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Abstract

This communication deals with first introducing the exponential type hybrid B − (b, ρ, θ, p̃, r̃)-
invexities and then establishing a class of the ε− efficiency conditions applying to multiobjective
fractional programming problems. The exponential type hybrid B − (b, ρ, θ, p̃, r̃)-invexities
encompass most of the existing generalized higher order invexities as well as the exponential
type generalized invexities, including the Antczak type first order B− (p̃, r̃)−invexities. To the
best of our knowledge, the obtained results seem to be most advanced on generalized invexities
available in the literature, while offer more suitable applications to other fields and beyond.
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1 Introduction

Recently, Zalmai [38] has generalized the exponential type invexity to the case of the Hanson-
Antczak type (α, β, γ, ξ, η, ρ, θ)−V-invexity, and then established a series of results on global para-
metric sufficient efficiency conditions for a semiinfinite multiobjective fractional programming prob-
lem. Verma [28] introduced a higher order exponential type generalization - B − (ρ, η, θ, p̃, r̃)-
invexities - to exponential type first order B − (p̃, r̃)−invexities by Antczak [1], and applied to
explore parametric sufficient efficiency conditions to semiinfinite minimax fractional programming
problems, while Verma [27] introduced and investigated second order (Φ,Ψ, ρ, η, θ)−invexities to
the context of parametric sufficient optimality conditions in semiinfinite discrete minimax fractional
programming problems. The contribution of Antczak [1-3] on first orderB−(p, r)−invexities is enor-
mous to the context of nonlinear mathematical programming problems, which have been applied to
a class of global parametric sufficient optimality conditions based on first order B−(p, r)−invexities
for semiinfinite discrete minimax fractional programming problems. This was followed by Zalmai
[37, 38] who generalized B − (p, r)−invexities introduced by Antczak [1-3], and applied to a class
of global parametric sufficient optimality criteria using various assumptions for semiinfinite dis-
crete minimax fractional programming problems. Verma [25] also developed a general framework
for a class of (ρ, η, θ)−invex functions to examine some parametric sufficient efficiency conditions
for multiobjective fractional programming problems for weakly ε−efficient solutions, while Kim et
al. [8] have established some ε−optimality conditions for multiobjective fractional optimization
problems. Motivated by the recent advanced research contributions, we introduce a higher order
exponential type generalization - B − (b, ρ, θ, p̃, r̃)-invexities - a major generalization to the expo-
nential type first order B − (p̃, r̃)−invexities - well-explored in the literature, and establish some
advanced results on the ε−efficiency conditions based on the higher order exponential type gener-
alization - B− (b, ρ, θ, p̃, r̃)-invexities. The obtained results in this communication encompass most
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of the results in the literature primarily because of the enormous generality power of the higher
order exponential type hybrid B− (b, ρ, θ, p̃, r̃)-invexities, which may not be limited to applications
to just ε−efficiency conditions and further applications.

We consider under the generalized framework of the second order B− (b, ρ, θ, p̃, r̃)−invexities of
functions, the following multiobjective fractional programming problem:
(P)

Minimize
(f1(x)

g1(x)
,
f2(x)

g2(x)
, · · ·, fp(x)

gp(x)

)
subject to x ∈ Q = {x ∈ X : Hj(x) ≤ 0, j ∈ {1, 2, · · ·,m}},

where X is a nonempty subset of Rn (n-dimensional Euclidean space), fi and gi for i ∈ {1, · · ·, p}
and Hj for j ∈ {1, · · ·,m} are real-valued functions defined on X such that fi(x) ≥ 0, gi(x) > 0 for
i ∈ {1, · · ·, p} and for all x ∈ Q. Here Q denotes the feasible set of (P).

Next, we observe that problem (P) is equivalent to the nonfractional programming problem:
(Pλ)

Minimize
(
f1(x)− λ1g1(x), · · ·, fp(x)− λpgp(x)

)
subject to x ∈ Q with

λ =
(
λ1, λ2, · · ·, λp

)
=
(f1(x∗)

g1(x∗)
,
f2(x∗)

g2(x∗)
, · · ·, fp(x

∗)

gp(x∗)

)
,

where x∗ is an efficient solution to (P).

The general theory of nonlinear programming serves a great purpose, not just in terms of the
theory, but also in terms of applications to various fields, including decision and management
sciences, game theory, statistical analysis, engineering design (including design of control systems,
design of earthquakes-resistant structures, digital filters, and electronic circuits), random graphs,
boundary value problems, wavelet analysis, environmental protection planning, optimal control
problems, continuum mechanics, robotics, and data envelopment analysis. For more details, we
refer the reader [1- 41].

2 Preliminaries

Recently, Verma [28] generalized the notion of the first order Antczak type B−(p̃, r̃)-invexiies [1] to
the case of the second order B-(ρ, η, θ, p̃, r̃)- invexities. These notions of the second order invexity
encompass most of the existing notions in the literature. Let f be a twice continuously differen-
tiable real-valued function defined on X. Furthermore, let ρ : X ×X → R and θ : X ×X → Rn be
functions on X ×X.
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Definition 2.1. The function f is said to be exponential type hybrid B-(b, ρ, θ, p̃, r̃) - invex at
x∗ ∈ X if there exist a function b : X × X → [0,∞), and real numbers r̃ and p̃ such that for all
x ∈ X (x 6= x∗) and z ∈ Rn,

b(x, x∗)
(1

r̃

(
er̃[f(x)−f(x∗)] − 1

))
≥ 1

p̃

(〈
∇f(x∗) +

1

2
∇2f(x∗)z, ep̃z − 1

〉)
+ ρ(x, x∗)‖θ(x, x∗)‖2 for p̃ 6= 0 and r̃ 6= 0,

b(x, x∗)
(1

r̃

(
er̃[f(x)−f(x∗)] − 1

))
≥
(〈
∇f(x∗) +

1

2
∇2f(x∗)z, z

〉)
+ ρ(x, x∗)‖θ(x, x∗)‖2 for p̃ = 0 and r̃ 6= 0,

b(x, x∗)
(
f(x)− f(x∗)

)
≥ 1

p̃

(〈
∇f(x∗) +

1

2
∇2f(x∗)z, ep̃z − 1

〉)
+ ρ(x, x∗)‖θ(x, x∗)‖2 for p̃ 6= 0 and r̃ = 0,

b(x, x∗)
(
f(x)− f(x∗)

)
≥
(〈
∇f(x∗) +

1

2
∇2f(x∗)z, z〉

)
+ ρ(x, x∗)‖θ(x, x∗)‖2 for p̃ = 0 and r̃ = 0.

Definition 2.2. The function f is said to be exponential type hybrid B-(b, ρ, θ, p̃, r̃)-pseudoinvex
at x∗ ∈ X if there exist a function b : X ×X → [0,∞), and real numbers r̃ and p̃ such that for all
x ∈ X (x 6= x∗) and z ∈ Rn,

1

p̃

(〈
∇f(x∗) +

1

2
∇2f(x∗)z, ep̃z − 1

〉)
+ ρ(x, x∗)‖θ(x, x∗)‖2 ≥ 0

⇒ b(x, x∗)
(1

r̃

(
er̃[f(x)−f(x∗)] − 1

))
≥ 0 for p̃ 6= 0 and r̃ 6= 0,

(〈
∇f(x∗) +

1

2
∇2f(x∗)z, z

〉)
+ ρ(x, x∗)‖θ(x, x∗)‖2 ≥ 0

⇒ b(x, x∗)
(1

r̃

(
er̃[f(x)−f(x∗)] − 1

))
≥ 0 for p̃ = 0 and r̃ 6= 0,

1

p̃

(〈
∇f(x∗) +

1

2
∇2f(x∗)z, ep̃z − 1

〉)
+ ρ(x, x∗)‖θ(x, x∗)‖2 ≥ 0

⇒ b(x, x∗)
(
f(x)− f(x∗)

)
≥ 0 for p̃ 6= 0 and r̃ = 0,

(〈
∇f(x∗) +

1

2
∇2f(x∗)z, z

〉)
+ ρ(x, x∗)‖θ(x, x∗)‖2 ≥ 0

⇒ b(x, x∗)
(
f(x)− f(x∗)

)
≥ 0 for p̃ = 0 and r̃ = 0.
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We remark that based on the above definitions, the following definitions also hold for the special
cases when p̃ = 0 or r̃ = 0 or both, so we include only the case for p̃ 6= 0 and r̃ 6= 0.

Definition 2.3. The function f is said to be strictly exponential type hybrid B-(b, ρ, θ, p̃, r̃)-
pseudoinvex at x∗ ∈ X if there exist a function b : X ×X → [0,∞), and real numbers r̃ and p̃ such
that for all x ∈ X and z ∈ Rn,

1

p̃

(〈
∇f(x∗) +

1

2
∇2f(x∗)z, ep̃z − 1

〉)
+ ρ(x, x∗)‖θ(x, x∗)‖2 ≥ 0

⇒ b(x, x∗)
(1

r̃

(
er̃[f(x)−f(x∗)] − 1

))
> 0 for p̃ 6= 0 and r̃ 6= 0,

equivalently,

b(x, x∗)
(1

r̃

(
er̃[f(x)−f(x∗)] − 1

))
≤ 0

⇒ 1

p̃

(〈
∇f(x∗) +

1

2
∇2f(x∗)z, ep̃z − 1

〉)
+ ρ(x, x∗)‖θ(x, x∗)‖2 < 0 for p̃ 6= 0 and r̃ 6= 0.

Definition 2.4. The function f is said to be prestrictly exponential type hybrid B-(b, ρ, θ, p̃,
r̃)-pseudoinvex at x∗ ∈ X if there exist a function b : X ×X → [0,∞), and real numbers r̃ and p̃
such that for all x ∈ X and z ∈ Rn,

1

p̃

(〈
∇f(x∗) +

1

2
∇2f(x∗)z, ep̃z − 1

〉)
+ ρ(x, x∗)‖θ(x, x∗)‖2 > 0

⇒ b(x, x∗)
(1

r̃

(
er̃[f(x)−f(x∗)] − 1

))
≥ 0 for p̃ 6= 0 and r̃ 6= 0.

Definition 2.5. The function f is said to be exponential type hybrid B-(b, ρ, θ, p̃, r̃)-quasiinvex
at x∗ ∈ X if there exist a function b : X ×X → [0,∞), and real numbers r̃ and p̃ such that for all
x ∈ X and z ∈ Rn,

b(x, x∗)
(1

r̃

(
er̃[f(x)−f(x∗)] − 1

))
≤ 0

⇒ 1

p̃

(〈
∇f(x∗) +

1

2
∇2f(x∗)z, ep̃z − 1

〉)
+ ρ(x, x∗)‖θ(x, x∗)‖2 ≤ 0 for p̃ 6= 0 and r̃ 6= 0.

Definition 2.6. The function f is said to be prestrictly exponential type hybrid B-(b, ρ, θ, p̃,
r̃)-quasiinvex at x∗ ∈ X if there exist a function b : X × X → [0,∞), and real numbers r̃ and p̃
such that for all x ∈ X and z ∈ Rn,



Generalized hybrid invexities 163

b(x, x∗)
(1

r̃

(
er̃[f(x)−f(x∗)] − 1

))
< 0

⇒ 1

p̃

(〈
∇f(x∗) +

1

2
∇2f(x∗)z, ep̃z − 1

〉)
+ ρ(x, x∗)‖θ(x, x∗)‖2 ≤ 0 for p̃ 6= 0 and r̃ 6= 0,

equivalently,

1

p̃

(〈
∇f(x∗) +

1

2
∇2f(x∗)z, ep̃z − 1

〉)
+ ρ(x, x∗)‖θ(x, x∗)‖2 > 0

⇒ b(x, x∗)
(1

r̃

(
er̃[f(x)−f(x∗)] − 1

))
≥ 0 for p̃ 6= 0 and r̃ 6= 0.

We remark that sometimes the equivalent forms for the definitions turn out to be more suitable
during the proofs of the theorems.

Now we consider the ε−efficiency solvability conditions for (P) and (Pλ) problems motivated by
the publications (see Verma [28]) and (Kim et al. [8]), where they have investigated the ε−efficiency
as well as the weak ε−efficiency conditions for multiobjective fractional programming problems un-
der constraint qualifications. Based on these developments in the literature, we plan to establish
some parametric sufficient efficiency conditions for multiobjective fractional programming problem
(P) under this framework of the exponential type hybrid B-(b, ρ, θ, p̃, r̃)-invexities. We need to
recall some auxiliary results crucial to the problem on hand.

Definition 2.7. A point x∗ ∈ Q is an ε−efficient solution to (P) if there exists no x ∈ Q such that

fi(x)

gi(x)
≤ fi(x

∗)

gi(x∗)
− εi ∀ i = 1, · · ·, p,

fj(x)

gj(x)
<
fj(x

∗)

gj(x∗)
− εj for some j ∈ {1, · · ·, p},

where ε = (ε1, · · ·, εp) with εi ≥ 0 for i = 1, · · ·, p.

Next to this context, we have the following auxiliary problem:

(Pλ̄)
minimizex∈Q (f1(x)− λ̄1g1(x), · · ·, fp(x)− λ̄pgp(x)),

subject to x ∈ Q,

where λ̄i for i ∈ {1, · · ·, p} are parameters, and λ̄i = fi(x
∗)

gi(x∗) − εi.

Next, we introduce the ε−efficient solvability conditions for (Pλ̄) problem.



164 R. U. Verma

Definition 2.8. A point x∗ ∈ Q is an ε̄−efficient solution to (Pλ̄) if there exists no x ∈ Q such
that

fi(x)− λ̄gi(x) ≤ fi(x∗)− λ̄gi(x∗)− ε̄i ∀ i = 1, · · ·, p,

fj(x)− λ̄gj(x) < fj(x
∗)− λ̄gj(x∗)− ε̄j for some j ∈ {1, · · ·, p},

where λ̄i = fi(x
∗)

gi(x∗) − εi, ε̄i = εig(x∗) with εi ≥ 0 for i = 1, · · ·, p, and ε = (ε1, · · ·, εp) with εi ≥ 0 for
i = 1, · · ·, p.

Lemma 2.9. Let x∗ ∈ Q, and fi(x
∗) ≥ εigi(x∗) for i = 1, · · ·, p. Then the following statements are

equivalent:

(i) x∗ is an ε−efficient solution to (P).

(ii) x∗ is an ε∗−efficient solution to (Pλ̄), where

λ̄ = (
f1(x∗)

g1(x∗)
− ε1, · · ·,

fp(x
∗)

gp(x∗)
− εp),

where ε∗ = (ε1g1(x∗), · · ·, εpgp(x∗)).

Lemma 2.10. Let x∗ ∈ Q, and fi(x
∗) ≥ εigi(x

∗) for i = 1, · · ·, p. Then the following statements
are equivalent:

(i) x∗ is an ε−efficient solution to (P).

(ii) There exists c = (c1, · · ·, cp) ∈ <p+ \ {0} such that

Σpi=1ci[fi(x)−
(fi(x∗)
gi(x∗)

− εi
)
gi(x)] ≥ 0

= Σpi=1ci[fi(x
∗)−

(fi(x∗)
gi(x∗)

− εi
)
gi(x

∗)]− Σpi=1ciεigi(x
∗)

for any x ∈ Q.

Now, we need recall the following result (Verma [28]) that is crucial to developing the results
for the next section based on second order hybrid B-(b, ρ, θ, p̃, r̃)-invexities.

Theorem 2.11. [28] Let x∗ ∈ F, λ∗ = ϕ(x∗) for each i ∈ p, fi and gi be continuously differentiable
at x∗ for each j ∈ q, the function ζ → Gj(ζ, t) be continuously differentiable at x∗ for all t ∈ Tj ,
and for each k ∈ r, let the function ζ → Hk(ζ, s) be continuously differentiable at x∗ for all s ∈ Sk.
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If x∗ is an efficient solution of (P), the generalized Guignard constraint qualification holds at x∗,
and if for any critical direction y, the set cone

{
(
∇Gj(x∗, t), 〈y,∇2Gj(x

∗, t)y〉
)

: t ∈ T̂j(x∗), j ∈ q}

+ span{
(
∇Hk(x∗, s), 〈y,∇2Hk(x∗, s)y〉

)
: s ∈ Sk, k ∈ r},

where T̂j(x
∗) ≡ {t ∈ Tj : Gj(x

∗, t) = 0}

is closed, then there exist u∗ ∈ U ≡ {u ∈ Rp : u ≥ 0,
∑p
i=1 ui = 1} and integers ν∗0 and ν∗, with

0 ≤ ν∗0 ≤ ν∗ ≤ n + 1 such that there exist ν∗0 indices jm with 1 ≤ jm ≤ q together with ν∗0 points
tm ∈ T̂jm(x∗), m ∈ ν∗0 , ν∗−ν∗0 indices km, with 1 ≤ km ≤ r together with ν∗−ν∗0 points sm ∈ Skm
for m ∈ ν∗\ν∗0 , and ν∗ real numbers v∗m with v∗m > 0 for m ∈ ν∗0 , with the property that

p∑
i=1

u∗i [∇fi(x∗)− λ∗∇gi(x∗)] +

ν∗
0∑

m=1

v∗m[∇Gjm(x∗, tm)

+

ν∗∑
m=ν∗

0 +1

v∗m∇Hk(x∗, sm) = 0, (2.1)

〈y,
[ p∑
i=1

u∗i [∇2fi(x
∗)− λ∗∇2gi(x

∗)] +

ν∗
0∑

m=1

v∗m∇2Gjm(x∗, tm)

+

ν∗∑
m=ν∗

0 +1

v∗m∇2Hk(x∗, sm)
]
y〉 ≥ 0, (2.2)

where T̂jm(x∗) = {t ∈ Tjm : Gjm(x∗, t) = 0}, U = {u ∈ Rp : u ≥ 0,
∑p
i=1 ui = 1}, and ν∗\ν∗0 is the

complement of the set ν∗0 relative to the set ν∗.

3 Second order sufficient efficiency conditions

This section deals with some parametric sufficient efficiency conditions for problem (P) under the
generalized frameworks of second order hybrid B-(b, ρ, θ, p̃, r̃)- invexities for generalized invex
functions. We start with real-valued functions Ei(., x

∗, u∗) and Bj(., v) defined by

Ei(x, x
∗, u∗) = ui[fi(x)−

(fi(x∗)
gi(x∗)

− εi
)
gi(x)], i ∈ {1, · · ·, p}

and

Bj(., v) = vjHj(x), j = 1, · · ·,m.
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Theorem 3.1. Let x∗ ∈ Q, fi, gi for i ∈ {1, · · ·, p} with ϕ(x∗) = fi(x
∗)

gi(x∗) − εi ≥ 0, gi(x
∗) > 0

and Hj for j ∈ {1, · · ·,m} be twice continuously differentiable at x∗ ∈ Q, and let there exist
u∗ ∈ U = {u ∈ Rp : u > 0,Σpi=1ui = 1} and v∗ ∈ Rm+ such that

Σpi=1u
∗
i [5fi(x∗)− (

fi(x
∗)

gi(x∗)
− εi)5 gi(x

∗)] + Σmj=1v
∗
j 5Hj(x

∗) = 0, (3.1)

〈
z,
[ p∑
i=1

u∗i [∇2fi(x
∗)− (

fi(x
∗)

gi(x∗)
− εi)∇2gi(x

∗)] +

m∑
j=1

v∗j∇2Hj(x
∗)
]
z
〉
≥ 0, (3.2)

where z ∈ Rn, and

v∗jHj(x
∗) = 0, j ∈ {1, · · ·,m}. (3.3)

Suppose, in addition, that any one of the following assumptions holds:

(a) (i) Ei(. ;x
∗, u∗) ∀ i ∈ {1, · · ·, p} are exponential type hybrid B-(b̄, ρ̄, θ, p̃, r̃)- pseudoinvex

at x∗ ∈ X if there exist a function b̄ : X ×X → R+, and real numbers r̃ and p̃ such that for
all x ∈ X, b̄(x, x∗) > 0.

(ii) Bj(. , v
∗) ∀ j ∈ {1, · · ·,m} are second order hybrid B− (b, ρ, θ, p̃, r̃)-quasiinvex at x∗ ∈ X

if there exist a function b : X ×X → R+, and real numbers r̃ and p̃ for all x ∈ X.

(iii) ρ(x, x∗) + ρ̄(x, x∗) ≥ 0 ∀x ∈ Q.

(b) (i) Ei(. ;x
∗, u∗) ∀ i ∈ {1, · · ·, p} are exponential type hybrid B-(b̄, ρ1, θ, p̃, r̃)- pseudoinvex

at x∗ if there exist a function b̄ : X ×X → R+, and real numbers r̃ and p̃ such that for all
x ∈ X, b̄(x, x∗) > 0.

(ii) Bj(. , v
∗) ∀ j ∈ {1, · · ·,m} are exponential type hybrid B-(b, ρ2, θ, p̃, r̃)-quasiinvex at

x∗ ∈ X if there exist a function b : X ×X → R+, and real numbers r̃ and p̃ for all x ∈ X.

(iii) ρ1(x, x∗) + ρ2(x, x∗) ≥ 0.

(c) (i) Ei(. ;x
∗, u∗) ∀ i ∈ {1, · · ·, p} are prestrictly exponential type hybrid B-(b̄, ρ̄, θ, p̃, r̃)-

pseudoinvex at x∗ ∈ X if there exist a function b̄ : X ×X → R+, and real numbers r̃ and p̃
such that for all x ∈ X, b̄(x, x∗) > 0.

(ii) Bj(. , v
∗) ∀ j ∈ {1, · · ·,m} are strictly exponential hybrid B-(b,ρ, θ, p̃, r̃)-pseudoinvex

at x∗ ∈ X if there exist a function b : X ×X → R+, and real numbers r̃ and p̃.

(iii) ρ(x, x∗) + ρ̄(x, x∗) ≥ 0.
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(d) (i) Ei(. ;x
∗, u∗) ∀ i ∈ {1, · · ·, p} are prestrictly exponential type hybrid B-(b̄, ρ̄, θ, p̃, r̃)-

quasiinvex at x∗ ∈ X if there exist a function b̄ : X × X → R+, and real numbers r̃ and p̃
such that for all x ∈ X, b̄(x, x∗) > 0.

(ii) Bj(. , v
∗) ∀ j ∈ {1, · · ·,m} are strictly exponential type hybrid B-(b̄, ρ, θ, p̃, r̃)-

pseudoinvex at x∗ ∈ X if there exist a function b : X × X → R+, and real numbers r̃
and p̃.
(iii) ρ(x, x∗) + ρ̄(x, x∗) ≥ 0.

(e) (i) For each i ∈ {1, · · ·, p}, fi is exponential type hybrid B-(b̄, ρ1, θ, p̃, r̃)-invex and −gi is
second order hybrid B-(b̄, ρ2, θ, p̃, r̃)-invex at x∗ with b̄(x, x∗) > 0.

(ii) Hj(. , v
∗) ∀ j ∈ {1, · · ·,m} is exponential type hybrid B-(b, ρ3, θ, p̃, r̃)-quasi-invex at

x∗.

(iii) Σmj=1v
∗
j ρ3 + ρ∗ ≥ 0 for ρ∗ = Σpi=1u

∗
i (ρ1 + ϕ(x∗)ρ2) and for ϕ(x∗) = fi(x

∗)
gi(x∗) − εi.

Then x∗ is an ε−efficient solution to (P).

Proof. If (a) holds, and x∗ ∈ Q, then it follows from (3.1) and (3.2) that

1

p̃
〈Σpi=1u

∗
i [∇fi(x∗)− (

fi(x
∗)

gi(x∗)
− εi)∇gi(x∗)] + Σmj=1v

∗
j∇Hj(x

∗)

+
1

2

[ p∑
i=1

u∗i [∇2fi(x
∗)− (

fi(x
∗)

gi(x∗)
− εi)∇2gi(x

∗)]

+

m∑
j=1

v∗j∇2Hj(x
∗)
]
z, ep̃z − 1〉 ≥ 0. (3.4)

Since v∗ ≥ 0, x ∈ Q and (3.3) holds, we have

Σmj=1v
∗
jHj(x) ≤ 0 = Σmj=1v

∗
jHj(x

∗),

and so

b(x, x∗)
(1

r̃

(
er̃[Hj(x)−Hj(x∗)] − 1

))
≤ 0,

which follows from r̃ 6= 0 and b(x, x∗) ≥ 0 for all x ∈ Q. In light of the hybrid B − (b, ρ, θ, p̃, r̃)-
quasiinvexity of Bj(., v

∗) at x∗, we have

1

p̃

(〈
∇Hj(x

∗) +
1

2
∇2Hj(x

∗)z, ep̃z − 1
〉)

+ ρ(x, x∗)‖θ(x, x∗)‖2 ≤ 0,
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and hence,

1

p̃

(
Σmj=1

〈
∇Hj(x

∗) +
1

2
∇2Hj(x

∗)z, ep̃z − 1
〉)

+ ρ(x, x∗)‖θ(x, x∗)‖2 ≤ 0. (3.5)

It follows from (3.4), (3.5) and (iii) that

1

p̃

(
〈Σpi=1u

∗
i [5fi(x∗)− (

fi(x
∗)

gi(x∗)
− εi)5 gi(x

∗)]

+
1

2

p∑
i=1

u∗i [∇2fi(x
∗)z − (

fi(x
∗)

gi(x∗)
− εi)∇2gi(x

∗)z], ep̃z − 1
〉)

≥ −ρ̄(x, x∗)‖θ(x, x∗)‖2. (3.6)

Applying B-(b̄, ρ̄, η, θ, p̃, r̃)- pseudo-invexity at x∗ to (3.6), we find

1

r̃
b̄(x, x∗)

(
er̃[Ei(x,x

∗,u∗)−Ei(x
∗,x∗,u∗)] − 1

)
≥ 0. (3.7)

Next, based on b̄(x, x∗) > 0, (3.7) implies

Σpi=1u
∗
i [fi(x)− (

fi(x
∗)

gi(x∗)
− εi)gi(x)]

≥ Σpi=1u
∗
i [fi(x

∗)− (
fi(x

∗)

gi(x∗)
− εi)gi(x∗)]

≥ Σpi=1u
∗
i [fi(x

∗)− (
fi(x

∗)

gi(x∗)
− εi)gi(x∗)]− Σpi=1u

∗
i εigi(x

∗) = 0.

Thus, we have

Σpi=1u
∗
i [fi(x)− (

fi(x
∗)

gi(x∗)
− εi)gi(x)] ≥ 0. (3.8)

Under the assumption u∗i > 0 for each i ∈ {1, · · ·, p}, we conclude that there does
not exist an x ∈ Q such that

fi(x)

gi(x)
− (

fi(x
∗)

gi(x∗)
− εi) ≤ 0 ∀ i = 1, · · ·, p,

fj(x)

gj(x)
− (

fj(x
∗)

gj(x∗)
− εj) < 0 for some j ∈ {1, · · ·, p}.

Hence, x∗ is an ε−efficient solution to (P).

The proof for (b) is similar to that of (a), but we include for the sake of the completeness. If
(b) holds, and x∗ ∈ Q, then it follows from (3.1) and (3.2) that

1

p̃
〈Σpi=1u

∗
i [5fi(x∗)− (

fi(x
∗)

gi(x∗)
− εi)5 gi(x

∗)], ep̃z − 1〉

+
1

p̃
〈Σmj=1v

∗
j 5Hj(x

∗), ep̃z − 1〉 = 0∀x ∈ Q, (3.9)
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1

2p̃

〈
ep̃z − 1,

[ p∑
i=1

u∗i [∇2fi(x
∗)− (

fi(x
∗)

gi(x∗)
− εi)∇2gi(x

∗)]

+

m∑
j=1

v∗j∇2Hj(x
∗)
]
z
〉
≥ 0. (3.10)

Applying v∗ ≥ 0, x ∈ Q and (3.3) holds, we have

Σmj=1v
∗
jHj(x) ≤ 0 = Σmj=1v

∗
jHj(x

∗),

and so

b(x, x∗)
(1

r̃

(
er̃[Hj(x)−Hj(x∗)] − 1

))
≤ 0

using r̃ 6= 0 and b(x, x∗) ≥ 0 for all x ∈ Q. Now the hybrid B-(b, ρ2, θ, p̃, r̃)-quasiinvexity of
Bj(., v

∗) at x∗ implies

1

p̃

(〈
∇Hj(x

∗) +
1

2
∇2Hj(x

∗)z, ep̃z − 1
〉)

+ρ2(x, x∗)‖θ(x, x∗)‖2 ≤ 0.

This results in

1

p̃

(
Σmj=1

〈
∇Hj(x

∗) +
1

2
ΣMj=1∇2Hj(x

∗)z, ep̃z − 1〉
)

+ ρ2(x, x∗)‖θ(x, x∗)‖2 ≤ 0. (3.11)

It follows from (3.9), (3.10), (3.11) and (iii) that

1

p̃

(
〈Σpi=1u

∗
i [5fi(x∗)− (

fi(x
∗)

gi(x∗)
− εi)5 gi(x

∗)]

+
1

2

p∑
i=1

u∗i [∇2fi(x
∗)z − (

fi(x
∗)

gi(x∗)
− εi)∇2gi(x

∗)z], ep̃z − 1
〉)

≥ −ρ1(x, x∗)‖θ(x, x∗)‖2. (3.12)

Next, applying the hybrid B-(b̄, ρ1, θ, p̃, r̃)-pseudo-invexity at x∗ to (3.12), we have

1

r̃
b̄(x, x∗)

(
er̃[Ei(x,x

∗,u∗)−Ei(x
∗,x∗,u∗)] − 1

)
≥ 0, (3.13)

which further, using b̄(x, x∗) > 0, implies

Σpi=1u
∗
i [fi(x)− (

fi(x
∗)

gi(x∗)
− εi)gi(x)]

≥ Σpi=1u
∗
i [fi(x

∗)− (
fi(x

∗)

gi(x∗)
− εi)gi(x∗)]) ≥ 0.
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Thus, we have

Σpi=1u
∗
i [fi(x)− (

fi(x
∗)

gi(x∗)
− εi)gi(x)] ≥ 0. (3.14)

Using u∗i > 0 for each i ∈ {1, · · ·, p}, we conclude that there does not exist an x ∈ Q
such that

fi(x)

gi(x)
− (

fi(x
∗)

gi(x∗)
− εi) ≤ 0 ∀ i = 1, · · ·, p,

fj(x)

gj(x)
− (

fj(x
∗)

gj(x∗)
− εj) < 0 for some j ∈ {1, · · ·, p}.

Hence, x∗ is an ε−efficient solution to (P).

Next, we prove (c) as follows: if (c) holds, and x∗ ∈ Q, then it follows from (3.1) and (3.2) that

1

p̃
〈Σpi=1u

∗
i [5fi(x∗)− (

fi(x
∗)

gi(x∗)
− εi)5 gi(x

∗)], ep̃z − 1〉

+
1

p̃
〈Σmj=1v

∗
j 5Hj(x

∗), ep̃z − 1〉 = 0, (3.15)

1

2p̃

〈
ep̃z − 1,

[ p∑
i=1

u∗i [∇2fi(x
∗)− (

fi(x
∗)

gi(x∗)
− εi)∇2gi(x

∗)]

+

m∑
j=1

v∗j∇2Hj(x
∗)
]
z
〉
≥ 0. (3.16)

As v∗ ≥ 0, x ∈ Q and (3.3) holds, we have

Σmj=1v
∗
jHj(x) ≤ 0 = Σmj=1v

∗
jHj(x

∗),

which implies

b(x, x∗)
(1

r̃

(
er̃[Hj(x)−Hj(x∗)] − 1

))
≤ 0.

Then, in light of the strict hybrid B-(b, ρ, θ, p̃, r̃)-pseudoinvexity of Bj(., v
∗) at x∗, we have

1

p̃

(〈
∇Hj(x

∗) +
1

2
∇2Hj(x

∗)z, ep̃z − 1
〉)

+ ρ(x, x∗)‖θ(x, x∗)‖2 < 0. (3.17)

It follows from (3.15), (3.16), (3.17) and (iii) that

1

p̃

(
〈Σpi=1u

∗
i [5fi(x∗)− (

fi(x
∗)

gi(x∗)
− εi)5 gi(x

∗)], ep̃η(x,x∗) − 1〉

+
1

2

〈
ep̃z − 1,

p∑
i=1

u∗i [∇2fi(x
∗)z − (

fi(x
∗)

gi(x∗)
− εi)∇2gi(x

∗)z]
〉)

> −ρ̄(x, x∗)‖θ(x, x∗)‖2. (3.18)
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As a result, applying the prestrict hybrid B-(b̄, ρ̄, θ, p̃, r̃)-pseudoinvexity at x∗ to (3.18), we have(
Σpi=1u

∗
i [fi(x)− (

fi(x
∗)

gi(g∗)
− εi)gi(x)]− Σpi=1u

∗
i [fi(x

∗)− (
fi(x

∗)

gi(x∗)
− εi)gi(x∗)]

)
≥ 0,

which implies

Σpi=1u
∗
i [fi(x)− (

fi(x
∗)

gi(x∗)
− εi)gi(x)]

≥ Σpi=1u
∗
i [fi(x

∗)− (
fi(x

∗)

gi(x∗)
− εi)gi(x∗)]) ≥ 0.

Thus, we have

Σpi=1u
∗
i [fi(x)− (

fi(x
∗)

gi(x∗)
− εi)gi(x)] ≥ 0. (3.19)

Since u∗i > 0 for each i ∈ {1, · · ·, p}, we conclude that there does not exist an x ∈ Q
such that

fi(x)

gi(x)
− (

fi(x
∗)

gi(x∗)
− εi) ≤ 0 ∀ i = 1, · · ·, p,

fj(x)

gj(x)
− (

fj(x
∗)

gj(x∗)
− εj) < 0 for some j ∈ {1, · · ·, p}.

Hence, x∗ is an ε−efficient solution to (P).

The proof applying (d) is similar to that of (c), but still we include it as follows: if x∗ ∈ Q, then
it follows from (3.1) and (3.2) that

1

p̃
〈Σpi=1u

∗
i [5fi(x∗)− (

fi(x
∗)

gi(x∗)
− εi)5 gi(x

∗)], ep̃z − 1〉

+
1

p̃
〈Σmj=1v

∗
j 5Hj(x

∗), ep̃z − 1〉 = 0, (3.20)

and

1

2p̃

〈
ep̃z − 1,

[ p∑
i=1

u∗i [∇2fi(x
∗)− (

fi(x
∗)

gi(x∗)
− εi)∇2gi(x

∗)]

+

m∑
j=1

v∗j∇2Hj(x
∗)
]
z
〉
≥ 0. (3.21)

Again, since v∗ ≥ 0, x ∈ Q and (3.3) holds, we have

Σmj=1v
∗
jHj(x) ≤ 0 = Σmj=1v

∗
jHj(x

∗),
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which implies

b(x, x∗)
(1

r̃

(
er̃[Hj(x)−Hj(x∗)] − 1

))
≤ 0.

Then, in light of the equivalent form for the strict hybrid B-(b, ρ, θ, p̃, r̃)-pseudoinvexity of Bj(., v
∗)

at x∗, we have

1

p̃

(〈
∇Hj(x

∗) +
1

2
∇2Hj(x

∗)z, ep̃z − 1
〉)

+ ρ(x, x∗)‖θ(x, x∗)‖2 < 0.

It follows from the above inequality, (3.20), (3.21) and (iii) that

1

p̃

(
〈Σpi=1u

∗
i [5fi(x∗)− (

fi(x
∗)

gi(x∗)
− εi)5 gi(x

∗)], ep̃z − 1〉

+
1

2

〈
ep̃z − 1,

p∑
i=1

u∗i [∇2fi(x
∗)z − (

fi(x
∗)

gi(x∗)
− εi)∇2gi(x

∗)z]
〉)

> −ρ̄(x, x∗)‖θ(x, x∗)‖2. (3.22)

As a result, applying the equivalent form for the prestrict hybrid B-(b̄, ρ̄, θ, p̃, r̃)-quasiinvexity of
Ei(.;x

∗, u∗) at x∗ to (3.22), we have(
Σpi=1u

∗
i [fi(x)− (

fi(x
∗)

gi(g∗)
− εi)gi(x)]− Σpi=1u

∗
i [fi(x

∗)− (
fi(x

∗)

gi(x∗)
− εi)gi(x∗)]

)
≥ 0,

which implies

Σpi=1u
∗
i [fi(x)− (

fi(x
∗)

gi(x∗)
− εi)gi(x)]

≥ Σpi=1u
∗
i [fi(x

∗)− (
fi(x

∗)

gi(x∗)
− εi)gi(x∗)]) ≥ 0.

Thus, we have

Σpi=1u
∗
i [fi(x)− (

fi(x
∗)

gi(x∗)
− εi)gi(x)] ≥ 0. (3.23)

Since u∗i > 0 for each i ∈ {1, · · ·, p}, we conclude that there does not exist an x ∈ Q such that

fi(x)

gi(x)
− (

fi(x
∗)

gi(x∗)
− εi) ≤ 0 ∀ i = 1, · · ·, p,

fj(x)

gj(x)
− (

fj(x
∗)

gj(x∗)
− εj) < 0 for some j ∈ {1, · · ·, p}.

Hence, x∗ is an ε−efficient solution to (P).

Finally, we prove (e) as follows: since x∗ ∈ Q, it follows that
Hj(x) ≤ Hj(x

∗), which (in conjunction with b(x, x∗) ≥ 0) implies

b(x, x∗)
(
Hj(x)−Hj(x

∗)
)
≤ 0.
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Then applying the hybrid B-(b, ρ3, θ, p̃, r̃)-quasi-invexity of Hj at x∗ and v∗ ∈ Rm+ , we have

1

p̃

(
〈Σmj=1v

∗
j 5Hj(x

∗) +
1

2
Σmj=1v

∗
j∇2Hj(x

∗)z, ep̃z − 1
〉)

≤ −Σmj=1v
∗
j ρ3‖θ(x, x∗)‖2.

Based on the assumptions, u∗ ≥ 0 and fi(x
∗)

gi(x∗) − εi ≥ 0, it follows from hybrid B-(b̄, ρ1, θ, p̃,

r̃)-invexity of fi and hybrid B-(b̄, ρ2, θ, p̃, r̃)-invexity of −gi that

b̄(x, x∗)
1

r̃

(
e
r̃Σp

i=1u
∗
i

(
[fi(x)−(

fi(x
∗)

gi(x
∗)
−εi)gi(x)]−[fi(x

∗)−(
fi(x

∗)

gi(x
∗)
−εi)gi(x∗)]

)
− 1
)

= b̄(x, x∗)
1

r̃

(
e
r̃Σp

i=1u
∗
i {[fi(x)−fi(x∗)]−(

fi(x
∗)

gi(x
∗)
−εi)[gi(x)−gi(x∗)]} − 1

)
≥ 1

p̃

(
Σpi=1u

∗
i {〈5fi(x∗)− (

fi(x
∗)

gi(x∗)
− εi)5 gi(x

∗), ep̃z − 1〉}

+
1

2
〈ep̃z − 1,Σpi=1u

∗
i [∇2fi(x

∗)z − (
fi(x

∗)

gi(x∗)
− εi)∇2gi(x

∗)z〉]
)

+ Σpi=1u
∗
i [ρ1 + ϕ(x∗)ρ2]‖θ(x, x∗)‖2

≥ −1

p̃

[
〈Σmj=1v

∗
j 5Hj(x

∗), ep̃z − 1〉

+
1

2

〈
ep̃z − 1,Σmj=1v

∗
j∇2Hj(x

∗)z
〉])

+ Σpi=1u
∗
i [ρ1 + ϕ(x∗)ρ2]‖θ(x, x∗)‖2

≥ (Σmj=1v
∗
j ρ3 + Σpi=1u

∗
i [ρ1 + ϕ(x∗)ρ2])‖θ(x, x∗)‖2

= (Σmj=1v
∗
j ρ3 + ρ∗)‖θ(x, x∗)‖2 ≥ 0,

where ϕ(x∗) = fi(x
∗)

gi(x∗) − εi and ρ∗ = Σpi=1u
∗
i (ρ1 + ϕ(x∗)ρ2). q.e.d.

Next, we present a certain specialization to Theorem 3.1 relating to the second order hybrid
B − (b, ρ, θ, p̃, r̃)-invexities when p̃ = 0 and r̃ = 0.

Theorem 3.2. Let x∗ ∈ Q, fi, gi for i ∈ {1, · · ·, p} with ϕ(x∗) = fi(x
∗)

gi(x∗) − εi ≥ 0, gi(x
∗) > 0

and Hj for j ∈ {1, · · ·,m} be twice continuously differentiable at x∗ ∈ Q, and let there exist
u∗ ∈ U = {u ∈ Rp : u > 0,Σpi=1ui = 1}, z ∈ Rn and v∗ ∈ Rm+ such that

Σpi=1u
∗
i [5fi(x∗)− (

fi(x
∗)

gi(x∗)
− εi)5 gi(x

∗)] + Σmj=1v
∗
j 5Hj(x

∗) = 0 (3.24)

〈
z,
[ p∑
i=1

u∗i [∇2fi(x
∗)− (

fi(x
∗)

gi(x∗)
− εi)∇2gi(x

∗)] +

m∑
j=1

v∗j∇2Hj(x
∗)
]
z
〉
≥ 0, (3.25)

v∗jHj(x
∗) = 0, j ∈ {1, · · ·,m}. (3.26)
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Suppose, in addition, that any one of the following assumptions holds:

(a) (i) Ei(. ;x
∗, u∗) ∀ i ∈ {1, · · ·, p} are second order hybrid B-(b̄, ρ̄, θ)- pseudoinvex at x∗ ∈ X

if there exists a function b̄ : X ×X → [0,∞) such that for all x ∈ X, b̄(x, x∗) > 0.

(ii) Bj(. , v
∗) ∀ j ∈ {1, · · ·,m} are second order hybrid B-(b, ρ, θ)- quasiinvex at x∗ ∈ X if

there exists a function b : X ×X → [0,∞).

(iii) ρ(x, x∗) + ρ̄(x, x∗) ≥ 0 for all x ∈ X.

(b) (i) Ei(. ;x
∗, u∗) ∀ i ∈ {1, · · ·, p} are second order hybrid B-(b̄, ρ1, θ)- pseudoinvex at x∗ ∈ X

if there exists a function b̄ : X ×X → [0,∞) such that b̄(x, x∗) > 0.

(ii) Bj(. , v
∗) ∀ j ∈ {1, · · ·,m} are second order hybrid B-(b, ρ2, θ)-quasiinvex at x∗ ∈ X if

there exists a function b : X ×X → [0,∞).

(iii) ρ1(x, x∗) + ρ2(x, x∗) ≥ 0.

(c) (i) Ei(. ;x
∗, u∗) ∀ i ∈ {1, · · ·, p} are second order prestrictly hybrid B-(b̄, ρ̄, θ)- pseudoinvex

at x∗ ∈ X if there exists a function b̄ : X ×X → [0,∞) such that b̄(x, x∗) > 0.

(ii) Bj(. , v
∗) ∀ j ∈ {1, · · ·,m} are second order strictly hybrid B-(b, ρ, θ)-pseudoinvex at

x∗ ∈ X if there exists a function b : X ×X → [0,∞).

(iii) ρ(x, x∗) + ρ̄(x, x∗) ≥ 0.

(d) (i) Ei(. ;x
∗, u∗) ∀ i ∈ {1, · · ·, p} are second order prestrictly hybridB-(b̄, ρ̄, θ)- quasi-invex

at x∗ ∈ X if there exists a function b̄ : X ×X → [0,∞) such that for all x ∈ X, b̄(x, x∗) > 0.

(ii) Bj(. , v
∗) ∀ j ∈ {1, · · ·,m} are second order strictly hybrid B-(b, ρ, θ)- pseudoinvex at

x∗ ∈ X if there exists a function b : X ×X → [0,∞).

(iii) ρ(x, x∗) + ρ̄(x, x∗) ≥ 0.

(e) (i) For each i ∈ {1, · · ·, p}, fi is second order hybrid B-(b̄, ρ1, θ)- invex and −gi is second
order hybrid B-(b̄, ρ2, θ)- invex at x∗ such that b̄(x, x∗) > 0.

(ii) Hj(. , v
∗) ∀ j ∈ {1, · · ·,m} is hybrid B-(b, ρ3, θ)- quasi-invex at x∗.

(iii) Σmj=1v
∗
j ρ3 + ρ∗ ≥ 0 for ρ∗ = Σpi=1u

∗
i (ρ1 + ϕ(x∗)ρ2) and for ϕ(x∗) = fi(x

∗)
gi(x∗) − εi.
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Then x∗ is an ε−efficient solution to (P).

Proof. Consider the proof for (a) as follows: if (a) holds, and x∗ ∈ Q, then based on (3.24) and
(3.25), we have

〈Σpi=1u
∗
i [5fi(x∗)− (

fi(x
∗)

gi(x∗)
− εi)5 gi(x

∗)], z〉

+ 〈Σmj=1v
∗
j 5Hj(x

∗), z〉 = 0, (3.27)

〈
z,
[ p∑
i=1

u∗i [∇2fi(x
∗)− (

fi(x
∗)

gi(x∗)
− εi)∇2gi(x

∗)] +

m∑
j=1

v∗j∇2Hj(x
∗)
]
z
〉
≥ 0. (3.28)

As v∗ ≥ 0, x ∈ Q and (3.3) holds, we have

Σmj=1v
∗
jHj(x) ≤ 0 = Σmj=1v

∗
jHj(x

∗),

and so
b(x, x∗)

(
[Hj(x)−Hj(x

∗)]
)
≤ 0

for b(x, x∗) ≥ 0 for all x ∈ Q. In light of the hybrid B-(b, ρ, θ)-quasiinvexity of Bj(., v
∗) at x∗, it

follows that 〈
∇Hj(x

∗) +
1

2
∇2Hj(x

∗)z, z
〉

+ ρ(x, x∗)‖θ(x, x∗)‖2 ≤ 0,

and hence, 〈
Σmj=1∇Hj(x

∗) +
1

2
Σmj=1∇2Hj(x

∗)z, z
〉

+ ρ(x, x∗)‖θ(x, x∗)‖2 ≤ 0. (3.29)

It follows from (3.27), (3.28), (3.29) and (iii) that

〈Σpi=1u
∗
i [5fi(x∗)− (

fi(x
∗)

gi(x∗)
− εi)5 gi(x

∗)]

+
1

2

p∑
i=1

u∗i [∇2fi(x
∗)z − (

fi(x
∗)

gi(x∗)
− εi)∇2gi(x

∗)z], z〉 ≥ −ρ̄(x, x∗)‖θ(x, x∗)‖2. (3.30)

Applying hybrid B-(b̄, ρ̄, θ)-pseudoinvexity at x∗ to (3.30), we have

b̄(x, x∗)
(
[Ei(x, x

∗, u∗)− Ei(x∗, x∗, u∗)]
)
≥ 0. (3.31)

Next, using b̄(x, x∗) > 0, (3.31) implies

Σpi=1u
∗
i [fi(x)− (

fi(x
∗)

gi(x∗)
− εi)gi(x)]

≥ Σpi=1u
∗
i [fi(x

∗)− (
fi(x

∗)

gi(x∗)
− εi)gi(x∗)]) ≥ 0.
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Thus, we have

Σpi=1u
∗
i [fi(x)− (

fi(x
∗)

gi(x∗)
− εi)gi(x)] ≥ 0. (3.32)

Now, since u∗i > 0 for each i ∈ {1, · · ·, p}, we conclude that there does not exist an x ∈ Q such that

fi(x)

gi(x)
− (

fi(x
∗)

gi(x∗)
− εi) ≤ 0 ∀ i = 1, · · ·, p,

fj(x)

gj(x)
− (

fj(x
∗)

gj(x∗)
− εj) < 0 for some j ∈ {1, · · ·, p}.

Hence, x∗ is an ε−efficient solution to (P).

(b) - (e): The proofs are similar to that of (a). q.e.d.

4 Concluding remarks

As we investigated the multiobjective fractional programming problem (P ) based on the generalized
framework of the second order B-(b, ρ, θ, p̃, r̃)- invexities of functions, the semiinfinite aspects of the
problem (P ) using the generalized second order invexities are relatively less explored to the context
of mathematical programming in the literature. Note that multiobjective programming problems
like (P ) but with a finite number of constraints, that is, when the functions Gj are independent
of t, and the functions Hk are independent of s, have been the subject of numerous investigations
during the past decades, including several classes of static and dynamic optimization problems with
multiple fractional objective functions have been studied and, as a result, a number of sufficient
efficiency and duality results are currently available for these problems in the related literature. A
close observation of research publications on multiobjective mathematical programming and other
related sources reveals that despite a phenomenal proliferation of publications in several areas of
multiobjective programming, so far semiinfinite nonlinear multiobjective fractional programming
problems have not received much attention in the area of mathematical programming. As a matter
of fact, until very recently there were almost no publications dealing with any kind of semiinfinite
multiobjective programming problems that made substantial application of any class of generalized
convex functions in establishing sufficient efficiency conditions or duality results.

Example 4.1. We consider a significant semiinfinite multiobjective fractional programming prob-
lem:

(P ∗) Minimize ϕ(x) =
(
ϕ1(x), . . . , ϕp(x)

)
=

(
f1(x)

g1(x)
, . . . ,

fp(x)

gp(x)

)
subject to

Gj(x, t) 5 0 for all t ∈ Tj , j ∈ q,

Hk(x, s) = 0 for all s ∈ Sk, k ∈ r,

x ∈ X,

where p, q, and r are positive integers, X is a nonempty subset of Rn (n-dimensional Euclidean
space), for each j ∈ q ≡ {1, 2, . . . , q} and k ∈ r, Tj and Sk are compact subsets of complete metric
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spaces, for each i ∈ p, fi and gi are real-valued functions defined on X, for each j ∈ q, Gj(·, t) is
a real-valued function defined on X for all t ∈ Tj , for each k ∈ r, Hk(·, s) is a real-valued function
defined on X for all s ∈ Sk, for each j ∈ q and k ∈ r, Gj(x, ·) and Hk(x, ·) are continuous real-
valued functions defined, respectively, on Tj and Sk for all x ∈ X, and for each i ∈ p, gi(x) > 0 for
all x satisfying the constraints of (P ∗).

The results established applying the hybrid B − (b, ρ, θ, p̃, r̃)-invexities for the multiobjective
fractional programming problem (P ) can be generalized to the case of the semiinfinite multiobjec-
tive fractional programming problem (P ∗) as well.

Next, we remark that the notion of the hybrid invexity seems to be application-oriented in
the sense of managing calculations, while generalizes and unifies most of the generalized invex-
ity concepts in the literature. We may also agree that the hybrid B − (b, ρ, θ, p̃, r̃)-invexities can
be upgraded to the case of the hybrid B − (b, ρ, η, ω, θ, p̃, r̃)-invexities by introducing functions
η, ω : Rn × Rn → Rn, which unifies most of the generalized invexities as follows:

Definition 4.2. The function f is said to be exponential type hybrid B-(b, ρ, η, ω, θ, p̃, r̃)-
pseudoinvex at x∗ ∈ X if there exist a function b : X×X → [0,∞), real numbers r̃ and p̃ such that
for all x ∈ X (x 6= x∗), and z ∈ Rn,

1

p̃

(〈
∇f(x∗), ep̃η(x,x∗) − 1

〉
+

1

2

〈
∇2f(x∗)z, ep̃ω(x,x∗) − 1

〉)
+ ρ(x, x∗)‖θ(x, x∗)‖2 ≥ 0

⇒ b(x, x∗)
(1

r̃

(
er̃[f(x)−f(x∗)] − 1

))
≥ 0 for p̃ 6= 0 and r̃ 6= 0.
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