Primitive elements of free Lie p-algebras

G. Rakviashvili

Ilia State University, Tbilisi, Georgia
E-mail: giorgi.rakviashvili@iliauni.edu.ge

Abstract

Let L be a finitely generated free Lie p-algebra and $\langle a\rangle$ an ideal generated by $a \in L$. It is proved that $L /\langle a\rangle$ is free if and only if $\langle a\rangle$ is primitive (i.e. a belongs to some set of free generators of L). Earlier analogues theorems were proved for some objects, for example, for groups, Lie algebras, free algebras and so on.

2010 Mathematics Subject Classification. 17B99.
Keywords. Lie p-algebras, primitive elements.
Introduction. It is known (1930, [4]), that if F is a finitely generated free group and $a \in F$ then a is a primitive element (i.e. a belongs to some set of free generators of F) if and only if $F /\langle a\rangle$ is a free group ($\langle a\rangle$ denotes a normal subgroup of F generated by a). Later similar theorems were proved for Lie algebras (1970, [2]), free algebras, free commutative algebras and free anticommutative algebras (2001, [6]). Mikhalev, Shpilrain and Umirbaev in (2004, [7]) conjectured that analogous theorem for Lie p-algebras is also true. In [8] the author proved Freiheitssatz for Lie p-algebras but with its help as it seems is impossible to prove the foresaid theorem. In this paper, we prove a theorem about primitive elements of free Lie p-algebras in the same manner as in (1970, [2]) using Bokuts result from [1]. Some results of our article were announced in [9].

Let k be a field of characteristic $p>0, p \neq 2$, let $F=k\langle X\rangle$ be a free associative algebra without identity with $X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ as a set of free generators. We will assume that $x_{i}<x_{j} \Leftrightarrow i>j$ and if w_{1} and w_{2} are words from $k\langle X\rangle$ then $w_{1}<w_{2}$ either deg $w_{1}<\operatorname{deg} w_{2}$ or $\operatorname{deg} w_{1}=\operatorname{deg} w_{2}$ and $w_{1}<w_{2}$ lexicographically.

For $f \in F=k\langle X\rangle$, let \bar{f} denote a leading word of F with nonzero coefficient. We assume that the coefficient of \bar{f} is equal to one. It is clear that $\bar{f} \bar{g}=\overline{f g}$.

Let $L_{p}\langle X\rangle$ denotes a free Lie p-algebra over k with X as a set of free generators. A set $Y \subset L_{p}\langle X\rangle$ is called p-independent [2] if Y is a set of free generators of Lie p-subalgebra of $L_{p}\langle X\rangle$ generated by Y (recall that any Lie p-subalgebra of free Lie p-algebra is free [12]).

We recall now several definitions and results about $L_{p}\langle X\rangle$.
A linear basis of $L_{p}\langle X\rangle$ are all p-proper words [2] which are formed from symbols $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$. If $L\langle X\rangle$ denotes a free Lie algebra free generated by the set X, then the proper words of $L_{p}\langle X\rangle$ are formal p^{k}-degrees of proper words of $L\langle X\rangle$.

We shall use the ordinary concept of degree of element from $L_{p}\langle X\rangle$; for example if $f=x_{\alpha} x_{\beta}+x_{\gamma}^{p}$, then $\operatorname{deg} f=p$. We assume that $\operatorname{deg} 0=0$.

Suppose $f \in L_{p}\langle X\rangle, f=\sum_{i} \alpha_{i} q_{i}$, where q_{i} are p-proper words. Such a record of f is called a right form of f. An element $f^{\prime}=\sum_{i \in I} \alpha_{i} q_{i}$ where degi $=\operatorname{deg} f$ and $\operatorname{deg} i<\operatorname{deg} f$ if $i \notin I$ is called a major part of f. Let \tilde{f} denote the major member of $f \in L_{p}\langle X\rangle$ defined as a lexicographically major word among $q_{i}, i \in I$. About these concepts see [2].

A subset $Y \subset L_{p}\langle X\rangle$ is called p-reduced [3] if for any $f \in Y$ his major part f^{\prime} does not belong to Lie p-subalgebra of $f \in L_{p}\langle X\rangle$ generated by major parts of all elements from $Y \backslash\{f\}$. We assume that the empty set is p-reduced. Let $Y=\left\{y_{1}, y_{2}, \ldots, y_{m}\right\} \subset L_{p}\langle X\rangle$ be a finite set. A map $t: Y \rightarrow L_{p}\langle X\rangle$ is called elementary if for some j

$$
\begin{gathered}
t\left(y_{i}\right)=y_{i}, \text { if } i \neq j \\
t\left(y_{j}\right)=\alpha y_{j}+\varphi_{j}\left(y_{1}, y_{2}, \ldots, y_{m}\right), \text { where } y_{j} \text { is missed; }
\end{gathered}
$$

here $\alpha \in k, \alpha \neq 0$ and φ_{j} are polynomials i.e. elements of free Lie p-algebra with m free generators.
Let Y^{\prime} denotes a set of major parts of elements from Y^{\prime} with respect to standard ordering considered in the beginning this paper. Put

$$
\begin{equation*}
l(Y)=\sum_{i} \operatorname{deg}\left(y_{i}\right) \tag{1}
\end{equation*}
$$

As we have already noted $\operatorname{deg} y_{i}$ is the length of longest word in y_{i} and $\operatorname{deg} 0=0$.
Lemma 1. Let $\left\{y_{1}, y_{2}, \ldots, y_{m}\right\}$ be a finite set of generators of $L_{p}\langle X\rangle$. Then it exist $l(Y)-n$ (here n is a number of free generators of $L_{p}\langle X\rangle$) elementary maps which translate Y onto a set of generators of $L_{p}\langle X\rangle$ with degrees (regarding to X) less or equal one.

Remark 1. This lemma was proved in [2] for Lie algebras; we prove our lemma in the same manner.

Proof. We may assume that Y contains at least one element; otherwise there is nothing to prove. Let us prove that Y^{\prime} is not p-independent. Since Y generates $L_{p}\langle X\rangle$ we must have

$$
\begin{equation*}
x_{i}=\sum_{i=1}^{m} \alpha_{i j} y_{j}+f_{i}\left(y_{1}, y_{2}, \ldots, y_{m}\right) \tag{2}
\end{equation*}
$$

where f_{i} does not contain elements of degree one. Assume all f_{i} are zero:

$$
\begin{equation*}
x_{i}=\sum_{i=1}^{m} \alpha_{i j} y_{j}, i=1,2, \ldots, n \tag{3}
\end{equation*}
$$

Let us compare elements with highest degrees in (3). Assume that there exists j_{0} such that $\operatorname{deg}\left(y_{j_{0}}\right)>1, \alpha_{i_{0} j_{0}} \neq 0$. Then

$$
\begin{equation*}
\left(x_{i_{0}}\right)^{\prime}=x_{i_{0}}=\left(\sum_{j=1}^{m} \alpha_{i_{0}} y_{j}\right)^{\prime} \tag{4}
\end{equation*}
$$

Let us denote $J=\left\{j \mid \operatorname{deg}\left(y_{j}\right)=\operatorname{deg}\left(y_{j_{0}}\right)\right\}$, then from (4) follows

$$
\begin{equation*}
\sum_{j \in J} \alpha_{i_{0}} y_{j}^{\prime}=0 \tag{5}
\end{equation*}
$$

i.e. Y^{\prime} is not p-independent because otherwise we would have $\operatorname{deg}\left(x_{0}\right)>1$.

On the other hand, if in (2) we have that if $(\forall i, j)\left(\alpha_{i j} \neq 0\right.$ implies $\left.\operatorname{deg}\left(y_{i}\right)=0\right)$, then from (3) it follows

$$
x_{i}^{\prime}=x_{i}=\sum_{j \in J_{i}} \alpha_{i j} y_{j}^{\prime}, i=1,2, \ldots, n
$$

Any element from Y^{\prime} is generated by elements x_{i}, therefore according to (5) all elements from Y^{\prime}, and among those with the degrees greater one, are generated by elements $y_{j}^{\prime}, j \in \bigcup_{i} J_{i}$, i.e. Y^{\prime} is not p-independent.

Now suppose that in (2) $f_{i_{0}}\left(y_{1}, y_{2}, \ldots, y_{m}\right) \neq 0$ for some i_{0}. If $f_{i_{0}}\left(y_{1}^{\prime}, y_{2}^{\prime}, \ldots, y_{m}^{\prime}\right)=0$ then Y^{\prime} is not p-independent. Now suppose $f_{i_{0}}\left(y_{1}^{\prime}, y_{2}^{\prime}, \ldots, y_{m}^{\prime}\right) \neq 0$. Let us write it as

$$
\begin{equation*}
f_{i_{0}}\left(y_{1}^{\prime}, y_{2}^{\prime}, \ldots, y_{m}^{\prime}\right)=\sum_{j=1}^{s} h_{j}\left(x_{1}, x_{2}, \ldots, x_{n}\right) \tag{6}
\end{equation*}
$$

where h_{j} is a homogeneous component of degree d_{i} of $f_{i_{0}}\left(y_{1}^{\prime}, y_{2}^{\prime}, \ldots, y_{m}^{\prime}\right), d_{1}<d_{2}<\ldots<d_{s}$. Because y_{i}^{\prime} are homogeneous, each polynomial $h_{j}\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ must be a polynomial of arguments $y_{1}^{\prime}, y_{2}^{\prime}, \ldots, y_{m}^{\prime}$:

$$
h_{j}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=q_{j}\left(y_{1}^{\prime}, y_{2}^{\prime}, \ldots, y_{m}^{\prime}\right)
$$

Therefore from (6) follows

$$
f_{i_{0}}\left(y_{1}^{\prime}, y_{2}^{\prime}, \ldots, y_{m}^{\prime}\right)=\sum j=1^{s} q_{j}\left(y_{1}^{\prime}, y_{2}^{\prime}, \ldots, y_{m}^{\prime}\right)
$$

where $q_{j}\left(y_{1}^{\prime}, y_{2}^{\prime}, \ldots, y_{m}^{\prime}\right) \neq 0, j=1,2, \ldots, s$, otherwise Y^{\prime} would have not been p-independent; in particular $q_{s}\left(y_{1}^{\prime}, y_{2}^{\prime}, \ldots, y_{m}^{\prime}\right)=0$. Consequently

$$
\left(f_{i_{0}}\left(y_{1}^{\prime}, y_{2}^{\prime}, \ldots, y_{m}^{\prime}\right)\right)^{\prime}=f_{i_{0}}\left(y_{1}^{\prime}, y_{2}^{\prime}, \ldots, y_{m}^{\prime}\right)=q_{s}\left(y_{1}^{\prime}, y_{2}^{\prime}, \ldots, y_{m}^{\prime}\right)
$$

From (2) follows

$$
\begin{equation*}
x_{i}=x_{i}^{\prime}=\left(\sum_{j=1}^{s} \alpha_{i_{0} j} y_{j}+f_{i_{0}}\left(y_{1}, y_{2}, \ldots, y_{m}\right)\right)^{\prime} \tag{7}
\end{equation*}
$$

Two cases are now possible.

1. $f_{i_{0}}\left(y_{1}^{\prime}, y_{2}^{\prime}, \ldots, y_{m}^{\prime}\right)=q_{s}\left(y_{1}^{\prime}, y_{2}^{\prime}, \ldots, y_{m}^{\prime}\right)$ is contained in the major part of $\sum_{j=1}^{m} \alpha_{i_{0} j} y_{j}$; then because the degree of x_{i} is one, for some $J \subset\{1,2, \ldots, m\}$ we must have (see (7)):

$$
\sum_{j \in J}^{m} \alpha_{i_{0} j} y_{j}+q_{s}\left(y_{1}^{\prime}, y_{2}^{\prime}, \ldots, y_{m}^{\prime}\right)=0
$$

i.e. Y^{\prime} is not p-independent.
2. $f_{i_{0}}\left(y_{1}^{\prime}, y_{2}^{\prime}, \ldots, y_{m}^{\prime}\right)=q_{s}\left(y_{1}^{\prime}, y_{2}^{\prime}, \ldots, y_{m}^{\prime}\right)$ is not contained in the major part of $\sum_{j=1}^{m} \alpha_{i_{0} j} y_{j}$; then $\sum_{j=1}^{m} \alpha_{i_{0} j} y_{j}$ contains letters y_{j} such that their degree are greater than d_{s} and consequently, greater than one. Let $y_{j}, j \in J$ be all y_{j} from $\sum_{j=1}^{m} \alpha_{i_{0} j} y_{j}$ (of course with nonzero coefficients) having the highest degree; then

$$
\sum_{j=1}^{m} \alpha_{i_{0} j} y_{j}=0
$$

because $\operatorname{deg}\left(x_{i_{0}}=1\right.$ (see (7), i.e. Y^{\prime} is not p-independent. So we have considered all cases and have proved that Y^{\prime} is not p-independent. In ([2], Lemma 2) was proved that a p-reduced subset of free Lie p-algebra is p-independent. From the above lemma follows, because Y^{\prime} is not p-independent,
that Y^{\prime} is not p-reduced. Therefore there exists an element $y_{j_{0}}^{\prime} \in\left(Y^{\prime}\right)^{\prime}=Y^{\prime}$ such that $y_{j_{0}}^{\prime}$ is contained in a p-subalgebra of $L_{p}\langle X\rangle$ generated by a set $Y^{\prime} \backslash\left\{y_{j_{0}}^{\prime}\right\}$ i.e.

$$
\begin{equation*}
y_{j_{0}}^{\prime}=q\left(y_{1}^{\prime}, \ldots, \hat{y}^{\prime}, \ldots, y_{m}^{\prime}\right), \tag{8}
\end{equation*}
$$

where $q\left(y_{1}^{\prime}, \ldots, \hat{y}^{\prime}, \ldots, y_{m}^{\prime}\right)$ does not contain $y_{j_{0}}^{\prime}$. Consequently a map

$$
\begin{equation*}
y_{i}^{(1)}=y_{i}, i \neq j_{0}, y_{j_{0}}^{(1)}=y_{j_{0}}-q\left(y_{1}^{\prime}, \ldots, \hat{y}^{\prime}, \ldots, y_{m}^{\prime}\right) \tag{9}
\end{equation*}
$$

reduces $l(Y)$ (see (1)). Indeed from (8) follows that $q\left(y_{1}, \ldots, \hat{y}^{\prime}, \ldots, y_{m}\right) \neq 0$ and therefore

$$
y_{j_{0}}=q\left(y_{1}^{\prime}, \ldots, \hat{y}^{\prime}, \ldots, y_{m}^{\prime}\right)=q\left(y_{1}, \ldots, \hat{y}, \ldots, y_{m}\right)^{\prime}
$$

i.e. (9) reduces $l(Y)$.

Lemma 2. Assume a set $Z=\left\{z_{1}, z_{2}, \ldots, z_{m}\right\}$ generates $L\langle X\rangle$ and $\operatorname{deg}_{X} z_{i} \leq 1$. If $\left\{z_{1}, z_{2}, \ldots, z_{m_{0}}\right\}$ is a maximal linearly independent subset of Z, then there exist $m-m_{0}$ elementary maps which transform Z onto the set $\left\{z_{1}, z_{2}, \ldots, z_{m_{0}}, 0, \ldots 0\right\}$.

Proof. Let $z_{j}=\sum_{j=1}^{m_{0}} \alpha_{i j} z_{j}, i=m_{0}+1, m_{0}+2, \ldots, m$. Then it is clear that the sought maps are

$$
\begin{gathered}
\tilde{z}_{i}=z_{i}, i=1,2, \ldots, m \\
\tilde{z}_{i}=z_{i}-\sum_{j=1}^{m_{0}} \alpha_{i j} z_{j}, i=m_{0}+1, m_{0}+2, \ldots, m
\end{gathered}
$$

Recall that $F=k\langle X\rangle$ is the free associative algebra over set $X=\left\{x-1, x_{2}, \ldots, x_{n}\right\}$ without iden- tity (of course $X \subset F$). For $a \in F$, let $\langle a\rangle$ be an ideal of F generated by a. It is clear that $a \in\langle a\rangle$. Let \bar{a} be the major word of a.

Lemma 3. If $a, b \in k\langle X\rangle$ and $\langle a\rangle=\langle b\rangle$, then a and b are linearly dependent.
Proof. If either $\langle a\rangle$ or $\langle b\rangle$ are zero, our proposition of course is valid. So we may assume that $a, b \neq 0$. From [1] follows that if $x \in\langle a\rangle$, then \bar{a} is a subword of \bar{x}. Therefore \bar{a} is a subword of \bar{b} and, conversely, \bar{b} is a subword of \bar{a} and consequently $\bar{a}=\bar{b}$. Suppose

$$
a=\alpha \bar{a}+\ldots, b=\beta \bar{b} ; \alpha, \beta \in k, \alpha, \beta \neq 0
$$

Consider the element $c=a-\frac{\alpha}{\beta} b \in\langle a\rangle=\langle b\rangle$. If $c \neq 0$, then \bar{c} is less then \bar{a}. On the other hand, \bar{a} is a subword of \bar{c} - contradiction, so $c=0$.

Corollary 1. Let $F_{1}=k\langle X\rangle_{1}$ be a free associative algebra with identity which is freely generated by X. Suppose $a, b \in F_{1}$ and $\langle a\rangle=\langle=b\rangle$. Then a and b are linearly dependent.

Proof. This is clear since $\langle a\rangle$ is an ideal in $F=k\langle X\rangle$ if and only if $\langle a\rangle$ is the ideal in $F_{1}=k\langle X\rangle_{1}$.
Let $\langle a\rangle$ denote an ideal of $L_{p}\langle X\rangle$ generated by $a \in L_{p}\langle X\rangle$ (we assume $a \in\langle a\rangle$) and let \bar{a} be the major word of a.

Corollary 2. Let $\langle a\rangle=\langle b\rangle \subseteq L_{p}\langle X\rangle$. Then a and b are linearly dependent.
Proof. As is well known, $u\left(L_{p}(X)\right)=k\langle X\rangle_{1}=F_{1}$ (here $u\left(L_{p}(X)\right.$) is a restricted universal enveloping algebra of $L_{p}(X)$). Let $\langle a\rangle$ and $\langle b\rangle$ be the ideals in $F_{1}=k\langle X\rangle_{1}$, generated, respectively by a and b. It is clear that

$$
\langle a\rangle_{1}=\langle b\rangle_{1} \subseteq F\langle X\rangle,
$$

then according to Lemma 3 the elements a and b are linearly dependent.
Definition. An element $a \in L_{p}\langle X\rangle$ is primitive if there exist a set Y of free generators of $L_{p}\langle X\rangle$ such that $a \in Y$.

Theorem. $L_{p}\langle X\rangle /\langle a\rangle$ is free if and only if a is primitive in $L_{p}\langle X\rangle$.
Proof. It is clear that if a is primitive then $L_{p}\langle X\rangle /\langle a\rangle$. Suppose that $L_{p}\langle X\rangle /\langle a\rangle$ is free and let us prove that a is primitive.

Let us denote $\bar{L}=L_{p}\langle X\rangle /\langle a\rangle$. It is clear that $\operatorname{dim} \bar{L} / \bar{L}^{2} \geq n-1$. Indeed

$$
\bar{L} / \bar{L}^{2}=\left(L_{p}\langle X\rangle /\langle a\rangle\right) /\left(L_{p}\langle X\rangle /\langle a\rangle\right)^{2} \cong L_{p}\langle X\rangle /\left(L_{p}\langle X\rangle^{2}+\langle a\rangle\right) ;
$$

but last term as k-vector space is isomorphic to $\left(k x_{1}+k x_{2}+\ldots+k x_{n}+\langle a\rangle\right) /\langle a\rangle$, which implies that $\operatorname{dim}\left(\bar{L} / \bar{L}^{2}\right) \geq n-1$.

On the other hand, $L_{p}\langle X\rangle$ is generalized nilpotent, i.e. intersection all its degrees is zero. According to [5] all generalized nilpotent algebras are Hopf type, i.e. they are not isomorphic to their proper factor- algebras. Consequently,

$$
\operatorname{rank} \bar{L}=\operatorname{rank}\left(L_{p}\langle X\rangle /\langle a\rangle\right) \leq n-1
$$

However, if $\operatorname{rank}(\bar{L}) \leq n-1$, then $\operatorname{rank}\left(\bar{L} / \bar{L}^{2}\right)<n-1$; so $\operatorname{rank}(\bar{L})=n-1$ and there exist a set of free generators $Y=\left\{y_{1}, y_{2}, \ldots, y_{n-1}\right\}$ for \bar{L}. The set $X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ generates \bar{L} and by to Lemma 1 there exist elementary maps which transform \bar{X} in a set of generators $Z=\left\{z_{1}, z_{2}, \ldots, z_{r}\right\}$ of \bar{L} such that degrees of $z_{i}, i=1,2, \ldots, r$ with respect Y are not greater than one. By lemma 2 there exist elementary maps which transform $Z=\left\{z_{1}, z_{2}, \ldots, z_{r}\right\}$ onto $\left\{z_{1}, z_{2}, \ldots, z_{r_{0}}, 0, \ldots, 0\right\}$, where $\left\{z_{1}, z_{2}, \ldots, z_{r_{0}}\right\}$ is a maximal linearly independent set in L. It is clear that $r_{0}=n-1$ and number of zeros in $\left\{z_{1}, z_{2}, \ldots, z_{r_{0}}, 0, \ldots, 0\right\}$ is one, therefore some elementary maps transform $\left\{z_{1}, z_{2}, \ldots, z_{r_{0}}, 0\right\}$ on $\left\{y_{1}, y_{2}, \ldots, y_{r_{0}}, 0\right\}$ (if this set contains only zero then $n=1$). Therefore we may assume that there exist elementary maps $\varphi_{1}, \varphi_{2}, \ldots, \varphi_{s}$ which transform $\bar{X}=\left\{\bar{x}_{1}, \bar{x}_{2}, \ldots, \bar{x}_{n}\right\}$ onto $\left\{y_{1}, y_{2}, \ldots, y_{r_{0}}, 0\right\}$. The elements $X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ are preimages of $\bar{X}=\left\{\bar{x}_{1}, \bar{x}_{2}, \ldots, \bar{x}_{n}\right\}$. The maps $\varphi_{1}, \varphi_{2}, \ldots, \varphi_{s}$ transform X on a set $\left\{t_{1}, t_{2}, \ldots, t_{n}\right\}$ of free generators of $L_{p}\langle X\rangle$. Let us consider a projection $\pi: L_{p}\langle X\rangle \rightarrow L_{p}\langle X\rangle /\langle a\rangle$. From a commutative diagram below it is clear that $\pi\left(t_{n}\right)=0$:

$$
\begin{array}{ccc}
\left\{x_{1}, x_{2}, \ldots, x_{n}\right\} & \xrightarrow{\pi} & \left\{\bar{x}_{1}, \bar{x}_{2}, \ldots, \overline{x_{n}}\right\} \\
\downarrow & \downarrow & \\
\left\{t_{1}, t_{2}, \ldots, t_{n}\right\} & \xrightarrow{\pi} & \left\{y_{1}, y_{2}, \ldots, y_{n-1}, 0\right\}
\end{array},
$$

where vertical maps are equal to composition φ of the maps $\varphi_{1}, \varphi_{2}, \ldots, \varphi_{s}$. So $t_{n} \in\langle a\rangle$, i.e. $\left\langle t_{n}\right\rangle \in$ $\langle a\rangle$. In fact, $\left\langle t_{n}\right\rangle=\langle a\rangle$. Indeed let us consider an algebra $L_{p}\langle X\rangle /\left\langle t_{n}\right\rangle$. It is free. As $\left\langle t_{n}\right\rangle \in\langle a\rangle$ so

$$
\left(L_{p}\langle X\rangle /\left\langle t_{n}\right\rangle\right) /\left(\langle a\rangle /\left\langle t_{n}\right\rangle\right) \cong L_{p}\langle X\rangle /\langle a\rangle .
$$

As $L_{p}\langle X\rangle /\left\langle t_{n}\right\rangle$ and $L_{p}\langle X\rangle /\langle a\rangle$ are free Lie p-algebras with $n-1$ generators, and free Lie p-algebras are Hopf type algebras we must have $\langle a\rangle /\left\langle t_{n}\right\rangle=0$, i.e. $\langle a\rangle=\left\langle t_{n}\right\rangle$. Then from Corollary 2 follows that $a=\alpha t_{n}$ for some $\alpha \in k$, i.e. a is primitive.

Remark 2. We assume that the other results from [2] can be proved in the same way.
Remark 3. J. P. Serre has proved the following theorem ([11], [10]):

Theorem (Serre). Let R be a commutative ring and let G be a group having no R-torsion. If H is a subgroup of finite index in G, then $c d_{R} G=c d_{R} H$.

We assume that an analogous statement about Lie p-algebras is also valid: let L be a Lie p algebra such that restricted universal algebras of all finite Lie p-subalgebras of L are semisimple. If H is a Lie p-subalgebra of finite index in L, then $c d_{L} G=c d_{R} H$.

Acknowledgment. This work is partially supported by GNSF grant FR/307/5-113/13.

References

[1] L. A. Bokut, Embedddings in prime associative algebras, Algebra i Logica, 15(2) (1976), 117142 (in Russ.)
[2] G. P. Kukin, Primitive elements of free Lie algebras, Algebra i Logica, 9(4) (1970), 458-472 (in Russ.).
[3] G. P. Kukin, On subalgebras of free Lie p-algebras, Algebra i Logica 11(5) (1972) 535-550 (in Russ.).
[4] W. Magnus, Uber diskontinuierliche Gruppen mit einer definierden Relation (Der Freiheitssatz), J. Reine Angew. Math. 163 (1930), 141-165.
[5] A. I. Malcev, On algebras with identity relations, Mat. Sborn. 26/1 (1950), 19-33 (Russ.).
[6] A. A. Mikhalev, U. U. Umirbaev and J.-T. Yu, Automorphic orbits in free nonassociative algebras. J. Algebra, 243 (2001), 198-223.
[7] A. A. Mikhalev, V. Shpilrain and U. U. Umirbaev, On isomorphism of Lie algebras with one defining relations. Int. J. Algebra Comput. 14(3) (2004), 389-394.
[8] G. Rakviashvili, Combinatorial aspects of free associative algebras and cohomologies of Lie palgebras with one defining relation, Journal of Mathematical Sciences 160(6) (2009), 822-832.
[9] G. Rakviashvili, Primitive elements of free Lie p-algebras, Bull. of the Georgian Academy of Sciences, 8(2) (2014), 14-18.
[10] J.-P. Serre, Cohomologie des groups discrets Ann. Math. Studies 70 (1971), 77-169
[11] R. G. Swan, Groups of cohomological dimension one, J. of Algebra 12 (1969), 585-604.
[12] E. Witt, Die Unterringe freien Lieschen Ringe. Math. Z. 64(2) (1956), 195-216.

