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Abstract

Let L be a finitely generated free Lie p-algebra and 〈a〉 an ideal generated by a ∈ L. It is proved
that L/〈a〉 is free if and only if 〈a〉 is primitive (i.e. a belongs to some set of free generators
of L). Earlier analogues theorems were proved for some objects, for example, for groups, Lie
algebras, free algebras and so on.
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Introduction. It is known (1930, [4]), that if F is a finitely generated free group and a ∈ F
then a is a primitive element (i.e. a belongs to some set of free generators of F ) if and only
if F/〈a〉 is a free group (〈a〉 denotes a normal subgroup of F generated by a). Later similar
theorems were proved for Lie algebras (1970, [2]), free algebras, free commutative algebras and free
anticommutative algebras (2001, [6]). Mikhalev, Shpilrain and Umirbaev in (2004, [7]) conjectured
that analogous theorem for Lie p-algebras is also true. In [8] the author proved Freiheitssatz for Lie
p-algebras but with its help as it seems is impossible to prove the foresaid theorem. In this paper,
we prove a theorem about primitive elements of free Lie p-algebras in the same manner as in (1970,
[2]) using Bokuts result from [1]. Some results of our article were announced in [9].

Let k be a field of characteristic p > 0, p 6= 2, let F = k〈X〉 be a free associative algebra without
identity with X = {x1, x2, ..., xn} as a set of free generators. We will assume that xi < xj ⇔ i > j
and if w1 and w2 are words from k〈X〉 then w1 < w2 either degw1 < degw2 or degw1 = degw2 and
w1 < w2 lexicographically.

For f ∈ F = k〈X〉, let f̄ denote a leading word of F with nonzero coefficient. We assume that
the coefficient of f̄ is equal to one. It is clear that f̄ ḡ = fg.

Let Lp〈X〉 denotes a free Lie p-algebra over k withX as a set of free generators. A set Y ⊂ Lp〈X〉
is called p-independent [2] if Y is a set of free generators of Lie p-subalgebra of Lp〈X〉 generated
by Y (recall that any Lie p-subalgebra of free Lie p-algebra is free [12]).

We recall now several definitions and results about Lp〈X〉.
A linear basis of Lp〈X〉 are all p-proper words [2] which are formed from symbols {x1, x2, ..., xn}.

If L〈X〉 denotes a free Lie algebra free generated by the set X, then the proper words of Lp〈X〉 are
formal pk-degrees of proper words of L〈X〉.

We shall use the ordinary concept of degree of element from Lp〈X〉; for example if f = xαxβ+xpγ ,
then degf = p. We assume that deg0 = 0.

Suppose f ∈ Lp〈X〉, f =
∑
i αiqi, where qi are p-proper words. Such a record of f is called a

right form of f . An element f ′ =
∑
i∈I αiqi where degi = degf and degi < degf if i /∈ I is called

a major part of f . Let f̃ denote the major member of f ∈ Lp〈X〉 defined as a lexicographically
major word among qi, i ∈ I. About these concepts see [2].
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A subset Y ⊂ Lp〈X〉 is called p-reduced [3] if for any f ∈ Y his major part f ′ does not belong
to Lie p-subalgebra of f ∈ Lp〈X〉 generated by major parts of all elements from Y \{f}. We
assume that the empty set is p-reduced. Let Y = {y1, y2, ..., ym} ⊂ Lp〈X〉 be a finite set. A map
t : Y → Lp〈X〉 is called elementary if for some j

t(yi) = yi, if i 6= j,

t(yj) = αyj + ϕj(y1, y2, ..., ym),where yj is missed;

here α ∈ k, α 6= 0 and ϕj are polynomials i.e. elements of free Lie p-algebra with m free generators.
Let Y ′ denotes a set of major parts of elements from Y ′ with respect to standard ordering

considered in the beginning this paper. Put

l(Y ) =
∑
i

deg(yi). (1)

As we have already noted degyi is the length of longest word in yi and deg0 = 0.

Lemma 1. Let {y1, y2, ..., ym} be a finite set of generators of Lp〈X〉. Then it exist l(Y ) − n
(here n is a number of free generators of Lp〈X〉 ) elementary maps which translate Y onto a set of
generators of Lp〈X〉 with degrees (regarding to X) less or equal one.

Remark 1. This lemma was proved in [2] for Lie algebras; we prove our lemma in the same
manner.

Proof. We may assume that Y contains at least one element; otherwise there is nothing to
prove. Let us prove that Y ′ is not p-independent. Since Y generates Lp〈X〉 we must have

xi =

m∑
i=1

αijyj + fi(y1, y2, ..., ym), (2)

where fi does not contain elements of degree one. Assume all fi are zero:

xi =

m∑
i=1

αijyj , i = 1, 2, ..., n. (3)

Let us compare elements with highest degrees in (3). Assume that there exists j0 such that
deg(yj0) > 1, αi0j0 6= 0. Then

(xi0)′ = xi0 = (

m∑
j=1

αi0yj)
′. (4)

Let us denote J = {j|deg(yj) = deg(yj0)}, then from (4) follows∑
j∈J

αi0y
′
j = 0, (5)

i.e. Y ′ is not p-independent because otherwise we would have deg(x0) > 1.
On the other hand, if in (2) we have that if (∀i, j)(αij 6= 0 implies deg(yi) = 0), then from (3)

it follows
x′i = xi =

∑
j∈Ji

αijy
′
j , i = 1, 2, ..., n.
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Any element from Y ′ is generated by elements xi, therefore according to (5) all elements from Y ′,
and among those with the degrees greater one, are generated by elements y′j , j ∈

⋃
i Ji, i.e. Y ′ is

not p-independent.
Now suppose that in (2) fi0(y1, y2, ..., ym) 6= 0 for some i0. If fi0(y′1, y

′
2, ..., y

′
m) = 0 then Y ′ is

not p-independent. Now suppose fi0(y′1, y
′
2, ..., y

′
m) 6= 0. Let us write it as

fi0(y′1, y
′
2, ..., y

′
m) =

s∑
j=1

hj(x1, x2, ..., xn), (6)

where hj is a homogeneous component of degree di of fi0(y′1, y
′
2, ..., y

′
m), d1 < d2 < ... < ds.

Because y′i are homogeneous, each polynomial hj(x1, x2, ..., xn) must be a polynomial of arguments
y′1, y

′
2, ..., y

′
m:

hj(x1, x2, ..., xn) = qj(y
′
1, y
′
2, ..., y

′
m).

Therefore from (6) follows

fi0(y′1, y
′
2, ..., y

′
m) =

∑
j = 1sqj(y

′
1, y
′
2, ..., y

′
m),

where qj(y
′
1, y
′
2, ..., y

′
m) 6= 0, j = 1, 2, ..., s, otherwise Y ′ would have not been p-independent; in

particular qs(y
′
1, y
′
2, ..., y

′
m) = 0. Consequently

(fi0(y′1, y
′
2, ..., y

′
m))′ = fi0(y′1, y

′
2, ..., y

′
m) = qs(y

′
1, y
′
2, ..., y

′
m).

From (2) follows

xi = x′i = (

s∑
j=1

αi0jyj + fi0(y1, y2, ..., ym))′. (7)

Two cases are now possible.
1.fi0(y′1, y

′
2, ..., y

′
m) = qs(y

′
1, y
′
2, ..., y

′
m) is contained in the major part of

∑m
j=1 αi0jyj ; then be-

cause the degree of xi is one, for some J ⊂ {1, 2, ...,m} we must have (see (7)):

m∑
j∈J

αi0jyj + qs(y
′
1, y
′
2, ..., y

′
m) = 0.

i.e.Y ′ is not p-independent.
2. fi0(y′1, y

′
2, ..., y

′
m) = qs(y

′
1, y
′
2, ..., y

′
m) is not contained in the major part of

∑m
j=1 αi0jyj ; then∑m

j=1 αi0jyj contains letters yj such that their degree are greater than ds and consequently, greater

than one. Let yj , j ∈ J be all yj from
∑m
j=1 αi0jyj (of course with nonzero coefficients) having the

highest degree; then
m∑
j=1

αi0jyj = 0

because deg(xi0 = 1 (see (7), i.e. Y ′ is not p-independent. So we have considered all cases and have
proved that Y ′ is not p-independent. In ([2], Lemma 2) was proved that a p-reduced subset of free
Lie p-algebra is p-independent. From the above lemma follows, because Y ′ is not p-independent,
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that Y ′ is not p-reduced . Therefore there exists an element y′j0 ∈ (Y ′)′ = Y ′ such that y′j0 is
contained in a p-subalgebra of Lp〈X〉 generated by a set Y ′ \ {y′j0} i.e.

y′j0 = q(y′1, ..., ŷ
′, ..., y′m), (8)

where q(y′1, ..., ŷ
′, ..., y′m) does not contain y′j0 . Consequently a map

y
(1)
i = yi, i 6= j0, y

(1)
j0

= yj0 − q(y′1, ..., ŷ′, ..., y′m) (9)

reduces l(Y ) (see (1)). Indeed from (8) follows that q(y1, ..., ŷ
′, ..., ym) 6= 0 and therefore

yj0 = q(y′1, ..., ŷ
′, ..., y′m) = q(y1, ..., ŷ, ..., ym)′,

i.e. (9) reduces l(Y ) .

Lemma 2. Assume a set Z = {z1, z2, ..., zm} generates L〈X〉 and degXzi ≤ 1. If {z1, z2, ..., zm0
}

is a maximal linearly independent subset of Z, then there exist m − m0 elementary maps which
transform Z onto the set {z1, z2, ..., zm0

, 0, ...0}.
Proof. Let zj =

∑m0

j=1 αijzj , i = m0 + 1,m0 + 2, ...,m. Then it is clear that the sought maps
are

z̃i = zi, i = 1, 2, ...,m,

z̃i = zi −
m0∑
j=1

αijzj , i = m0 + 1,m0 + 2, ...,m.

Recall that F = k〈X〉 is the free associative algebra over set X = {x − 1, x2, ..., xn} without
iden- tity (of course X ⊂ F ). For a ∈ F , let 〈a〉 be an ideal of F generated by a. It is clear that
a ∈ 〈a〉. Let ā be the major word of a.

Lemma 3. If a, b ∈ k〈X〉 and 〈a〉 = 〈b〉, then a and b are linearly dependent.
Proof. If either 〈a〉 or 〈b〉 are zero, our proposition of course is valid. So we may assume

thata, b 6= 0. From [1] follows that if x ∈ 〈a〉, then ā is a subword of x̄. Therefore ā is a subword of
b̄ and, conversely, b̄ is a subword of ā and consequently ā = b̄. Suppose

a = αā+ ..., b = βb̄;α, β ∈ k, α, β 6= 0.

Consider the element c = a− α
β b ∈ 〈a〉 = 〈b〉. If c 6= 0, then c̄ is less then ā. On the other hand, ā

is a subword of c̄ - contradiction, so c = 0.

Corollary 1. Let F1 = k〈X〉1 be a free associative algebra with identity which is freely
generated by X. Suppose a, b ∈ F1 and 〈a〉 = 〈= b〉. Then a and b are linearly dependent.

Proof. This is clear since 〈a〉 is an ideal in F = k〈X〉 if and only if 〈a〉 is the ideal in F1 = k〈X〉1.
Let 〈a〉 denote an ideal of Lp〈X〉 generated by a ∈ Lp〈X〉 (we assume a ∈ 〈a〉) and let ā be the

major word of a.

Corollary 2. Let 〈a〉 = 〈b〉 ⊆ Lp〈X〉. Then a and b are linearly dependent.
Proof. As is well known, u(Lp(X)) = k〈X〉1 = F1 (here u(Lp(X)) is a restricted universal

enveloping algebra of Lp(X)). Let 〈a〉 and 〈b〉 be the ideals in F1 = k〈X〉1, generated, respectively
by a and b. It is clear that

〈a〉1 = 〈b〉1 ⊆ F 〈X〉,
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then according to Lemma 3 the elements a and b are linearly dependent.

Definition. An element a ∈ Lp〈X〉 is primitive if there exist a set Y of free generators of Lp〈X〉
such that a ∈ Y .

Theorem. Lp〈X〉/〈a〉 is free if and only if a is primitive in Lp〈X〉.
Proof. It is clear that if a is primitive then Lp〈X〉/〈a〉. Suppose that Lp〈X〉/〈a〉 is free and let

us prove that a is primitive.
Let us denote L̄ = Lp〈X〉/〈a〉. It is clear that dimL̄/L̄2 ≥ n− 1. Indeed

L̄/L̄2 = (Lp〈X〉/〈a〉)/(Lp〈X〉/〈a〉)2 ∼= Lp〈X〉/(Lp〈X〉2 + 〈a〉);

but last term as k-vector space is isomorphic to (kx1 + kx2 + ... + kxn + 〈a〉)/〈a〉, which implies
that dim(L̄/L̄2) ≥ n− 1.

On the other hand, Lp〈X〉 is generalized nilpotent, i.e. intersection all its degrees is zero.
According to [5] all generalized nilpotent algebras are Hopf type, i.e. they are not isomorphic to
their proper factor- algebras. Consequently,

rankL̄ = rank(Lp〈X〉/〈a〉) ≤ n− 1.

However,if rank(L̄) ≤ n − 1, then rank(L̄/L̄2) < n − 1; so rank(L̄) = n − 1 and there exist a set
of free generators Y = {y1, y2, ..., yn−1} for L̄. The set X = {x1, x2, ..., xn} generates L̄ and by to
Lemma 1 there exist elementary maps which transform X̄ in a set of generators Z = {z1, z2, ..., zr}
of L̄ such that degrees of zi, i = 1, 2, ..., r with respect Y are not greater than one. By lemma 2
there exist elementary maps which transform Z = {z1, z2, ..., zr} onto {z1, z2, ..., zr0 , 0, ..., 0}, where
{z1, z2, ..., zr0} is a maximal linearly independent set in L. It is clear that r0 = n−1 and number of
zeros in {z1, z2, ..., zr0 , 0, ..., 0} is one, therefore some elementary maps transform {z1, z2, ..., zr0 , 0}
on {y1, y2, ..., yr0 , 0} (if this set contains only zero then n = 1). Therefore we may assume that there
exist elementary maps ϕ1, ϕ2, ..., ϕs which transform X̄ = {x̄1, x̄2, ..., x̄n} onto {y1, y2, ..., yr0 , 0}.
The elements X = {x1, x2, ..., xn} are preimages of X̄ = {x̄1, x̄2, ..., x̄n}. The maps ϕ1, ϕ2, ..., ϕs
transform X on a set {t1, t2, ..., tn} of free generators of Lp〈X〉. Let us consider a projection
π : Lp〈X〉 → Lp〈X〉/〈a〉. From a commutative diagram below it is clear that π(tn) = 0:

{x1, x2, ..., xn}
π−→ {x̄1, x̄2, ..., x̄n}

↓ ↓
{t1, t2, ..., tn}

π−→ {y1, y2, ..., yn−1, 0}
,

where vertical maps are equal to composition ϕ of the maps ϕ1, ϕ2, ..., ϕs. So tn ∈ 〈a〉, i.e. 〈tn〉 ∈
〈a〉. In fact, 〈tn〉 = 〈a〉. Indeed let us consider an algebra Lp〈X〉/〈tn〉. It is free. As 〈tn〉 ∈ 〈a〉 so

(Lp〈X〉/〈tn〉)/(〈a〉/〈tn〉) ∼= Lp〈X〉/〈a〉.

As Lp〈X〉/〈tn〉 and Lp〈X〉/〈a〉 are free Lie p-algebras with n−1 generators, and free Lie p-algebras
are Hopf type algebras we must have 〈a〉/〈tn〉 = 0, i.e. 〈a〉 = 〈tn〉. Then from Corollary 2 follows
that a = αtn for some α ∈ k, i.e. a is primitive.

Remark 2. We assume that the other results from [2] can be proved in the same way.

Remark 3. J. P. Serre has proved the following theorem ([11], [10]):



40 G. Rakviashvili

Theorem (Serre). Let R be a commutative ring and let G be a group having no R-torsion.
If H is a subgroup of finite index in G, then cdRG = cdRH.

We assume that an analogous statement about Lie p-algebras is also valid: let L be a Lie p-
algebra such that restricted universal algebras of all finite Lie p-subalgebras of L are semisimple.
If H is a Lie p-subalgebra of finite index in L, then cdLG = cdRH.
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