2} - \frac{G(2x)}{8}\right) + \frac{\kappa}{2}\rho\left(\frac{G(2x)}{8} - G(2x)\right) \\ &\leq \frac{\varepsilon}{8}(1 + \frac{\kappa}{2}2^{p-3})\left\|x\right\|^p \end{split}$$

for all $x \in E$. In general, using induction on a positive integer n, we obtain

$$\rho\left(\frac{G(2^{n}x)}{8^{n}} - G(x)\right) \leq \frac{\varepsilon}{8} \sum_{i=0}^{n-1} \left(\frac{\kappa}{2}\right)^{i} 2^{i(p-3)} \|x\|^{p}$$

$$= \frac{\varepsilon}{8} \frac{1 - (\kappa 2^{p-4})^{n}}{1 - \kappa 2^{p-4}} \|x\|^{p}$$
(3.21)

for all $x \in E$. Replacing x by $2^m x$ (with $m \in \mathbb{N}^*$) in (3.21), we get

$$\rho\left(\frac{G(2^{n+m}x)}{8^n} - G(2^mx)\right) \le \frac{\varepsilon}{8} \frac{1 - (\kappa 2^{p-4})^n}{1 - \kappa 2^{p-4}} 2^{mp} \|x\|^p \tag{3.22}$$

for all $x \in E$. Whence

$$\rho\left(\frac{G(2^{n+m}x)}{8^{n+m}} - \frac{F(2^mx)}{8^m}\right) \le \frac{\varepsilon}{8} \frac{1 - (\kappa 2^{p-4})^n}{1 - \kappa 2^{p-4}} 2^{m(p-3)} \|x\|^p \tag{3.23}$$

for all $x \in E$. If $m, n \to \infty$ we get, the sequence $\left\{\frac{G(2^n x)}{8^n}\right\}$ is ρ -Cauchy sequence in the ρ -complete modular space X_ρ . Hence $\left\{\frac{G(2^n x)}{8^n}\right\}$ is ρ -convergent in X_ρ , and we well define the mapping $C_a = \lim_{n \to \infty} \frac{G(2^n x)}{8^n}$ from E into X_ρ satisfying

$$\rho(C_a(x) - G(x)) \le \frac{\varepsilon}{8 - \kappa 2^{p-1}} \|x\|^p, \tag{3.24}$$

for all $x \in E$, since ρ has Fatou property. The rest of the proof is similar to the proof of proposition 3.1.

Theorem 3.3. Let $(E, \|.\|)$ with dim $E \ge 2$ be a real normed linear space and X_{ρ} is a ρ -complete modular space. Let $f: E \to X_{\rho}$ be an odd mapping satisfying

$$\rho(Df(x,y)) \le \varepsilon(\|x\|^p + \|y\|^p),\tag{3.25}$$

for all $x, y \in E$ with $x \perp y$, $\varepsilon \geq 0$ and $0 . Then there exists a unique orthogonally cubic-additive mapping <math>AC : E \to X_\rho$ such that

$$\rho(f(x) - AC(x)) \le \frac{\kappa \varepsilon}{12} \left\{ \frac{1}{2 - \kappa 2^{p-1}} + \frac{1}{8 - \kappa 2^{p-1}} \right\} \|x\|^p$$
(3.26)

for all $x \in E$. Moreover

$$AC(x) = \frac{-1}{6}A_c(x) + \frac{1}{6}C_a(x)$$

for all $x \in E$.

Proof. By proposition 3.1 and proposition 3.2, we have

$$\rho(f(x) - AC(x)) = \rho \left(f(x) + \frac{1}{6} A_c(x) - \frac{1}{6} C_a(x) \right)$$

$$= \rho \left(\frac{-1}{6} [f(2x) - 8f(x) - A_c(x)] + \frac{1}{6} [f(2x) - 2f(x) - C_a(x)] \right)$$

$$\leq \frac{\kappa}{12} \left\{ \rho([f(2x) - 8f(x) - A_c(x)]) + \rho([f(2x) - 2f(x) - C_a(x)]) \right\}$$

$$\leq \frac{\kappa \varepsilon}{12} \left\{ \frac{1}{2 - \kappa 2^{p-1}} + \frac{1}{8 - \kappa 2^{p-1}} \right\} ||x||^p$$

for all $x \in E$.

Remark 3.4. [16] Let $f: E \to X_{\rho}$ be an even mapping satisfying (1.3) (with $x \perp y$), then f = 0 on E.

Proposition 3.5. Let $(E, \|.\|)$ with dim $E \geq 2$ be a real normed linear space and X_{ρ} is a ρ -complete modular space. Let $f: E \to X_{\rho}$ be an even mapping satisfying

$$\rho(Df(x,y)) \le \varepsilon(\|x\|^p + \|y\|^p),$$
 (3.27)

for all $x, y \in E$ with $x \perp y$, $\varepsilon \geq 0$ and 0 . Then

$$\rho(f(x)) \le \frac{\varepsilon}{2} \frac{1 + \kappa 2^{p-2}}{1 - \kappa 2^{p-2}} \|x\|^p \tag{3.28}$$

for all $x \in E$.

Proof. Letting (x, y) = (0, 0) in (3.27), we get f(0) = 0. Putting (x, y) = (0, x) in (3.27), we obtain

$$\rho(f(x)) = \rho\left(\frac{1}{2}2f(x)\right) \le \frac{1}{2}\rho(2f(x)) \le \frac{\varepsilon}{2} \|x\|^p$$
(3.29)

for all $x \in E$. Replacing x by 2x in (3.29), we find

$$\rho(f(2x)) \le \frac{\varepsilon 2^p}{2} \|x\|^p \tag{3.30}$$

for all $x \in E$. Thus

$$\rho\left(\frac{1}{2}f(2x) - f(x)\right) \le \frac{\kappa}{2^2}\rho(f(2x)) + \frac{\kappa}{2}\rho(f(x))$$

$$\le \frac{\varepsilon}{2}(1 + \kappa 2^{p-2}) \|x\|^p$$
(3.31)

for all $x \in E$. Now replacing x by 2x in (3.31), we get

$$\rho\left(\frac{f(2^{2}x)}{2^{2}} - \frac{f(2x)}{2}\right) \leq \frac{1}{2}\rho\left(\frac{1}{2}f(2^{2}x) - f(2x)\right)$$

$$\leq \frac{\varepsilon}{2}(1 + \kappa 2^{p-2})2^{p-1} \|x\|^{p}$$
(3.32)

for all $x \in E$. It follows that

$$\rho\left(\frac{f(2^{2}x)}{2^{2}} - f(x)\right) = \rho\left(\frac{f(2^{2}x)}{2^{2}} - \frac{f(2x)}{2} + \frac{f(2x)}{2} - f(x)\right)
\leq \frac{\kappa}{2}\rho\left(\frac{f(2^{2}x)}{2^{2}} - \frac{f(2x)}{2}\right) + \frac{\kappa}{2}\rho\left(\frac{f(2x)}{2} - f(x)\right)
\leq \frac{\varepsilon(1 + \kappa 2^{p-2})}{2}\left(1 + \frac{\kappa}{2}2^{p-1}\right) ||x||^{p}$$
(3.33)

for all $x \in E$. In general, using induction on a positive integer n, we obtain

$$\rho\left(\frac{f(2^{n}x)}{2^{n}} - f(x)\right) \leq \frac{\varepsilon(1 + \kappa 2^{p-2})}{2} \sum_{i=0}^{n-1} \left(\frac{\kappa}{2}\right)^{i} 2^{i(p-1)} \|x\|^{p}$$

$$= \frac{\varepsilon(1 + \kappa 2^{p-2})}{2} \frac{1 - (\kappa 2^{p-2})^{n}}{1 - \kappa 2^{p-2}} \|x\|^{p}$$
(3.34)

for all $x \in E$. Since $\left\{\frac{f(2^n x)}{2^n}\right\}$ is ρ -Cauchy sequence in the ρ -complete modular space X_ρ (the proof is similar to that of proposition 3.1). Hence $\left\{\frac{f(2^n x)}{2^n}\right\}$ is ρ -convergent in X_ρ , and we well define the mapping $A_e = \lim_{n \to \infty} \frac{f(2^n x)}{2^n}$ from E into X_ρ satisfying

$$\rho(f(x) - A_e(x)) \le \frac{\varepsilon}{8 - \kappa 2^{p-1}} \|x\|^p, \tag{3.35}$$

for all $x \in E$, since ρ has Fatou property. The proof of $DA_e(x,y) = 0$ (with $x \perp y$) is similar to the proof of proposition 3.1. A_e is even orthogonally cubic-additive mapping, by remark 3.4, $A_e(x) = 0$ for all $x \in E$, and this completes the proof.

Theorem 3.6. Let $(E, \|.\|)$ with dim $E \ge 2$ be a real normed linear space and X_{ρ} is a ρ -complete modular space. Let $f: E \to X_{\rho}$ be a mapping satisfying

$$\rho(Df(x,y)) \le \varepsilon(\|x\|^p + \|y\|^p),\tag{3.36}$$

for all $x, y \in E$ with $x \perp y$, $\varepsilon \geq 0$ and $0 . Then there exists a unique orthogonally cubic-additive mapping <math>AC : E \to X_\rho$ such that

$$\rho(f(x) - AC(x)) \le \frac{\kappa \varepsilon}{4} \left\{ \frac{1 + \kappa 2^{p-2}}{1 - \kappa 2^{p-2}} + \frac{\kappa}{6} \left[\frac{1}{2 - \kappa 2^{p-1}} + \frac{1}{8 - \kappa 2^{p-1}} \right] \right\}$$
(3.37)

for all $x \in E$.

Proof. Let f^e and f^0 are even and odd part of f such that $f^e(x) = \frac{f(x) + f(-x)}{2}$, $f^o(x) = \frac{f(x) - f(-x)}{2}$. Then we have

$$\rho(Df^{e}(x,y)) = \rho\left(\frac{Df(x,y) + Df(-x,-y)}{2}\right) \le \frac{1}{2}\rho(Df(x,y)) + \frac{1}{2}\rho(Df(-x,-y))$$

$$\le \varepsilon(\|x\|^{p} + \|y\|^{p}).$$

By proposition 3.5, we have

$$\rho(f^{e}(x)) \le \frac{\varepsilon}{2} \frac{1 + \kappa 2^{p-2}}{1 - \kappa 2^{p-2}} \|x\|^{p}$$
(3.38)

for all $x \in E$. Similarly we obtain

$$\rho(Df^{o}(x,y)) = \rho\left(\frac{Df(x,y) - Df(-x,-y)}{2}\right) \le \frac{1}{2}\rho(Df(x,y)) + \frac{1}{2}\rho(Df(-x,-y))$$

$$\le \varepsilon(\|x\|^{p} + \|y\|^{p}).$$

By theorem 3.3, there exists a unique orthogonally cubic-additive mapping $AC: E \to X_\rho$ such that

$$\rho(f^{o}(x) - AC(x)) \le \frac{\kappa \varepsilon}{12} \left\{ \frac{1}{2 - \kappa 2^{p-1}} + \frac{1}{8 - \kappa 2^{p-1}} \right\} \|x\|^{p}$$
(3.39)

for all $x \in E$. It follows from (3.38) and (3.39) that

$$\rho(f(x) - AC(x)) = \rho(f^{e}(x) + f^{o}(x) - AC(x)) \le \frac{\kappa}{2} \rho(f^{e}(x)) + \frac{\kappa}{2} \rho(f^{o}(x) - AC(x))$$

$$\le \frac{\kappa \varepsilon}{4} \frac{1 + \kappa 2^{p-2}}{1 - \kappa 2^{p-2}} \|x\|^{p} + \frac{\kappa^{2} \varepsilon}{24} \left\{ \frac{1}{2 - \kappa 2^{p-1}} + \frac{1}{8 - \kappa 2^{p-1}} \right\} \|x\|^{p}$$

$$= \frac{\kappa \varepsilon}{4} \left\{ \frac{1 + \kappa 2^{p-2}}{1 - \kappa 2^{p-2}} + \frac{\kappa}{6} \left[\frac{1}{2 - \kappa 2^{p-1}} + \frac{1}{8 - \kappa 2^{p-1}} \right] \right\}$$

for all $x \in E$.

Corollary 3.6.1. [16] Let $(E, \|.\|)$ with dim $E \ge 2$ be a real normed linear space and X is a Banach space. Let $f: E \to X$ be mappings satisfying

$$||Df(x,y)|| \le \varepsilon(||x||^p + ||y||^p),$$
 (3.40)

for all $x, y \in E$ with $x \perp y$, $\varepsilon \geq 0$ and $0 . Then there exists a unique orthogonally cubic-additive mapping <math>AC : E \to X$ such that

$$||f(x) - AC(x)|| \le \frac{\varepsilon}{2} \left\{ \frac{1 + 2^{p-1}}{1 - 2^{p-1}} + \frac{1}{3} \left[\frac{1}{2 - 2^p} + \frac{1}{8 - 2^p} \right] \right\}$$
(3.41)

for all $x \in E$.

Proof. It is well known that every normed space is a modular space with the modular $\rho(x) = ||x||$ and $\kappa = 2$.

A convex function φ defined on the interval $[0,\infty)$, non-decreasing and continuous for $\alpha \geq 0$ and such that $\varphi(0) = 0$, $\varphi(\alpha) > 0$ for $\alpha > 0$, $\varphi(\alpha) \to \infty$ as $\alpha \to \infty$, is called an Orlicz function. The Orlicz function φ satisfies the Δ_2 -condition if there exist k > 0 such that $\varphi(2\alpha) \leq k\varphi(\alpha)$ for all $\alpha > 0$. Let (Ω, Σ, μ) be a measure space. Let us consider the space L^0_μ consisting of all measurable real-valued (or complex-valued) function on Ω . Define for every $f \in L^0_\mu$ the Orlicz modular $\rho_{\varphi}(f)$ by the formula

$$\rho_{\varphi}(f) = \int_{\Omega} \varphi(|f|) d\mu$$

The associated modular function space with respect to this modular is called an Orlicz space, and will be denoted by $L^{\varphi}_{\mu}(\Omega)$ or briefly L^{φ} . In other words

$$L^{\varphi} = \left\{ f \in L^0_{\mu} : \rho_{\varphi}(\lambda f) \to 0 \text{ as } \lambda \to 0 \right\}$$

or equivalently as

$$L^\varphi = \left\{ f \in L^0_\mu : \rho_\varphi(\lambda f) < \infty \, \text{for some} \, \lambda > 0 \right\}.$$

It is known that the Orlicz space L^{φ} is ρ_{φ} -complete. Moreover, $(L^{\varphi}, ||.||_{\rho_{\varphi}})$ is a Banach space, where the Luxemburg norm $||.||_{\rho_{\varphi}}$ is defined as follows

$$\|f\|_{\rho_{\varphi}} = \inf \left\{ \lambda > 0 : \int_{\Omega} \varphi \left(\frac{|f|}{\lambda} \right) d\mu \leq 1 \right\}.$$

Moreover, if ℓ is the space of sequences $x = (x_i)_{i=1}^{\infty}$ with real or complex terms x_i , $\varphi = (\varphi_i)_{i=1}^{\infty}$, φ_i are Orlicz functions and $\pi_{\varphi}(x) = \sum_{i=1}^{\infty} \varphi_i(|x_i|)$, we shall write ℓ^{φ} in place of L^{φ} . The space ℓ^{φ} is called the generalized Orlicz sequence space. The motivation for the study of modular spaces (and Orlicz spaces) and many examples are detailed in [14, 15]. Now, we give a following examples.

Example 3.7. Let $(E, \|.\|)$ with dim $E \ge 2$ be a real normed linear space, φ is an Orlicz function and satisfy the Δ_2 -condition with $0 < \kappa \le 2$. Let $f : E \to L^{\varphi}$ be a mapping satisfying

$$\int_{\Omega} \varphi(|Df(x,y)|) d\mu \le \varepsilon(||x||^p + ||y||^p), \tag{3.42}$$

for all $x, y \in E$ with $x \perp y$, $\varepsilon \geq 0$ and $0 \leq p < 1$. Then there exists a unique orthogonally cubic-additive mapping $AC : E \to L^{\varphi}$ such that

$$\int_{\Omega} \varphi(|f(x) - AC(x)|) d\mu \le \frac{\kappa \varepsilon}{4} \left\{ \frac{1 + \kappa 2^{p-2}}{1 - \kappa 2^{p-2}} + \frac{\kappa}{6} \left[\frac{1}{2 - \kappa 2^{p-1}} + \frac{1}{8 - \kappa 2^{p-1}} \right] \right\}$$

for all $x \in E$.

Example 3.8. Let (E, ||.||) with dim $E \ge 2$ be a real normed linear space, $\widehat{\varphi} = (\varphi_i)$ be sequence of Orlicz functions satisfying the Δ_2 -condition with $0 < \kappa \le 2$ and let $(\ell^{\widehat{\varphi}}, \pi_{\widehat{\varphi}})$ be generalized Orlicz sequence space associated to $\widehat{\varphi} = (\varphi_i)$. Let $f: E \to \ell^{\widehat{\varphi}}$ be a mapping satisfying

$$\pi_{\widehat{\varphi}}(Df(x,y)) \le \varepsilon(\|x\|^p + \|y\|^p),$$

for all $x, y \in E$ with $x \perp y$, $\varepsilon \geq 0$ and $0 \leq p < 1$. Then there exists a unique orthogonally cubic-additive mapping $AC : E \to \ell^{\widehat{\varphi}}$ such that

$$\pi_{\widehat{\varphi}}(f(x) - AC(x)) \le \frac{\kappa \varepsilon}{4} \left\{ \frac{1 + \kappa 2^{p-2}}{1 - \kappa 2^{p-2}} + \frac{\kappa}{6} \left[\frac{1}{2 - \kappa 2^{p-1}} + \frac{1}{8 - \kappa 2^{p-1}} \right] \right\}$$

for all $x \in E$.

References

- [1] M. Adam and S. Czerwik, On the stability of the quadratic functional equation in topological spaces, Banach Journal of mathematical Analysis, 1 (2007) no.2, 245-251.
- [2] T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc., Japan, 2 (1950), 64-66.
- [3] P. W. Cholewa, Remarks on the stability of functional equations, Aequationes Math. 27 (1984), 7686.
- [4] S. Czerwik, On the stability of the quadratic mapping in normed spaces, Abh. Math. Sem. Univ. Hamburg 62 (1992), 5964.
- [5] Iz. El-Fassi and S. Kabbaj, Hyers-Ulam-Rassias Stability of Orthogonal Quadratic Functional Equation in Modular Spaces, General Mathematics Notes (GMN), vol. 26, No. 1 (2015), 61-73.
- [6] M. Eshaghi Gordji and M. Bavand Savadkoumi, Approximation of generalized homomorphisms in quasi-Banach algebra, Aalele Univ. Ovidius Constata, Math. Series 17, (2009), 203-213.
- [7] P. Găvruta, A generalization of Hyers-Ulam-Rassias Stability of the approximately additive mappings, J. Math. Anal. App. 184 (1994), 431-436.
- [8] R. Ger and J. Sikorska Stability of the orthogonal additivity, Bull. Polish Acad. Sci. Math, 43 (1995), 143-151.
- [9] S. Gudder and D. Strawther, Orthogonally additive and orthogonally increasing function on vector spaces, Pacific J. Math., **58** (1995), 427-436.
- [10] D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci., U.S.A., 27 (1941), 222-224.
- [11] S.-M. Jung, On the HyersUlam stability of the functional equations that have the quadratic property, J. Math. Anal. Appl. 222 (1998), 126137.
- [12] M. Krbec, Modular interpolation spaces, Z. Anal. Anwendungen 1 (1982), 25-40.
- [13] A. Najati and M. B. Moghimi, Stability of a functional equation deriving from quadratic and additive functions in quasi-Banach spaces, J. Math. Anal, 337 (2008), 399-415.

- [14] H. Nakano, *Modulared Semi-Ordered Linear Spaces*, in: Tokyo Math. Book Ser., Vol. 1, Maruzen Co., Tokyo, 1950.
- [15] W. Orlicz, Collected Papers, Vols. I, II, PWN, Warszawa, 1988.
- [16] S. Ostadbashi and J. Kazemzadeh, Orthogonal stability of mixed type additive and cubic functional equations, Int. J. Nonlinear Anal. Appl. 6 (2015) No. 1, 35-43
- [17] Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc., 72 (1978), 297-300.
- [18] J. Rätz, On orthogonally additive mappings, Aequations Math., 28 (1985), 35-49.
- [19] Gh. Sadeghi, A fixed point approach to stability of functional equations in modular spaces, Bull. Malays. Math. Sci. Soc. 37 (2) (2014), 333-344.
- [20] F. Skof, Proprit locali e approssimazione di operatori, Rend. Sem. Mat. Fis. Milano **53** (1983), 113129.
- [21] S. M. Ulam, *Problems in Modern Mathematics*, Chapter IV, Science Editions, Wiley, New York, 1960.