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Abstract

In the present work, we investigate the approximation problems in weighted rearrangement
invariant Smirnov spaces. We prove a direct theorem for polynomial approximation of functions
in certain subclasses of weighted rearrangement invariant Smirnov spaces
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1 Introduction and main result

Denote byM the set of all µ−measurable complex valued functions on R and letM+ be the subset
of functions from M whose values lie in [0,∞]. By λE we denote the characteristic function of a
µ−measurable set E ⊂ R.

Let a function ρ : M+ −→ [0,∞] be given. The function ρ is called a function norm if it
satisfies the following properties for all functions f, g, fn (n ∈ N), for all constants a > 0 and for
all µ−measurable subsets E of R:

(1) ρ(f) = 0 if f = 0 µ−a.e. ; ρ(af) = a ρ(f), ρ(f + g) ≤ ρ(f) + ρ(g),
(2) 0 ≤ g ≤ f µ−a. e., then ρ(g) ≤ ρ(f),
(3) 0 ≤ fn ↑ f µ−a.e., then ρ(fn) ↑ ρ(f),
(4) if E ⊂ R, µ(E) <∞, then ρ(λE) <∞,
(5) for every set E ⊂ R with µ(E) <∞, then

∫
E

fdµ ≤ CEρ(f),

where CE is a constant depending on E and ρ but independent of f. The collection X = X(ρ) of
all functions f ∈ M for which ρ(|f |) <∞ is called a Banach function space. For each f ∈ X, the
norm of f is defined by

‖f‖X := ρ(|f |).

Note that Banach function space X equipped with the norm ‖f‖X is a Banach space [6, pp. 6-7].
If ρ is a function norm, its associate norm ρ′ is defined on M+ by

ρ′(f) := sup


∫
R

fgdµ : f ∈M+, ρ(f) ≤1

 , g ∈M+.

If ρ is a function norm, then ρ′ is also a function norm [6, pp. 8-9].
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Let ρ be a function norm and ρ′ be its associate function norm. The Banach function space
X(ρ′) determined by the function norm ρ′ is called the associate space of X = X(ρ) and is denoted
by X

′
. Note that every Banach function space coincides with its second associate space X

′′
= (X ′)′

and ‖f‖X = ‖f‖X′ for all f ∈ X [6, pp. 10-12].
It is well- known that [6, p. 9]

‖g‖X′ = sup


∫
R

|fg| dµ : f ∈ X, ‖f‖X ≤1

 .

Note that for every f ∈ X and g ∈ X ′ the following inequality holds [6, Ch.1, Theorem 2.4]:∫
R

|fg| dµ ≤ ‖f‖X ‖g‖X′ .

Moreover, it is important fact [6, p.10] that for every f ∈ X

‖f‖X = sup


∫
R

|fg| dµ : g ∈ X ′, ‖g‖X′ ≤1

 .

The distribution function µf of a measurable function is defined by

µf (λ) := meas {x ∈ R : |f(x)| > λ} ,

for λ > 0. Two measurable functions f and g are said to be equimeasurable if µf (λ) = µg(λ) for all
λ > 0.

Definition 1. A function norm ρ :M+ −→ [0,∞] is called rearrangement- invariant if for every
pair of equimeasurable functions f, g ∈ M+ the equality ρ(f) = ρ(g) holds. In this case, the
Banach function space generated by ρ is called a rearrangement invariant space (r.i.space) [6, p.
59].

These spaces are sufficiently wide; the Lebesgue, Orlicz, Lorentz spaces are examples of re-
arrangement invariant spaces. For every rearrangement - invariant space X [6, p.78] we have
L∞ ⊂ X ⊂ L1. A Banach function space X is rearrangement- invariant if and only if its asso-
ciate space X ′ rearrangement-invariant too [6, p. 60].

Note that detailed information on r.i. space can be found in [6], [ 36], [41] and [42].
Let f be a measurable function. The function f∗ defined by

f∗(t) := inf {λ : µf (λ) ≤ t} , t > 0

is called the decreasing rearrangement of the function f.
Let X be a rearrangement -invariant space. Considering Luxemburg representation theorem

[6, pp. 62-64], there is a ( not necessarily unique) rearrangement invariant function norm ρ
over [0,∞] with the Lebesgue measure m for which

ρ(f) = ρ(f∗), f ∈M+
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The r.i. space over [0,∞] with Lebesgue measure m generated by ρ is denoted by X.
For each x > 0, let us consider the dilation operator Hx defined on X by

(Hxf)(t) :=

{
f(xt), xt ∈ [0, µ(R)]
0, xt /∈ [0, µ(R)]

, t > 0.

Let B(X) be the Banach algebra of the bounded linear operator on X. According to [6, pp. 165]
H1/x ∈ B(X). We denote by hX(x) the operator norm of H1/x, i.e.,

hX(x) :=
∥∥H1/x

∥∥
B(X)

.

Let us consider the limits [36 ], [40]

αX := lim
t→o

log hX(t)

log t
, βX := lim

t→∞

log hX(t)

log t

By [36] the above limits exist and αX ≤ βX . The numbers αX and βX are called the lower and
upper Boyd indices of the r.i. space X, respectively. Note that for an arbitrary r.i. space the Boyd
indices αX , βX ∈ [0, 1]. The Boyd indices are said to be nontrivial if 0 < αX ≤ βX < 1. Detailed
information on properties of the Boyd indices can be found in [6], [8], [42] and [43].

Let Γ be a rectifiable Jordan curve in the complex plane C. This curve separates the plane into
two domains G :=int Γ and G− :=ext Γ.Without loss of generality, we may asume that 0 ∈ G.
Let T := {w ∈ C : |w| = 1} , D :=int T, D− :=ext T and w = ϕ(z) be the conformal mapping of
G− onto D− normalized by the conditions

ϕ(∞) =∞, lim
z→∞

ϕ(z)

z
> 0

and let ψ := ϕ−1 be the inverse mapping of ϕ.
We denote by Lp(Γ), 1 < p <∞, the set of all measurable complex valued functions such that

|f |pis Lebesgue integrable with respect to the arclength on Γ. Let w = ϕ1(z) indicate a function
that maps the domain G conformally onto the disk |w| < 1. The inverse mapping of ϕ1 will be
shown by ψ1. Let Γr denote circular images in the domain G, that is, curves in G corresponding
to circle |ϕ1(z)| = r under the mapping z = ψ1(w).

We use c, c1, c2, ... to denote constants (which may, in general, differ in different relations)
depending only on numbers that are not important for the question of our interest.

Definition 2. The analytic function f in domain G will be called a function of the class Ep(G) if∫
Γr

|f(z)|p |dz| <∞.

Definition 3. We shall call the Ep(G) class the Smirnov class.

It is evident that any analytic function f belonging to the Ep(G) class will also belong to the
E1(G) class, that is, ∫

Γr

|f(z)| |dz| ≤ c <∞,



12 S. Z. Jafarov

informly in r, 0 < r < 1. Since Ep(G) ⊂ E1(G),every function f ∈ Ep(G) has a non-tangential
limit almost everywhere (a. e.) on Γ, and if we use the same notation for the non-tangential limit
of f ,then f ∈ Lp(Γ).

Lp(Γ) and Ep(G) are Banach spaces with respect to the norm

‖f‖Ep(G) := ‖f‖Lp(Γ) :=

∫
Γ

|f(z)| |dz|

 .

Note that the general information about Smirnov classes can be found in the books [10, pp. 168-185]
and [15, pp. 438-453].

A measurable function ω : Γ → [0,∞] is called a weighted function if the preimage ω−1{0,∞}
has measure zero.

Definition 4. The class of measurable functions f defined on Γ and satisfying the condition
|f |ω ∈ Lp(Γ), 1 < p <∞ is called ω−weighted Lebesgue space Lp(Γ, ω) with the norm

‖f‖Lp(Γ,ω) := ‖fω‖Lp(Γ) .

Definition 5. The ω−weighted Smirnov class Ep(G,ω) is defined as

Ep(G,ω) := {f ∈ E1(G) : f ∈ Lp(Γ, ω)} .

Let Γ be a closed rectifiable Jordan curve in the complex plane C. For t ∈ Γ and r > 0 we
denote by Γ(z, ε) the portion of Γ in the open disk of radius r centred at z.

Definition 6. [26]. Let |Γ(z, ε)| denote the length (Lebesgue measure) of Γ(z, ε). The curve Γ is
called a Carleson curve (or regular curve) if

CΓ := sup
z∈Γ

sup
ε>0

1

ε
|Γ(z, ε)| <∞

For instance, convex curves, Ljapunov curves, chord arcs, smooth curves and Lipschitz curves
are all regular. We denote by S the set of all Carleson curves in the complex plane.

Definition 7. Let 1 < p <∞, 1 < q <∞ and 1
p + 1

q = 1 and Ap(Γ) be the collection of all weights
on Γ satisfying the condition

sup
t∈Γ

sup
ε>0

1

ε

∫
Γ(z,r)

ωp(τ) |dτ |


1/p1

ε

∫
Γ(z,r)

ω−q(τ) |dτ |


1/q

<∞

The weight functions which belong to Ap(Γ) for some 1 < p < ∞, are called the Muckenhoupt
weights.
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Let Γ ⊂ C be a closed rectifiable Jordan curve with the Lebesgue length measure |dτ | and X(Γ)
be a r.i. space over Γ and X ′(Γ) it is associate space.

Let ω be a weighted function. We denote by [40] X(Γ, ω) the linear space of all measurable
functions f such that fω ∈ X(Γ) and set

‖f‖X(Γ,ω) := ‖fω‖X(Γ) .

Definition 8. A normed space X(Γ, ω) is called a weighted rearrangement - invariant space (w.r.i.
space).

Note that according to [6, Section 1.1] and [39] if ω ∈ X(Γ, ω) is a Banach function space
then its associate space is the Banach function space X ′(Γ, ω−1) with the norm ‖f‖X′(Γ,ω−1) =∥∥fω−1

∥∥
X′(Γ)

. If ω ∈ X(Γ) and ω−1 ∈ X ′(Γ), then from Hölder’s inequality we obtain

L∞ ⊂ X(Γ, ω) ⊂ L1(Γ).

Definition 9. For a weight ω on Γ we denote by EX(G,ω) the subclass of analytic functions of
E1(G) whose boundary value functions belong to the w.r.i space X(Γ, ω).

For ζ ∈ Γ we define the point ζh ∈ Γ by

ζh := ψ(ϕ(ζ)eih), h ∈ [0, 2π].

Definition 10. Let Γ rectifiable Jordan curve, and f ∈ X (Γ, ω) .Then the function Ω
(2)
p(.),ω(f, .)

defined by

Ω
(2)
Γ, X, ω( f, δ) := δ2 sup

t≥δ
t−2 sup
|h|≤t

‖f(ζh) + f(ζ−h)− 2f(ζ)‖X(Γ,ω)

is called generalized modulus of smoothness in the X (Γ, ω).

We suppose that ω(δ) is a nonnegative, continuous, nondecreasing real function satisfying the
conditions ω(0) = 0, ω(δ) > 0, (δ > 0) and ω(nδ) ≤ cnω(δ), where n ∈ N and constant c > 0. We
denote by Hω

ΓEX(G,ω) the class of functions f ∈ EX(G,ω for which

Ω
(2)
Γ, X, ω( f, δ) < cω(δ),

where some constant c independent of f and δ.
Using the method of proof in [44] it can be shown easily that if f, f1 ∈ Hω

ΓEX(G,ω), the modulus

of smoothness Ω
(2)
Γ, X, ω( f, δ) satisfy the following conditions:

Ω
(2)
Γ, X, ω( f, 0) = 0,

Ω
(2)
Γ, X, ω( f, δ) ≥ 0,

lim
δ→0

Ω
(2)
Γ, X, ω( f, δ) = 0,

Ω
(2)
Γ, X, ω( f + f1, δ) ≤ Ω

(2)
Γ, X, ω( f, δ) + Ω

(2)
Γ, X, ω( f1, δ).
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Under different restrictive conditions upon Γ = ∂G, the direct problems of approximation
theory in non-weighted and weighted Smirnov spaces have been investigated by several authors
(see, for example, [48], [1], [2], [38], [21 ], [13], [44], [22], [ 24]-[26] and [29]). The problems of
approximation theory for weighted rearrangement invariant spaces are studied in [17], [19], [23] and
[51]. In this work, we prove a direct theorem of approximation theory in weighted rearrangement
invariant Smirnov spaces. We investigate approximation problems in the classHω

ΓEX(G,ω). Similar
problems of the approximation theory in different spaces have been studied by several authors (see,
for example, [3]-[5 ], [9], [16], [18], [30]-[35], [37], [46], [47], [49]and [50]).

Main result in our work is the following theorem.

Theorem 1. Let Γ ∈ S, αX , βX be the nontrivial indices and let ω ∈ A1/αX (Γ) ∩ A1/βX (Γ). If
f ∈ Hω

ΓEX(G,ω), then for any n ∈ N there exists an algebraic polynomial P (·, f) of degree at
most n such that

‖f − P (·, f)‖X(Γ,ω) ≤ c1ω (1/n) (1)

with some constant c1 independent of n.

Note that Theorem 1 is proved for the first time in the case where Γ is a unit circle.

2 Auxiliary results

Let f ∈ L1(Γ). Then the functions f+ and f− defined by

f+(z) =
1

2πi

∫
Γ

f(ζ)

ζ − z
dζ, z ∈ G (2)

and

f−(z) =
1

2πi

∫
Γ

f(ζ)

ζ − z
dζ, z ∈ G− (3)

are analytic in G and G− respectively, and f−(∞) = 0. Thus the limit

SΓ(f)(z) := (P.V.)
1

2πi

∫
Γ

f(ζ)

ζ − z
dζ := lim

ε→0

1

2πi

∫
Γ∩{ζ: |ζ−z|>ε}

f(ζ)

ζ − z
dζ

exists and is finite for almost all z ∈ L.
The quantity SΓ(f)(z) is called the Cauchy singular integral of f at z ∈ Γ. The linear operator

SΓ : f → SΓf is called the Cauchy singular operator.
According to the Privalov’s theorem [15, p. 431] if one of the functions f+ or f− has the

non-tangential limits a. e. on Γ, then SΓ(f)(z) exists a. e. on Γ and also the other one has
non-tangential limits a. e. on Γ. Conversely, if SΓ(f)(z) exists a. e. on Γ, then the fuınctionsf+

and f− have non-tangential limits a. e. on Γ. In both cases, the formulae

f+(z) = SΓ(f)(z) +
1

2
f(z), f−(z) = SΓ(f)(z)− 1

2
f(z)
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and hence
f = f+ − f−

holds a. e. on Γ.
Note that the class of all regular curves is very wide. G. David proved [12] that Γ is a regular

curve if and only if for every f ∈ Lp(Γ), SΓ(f) exists and belongs to Lp(Γ) and the singular operator
SΓ(f) : Lp(Γ)→ Lp(Γ) is bounded, that is, there exists a constants c2(p,Γ) such that

‖SΓ(f)‖Lp(Γ) ≤ c2(p,Γ) ‖f‖Lp(Γ)

for all f ∈ Lp(Γ). In [20], V.Havin proved that if the singular operator SΓ(f) : Lp(Γ) → Lp(Γ) is
bounded, for every f ∈ Lp(Γ), the functions f+ and f− defined by the formulae (2) and (3) belong
to Smirnov’s classes Ep(G) and Ep(G

−), respectively.
We need the following results.

Lemma 1 [45, p. 208]. In order to represent f according to its boundary values in the form Cauchy
integral, it is necessary and sufficient that f ∈ E1(G).

The following theorem, given in [7, pp. 117-144] and [14, p. 89] characterizes the weight
functions for which SΓ is bounded in the weighted Lebesgue spaces Lp(Γ, ω).

Theeorem 2. Let Γ be a Carleson curve, 1 < p < ∞, and let ω be a weight function on Γ. The
inequality

‖SΓ(f)‖
Lp(Γ,ω)

≤ c3(p,Γ) ‖f‖Lp(Γ,ω)

holds for every f ∈ Lp(Γ, ω) if and only if ω ∈ Ap(Γ).

The following theorem associated with boundedness of the Cauchy singular integral operator SΓ in
weighted rearrangement -invariant spaces holds [40]̇:

Theorem 3. Let X(Γ) be an r.i. space with nontrivial Boyd indices αX , βX . If a weight ω belongs
to the Muckenhoupt classes A 1

αX,
(Γ) and A 1

βX,
(Γ), then the operator SΓ is bounded in the w.r.i

space X(Γ, ω).

2.1 Proof of the main result

Proof of Theorem 1. We set
F (zh) = f(zh) + f(z−h).

From the condition of Theorem 1 we have f(z) ∈ X(Γ, ω) and SΓ is bounded in the space X(Γ, ω)
and ‖f(zh) + f(z−h)− 2f(z)‖X(Γ,ω) < ∞. In this case according to [39] and [40] ω ∈ X(Γ) and
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1/ω ∈ X ′(Γ). Then, from the Hölder inequality for the X(Γ) spaces we have∫
Γ

|F (zh)| |dz| =

∫
Γ

|f(zh) + f(z−h)− 2f(z) + 2f(z)|
|ω|

|ω| |dz|

≤
∫
Γ

|f(zh) + f(z−h)− 2f(z)|
|ω|

|ω| |dz|

+2

∫
Γ

|f(z)|
|ω|

|ω| |dz| ≤ ‖f(zh) + f(z−h)− 2f(z)‖X(Γ,ω)

(∥∥∥∥ 1

ω

∥∥∥∥
X′ (Γ)

)

+2 ‖f‖X(Γ,ω)

(∥∥∥∥ 1

ω

∥∥∥∥
X′(Γ)

)
< ∞

It follows from the last inequality, that F (zh) ∈ L1(Γ). Since F (zh) ∈ L1(Γ) and SΓ is bounded
in the space X(Γ, ω), singular integral SΓ(Fh)(z) in principal value meaning exists a. e. on Γ.
Then the function is approximed with Jackson-Dzydyk polynomial [11, p.440]. We represent the
polynomial Jackson-Dzydyk in the form

Pn(z) =
1

2π

π∫
0

Kn(h) [SΓ(Fh)(z)] dh+
1

4π

π∫
0

Kn(h) [f(zh) + f(z−h)] dh, (4)

where Kn(h) is a kernel, which is trigonometric polynomials of degree not exceeding n and satisfies
the conditions [11, p. 428]

1

2π

π∫
−π

Kn(t)dt = 1, (n = 0, 1, 2, ...), (5)

π∫
−π

|Kn(t)| dt ≤ c4, (n = 0, 1, 2, ...), (6)

π∫
−π

|t|k |Kn(t)| dt ≤ c5(k)(n+ 1)−k, (7)

π∫
−π

(|t|+ 1

n
)k |Kn(t)| dt ≤ c6(k)n−k, (n = 1, 2, ...). (8)

Note that Jackson kernel satisfies the conditions (5)- (8). If f ∈ EX(G,ω), it follows that
f ∈ E1(G). Then according to Lemma 1, the function f ∈ E1(G) can be written as Cauchy integral

f(z) =
1

2πi

∫
Γ

f(ζ)

ζ − z
dζ, z ∈ G.
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Since SΓ is bounded in the space X(Γ, ω), the SΓ(f)(z) singular integral exists. Then, for the
function f the following identity

f(z) = (SΓf)(z) + f(z)/2

holds a. e. on Γ. Taking into account the last relation, we have

f(z) =
1

2π

π∫
0

Kn(h)f(z)dh+
1

π

π∫
0

Kn(h)[(SΓf)(z)]dh. (9)

Consideration of (4) and (9) gives us

‖f − Pn‖X(Γ,ω) ≤

∥∥∥∥∥∥ 1

2π

π∫
0

Kn(h)f(z)dh+
1

π

π∫
0

Kn(h)[(SΓf)(z)]dhPn(z)

− 1

2π

π∫
0

Kn(h) [SΓ(Fh)(z)] dh−

1

4π

π∫
0

Kn(h) [f(zh) + f(z−h)] dh

∥∥∥∥∥∥
X(Γ,ω)

. (10)

Using (10), Minkowski’s inequality and the boundedness of singular operator SΓ we get

‖f − Pn‖X(Γ,ω) ≤ c7

∥∥∥∥∥∥
π∫

0

Kn(h) [SΓ(Fh − 2f)(z)] dh

∥∥∥∥∥∥
X(Γ,ω)

+c8

∥∥∥∥∥∥
π∫

0

Kn(h) [(Fh − 2f)(z)] dh

∥∥∥∥∥∥
X(Γ,ω)

≤ c9

π∫
0

Kn(h)dh ‖SΓ(Fh − 2f)(z)‖
X(Γ,ω)

+c10

π∫
0

Kn(h)dh ‖(Fh − 2f)(z)‖X(Γ,ω) ≤ c11

π∫
0

Kn(h) ‖(Fh − 2f)(z)‖ dh
X(Γ,ω)

+c12

π∫
0

Kn(h)dh ‖(Fh − 2f)(z)‖X(Γ,ω) ≤ c13

π∫
0

Kn(h)Ω
(2)
Γ, X, ω(h, f)dh (11)

≤ c14Ω
(2)
Γ, X, ω(h, f)

π∫
0

Kn(h)(nh+ 1)dh. ≤ c15ω(1/n).

According to (5 ), (7 ) and (11 ), we obtain the inequality (1) of Theorem 1.
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