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Remarks on Riesz sets

By Hiroshi YamacucHI
(Received March 13, 1978; Revised March 28, 1978)

§ 1. Introduction.

Let G be the dual group of a LCA group G. M(G) denotes the usual
Banach algebra of all bounded regular Borel measures on G. L}G) is the
space of all integrable functions on G with respect to a Haal measure on
G. For a p=M(G), its Fourier-Stieltjes transform g is defined as follows.

) =L<—x, Ndu(z)  for y=@.

For a subset E of G, Mz(G) denotes the subspace of M(G) consisting
of measures whose Fourier-Stieltijes transforms vanish off E. Let G=T7,
and let P be a positive octant of G=2Z» Thar is P={my, -, m)E2Z",;
m;=0 (i=1, .-, n)}. The following theorem (A) is called the Bochner’s theo-
rem. |

(A) For every p=Mp(T™), p is absolutely continuous with respect to
a Lebesque measure on 7™. That is, Mp(T™C L\(T™).

If we exchange 7™ by R, the same result is established.

The author proved in ([2]) the following theorem.

(B) Let G be a LCA group such that G is algebraically ordered.
Let M?(G) denote the subspace of M(G) consisting of measures
of analytic type. Suppose M?(G)x{0}. If M+(G)c LY(G), then
G admits one of the following structures.

(@ G=R, (b) G=R@D,
¢ G=T, d G=THD
for some discrete abelian group D. Moreover, let G be one
of the above groups. P is a subsemigroup of G such that (i)
PU(—P)=G and PN(—P)={0}). Set MG)=MG). Then,
Mi(G)c LYG).

We start to consider whether an analogy of the Bochner’s theorem is

established if we exchange T by TA@D.

ProrosiTION 1. Let H=T®D, where D is a discrete abelian group
such that D is torsion-free. Let Py be a subsemigroup of H=Z®G such that
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() PgU(—Pr=H and (i) PyN(—Pp={0}. Let GZH”(:Héfz@H), then

Mpz(G) is included in L'(G), where PI’;:PH;(—:?;(\PH:{(rI,---,r")EG;
7:S Py, 1=1,2, -+, n}.

In order to prove this proposition, we need the following two lemmas.

LEMMA 1. Let F be a compact torsion-free abelian group.

(1) Let P be a subsemigroup of ZPDF such that (i) PU(—P)=ZPF
and (ii) PN(—P)={0}. If P is not dense in ZDF, then

P={(n,f)EZ@F; n>0, or n=0 and f=p O}
or
={(n,f)EZE{—)F; n<0, or n=0 and f=p 0}

(2) Let P be a subsemigroup of RPF such that () PU(—P)=ROF
and (ii) PN(—P)={0}. If P is not dense in RPF, then

Pz{(x,f)ER@F; x>0, or x=0 and f=p 0}
or
={(x,f)ER(—DF; x<0, or x=0 and f=p O}

Where ‘<’ denotes the usual order on Z and R, and ‘=p denotes the order
on F induced by P.

Proor. We prove only (2). Suppose P is not dense in RPF. Since
P is dense in F, PN R is not dense in R. Hence, by proposition 2 of [3],
PN R=[0, o0) or (—o0,0]. We consider only the case PN R=[0, c0). Sup-
pose there exists an xy>0(z,ER) such that (xz,, fo) (—P) for some f,EF.
Then {(x,/)ERDPF; x<x, fEF} is included in (—P). Since (—P) is a
semigroup, (—P)=RPF. That is, P is dense in RPF. This is a con-
tradiction. Q.E.D.

DEFINITION 1. G is a LCA group. A subset E of G is called the
Riesz set if My(G)c LY(G). :

LEMMA 2. Let G, be a LCA group, and let G, be a discrete abelian
group. If E(CG) is a Riesz set of G, then ExG, is a Riesz set of GG,

ProoF. For p& Mz, (Gi@DG)), v is represented as follows.
du(x, Y) = dpts () X d6,,¥) (2:9) EG:D G
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, where p,, belongs to M(G,) and 0, is the Dirac measure at ¥,EG, (n=
1,2,-.-), and moreover ||y||= i ltt1.all For n&E, (11, 1) SEXG, for every
n=1

72 e Gz.
Hence,

5 unlrd (~v 7
=f(1,7)=0  for every 17,€G,.

Since i | f1,0(11)] < o0, we can derive that f; ,(r,)=0 (n=1,2,.--). That
n=1

is, € Mg(G) (n=1,2,---). By the hypothesis, g , belongs to L!(G,), and
so p is contained in LY (G,PG,). Q.E.D.

Proor OF ProrosiTioN 1. If Py is dense in H, then Pz is also dense
in G. Hence, M (G)={0}CL!G). If Py is not dense in H, then by
lemma 1, PyCZt xD, where Z* is a subset of Z consisting of nonnegative
integers.

—
Hence, PiC(Zt X D) X -+« X (Z+ +D)=(Z*)» x D,.
By the Bochner’s theorem, (Z*)" is a Riesz set in Z*, and D" is a compact
abelian group. Hence, by lemma 1, we obtain that Mpz(G)C LY(G).
| Q.E.D.

REMARK 1. The same result is established in proposition 1 even if we
exchange T@®D by REPD.
Combing with theorem 1 and theoren 2 of [2], the following corollary
is obtained.
CoroLLARY 1. Let G be a LCA group. Let P be a subsemigroup of
G such that () PU(—P)=G and (ii) PN(—P)={0}. Suppose P is not dense
in G. Then, the following are equivalent.
(1) Mps(G™C LNG™).
(2) G admits one of the following structures.
(@ G=R, (b) G=R@D, () G=T, (d) G=TPD for some
discrete abelian group D.

§ 2. Small p sets

In this section, we shall prove that the direct product of a small p set
and a compact set is a small p set.

DErFINITION 2. G is a LCA group. Let p be a positive integer. A
subset E of G is said to be a small p set if the following property is sat-
isfied. (See [5]).
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P_
(*) For p€My(G), pup=px---xpu belongs to L'(G).
LEMMA 3. Let p be a positive integer. Then,

(4¢2) »
Ty Xy'* Ty = jZl @;j {ﬁj(xl, Ty """ xp)}

Sor every complex numbers x, (i=1, 2, ---, p), where B; are linear forms of
Ty, Xy ++, and x,, a; are real numbers (j=1, 2, ---,p) and C(p) is a positive
integer.

Proor.
4z, 25 = (2 + 2 — (2, — ) (1)

We integrate two side of (1) with respect to z; from z; to 2z, then
1
wtzm =g 2ot af—(ntof - Cun—of+@m—a)  (2)

We integrate two sides of (2) with respect to z; from z; to 2z, again,
then
T2y = 1—6158— {4z + 2p— 2+ ) — 2 (22, + )"
+2(xy+ 22t — (dxy — 2+ (22, — )
+2(23— 1) —2(r,— )1} .

We continue this argument. Then, for each positive integer n, there exist
linear forms A, ;(z;, x,) and real numbers a,; (=1, 2, -+, 2%) such that

2* "
" xp = éan,i {An,i<x1’ xz)} * .
We define linear forms B . ; (xy, ==+, Zu Tiyr) (R=1,2,--+; 154,527, j=
1,2, -, k) as follows.
Bil (21, ) = Al,il (21, 13)

B; i, (21, Ty, 25) = A2,i2 <Bil (z1, Z2), xs\) ’

1»

Bil,iz,i,(xv Ty T3y Ty) = As,i3 (Bil,iz (z1, Z2 T3), 134) s

------------------------

By (@ s T Tus1) = Asrr iy, (Biynis (T -+, 20y T

Then, we obtain the following equality.
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2 2P —1
Ty Ty Ty = i;... ip_Zﬂal,i,'“ap—l,ip_, {Bi,,---,i,,_,(xl, o xp)}” _
Q.E.D.

LEMMA 4. Let G be a LCA group. Let E be a subset of G. Then,
the following are equivalent.

(1) E is a small set,

(2) pux---xp, belong to LY(G) for every p, -+, € Mg(G).

Proor. (2)=>(1). trivial.

(1)>(2). For py, -+, tpE Mg(G), by lemma 3,

c(pP) ,—/I:—-—\
pukes e pty = 2 0Byt s gk Byt ooy php)
Since B;(tt, **s o) €E Mu(G), pu*---*p, belongs to LY (G). Q.E.D.

Lemma 2 of §1 can be generalized as follows.

ProposITION 5. Let G be a LCA group and F a compact subgroup of
G. Let 7y be a natural homomorphism from G onto G/F. If E is a small
p subset of G/F, then 271(E) is also a small p set in G.

Proor. Let H be an annihilator of F. Since F is compact, H is an
open subgroup of G. Let py be a restriction of y to each cosets H, of H.
Then, ¢ can be represented as follows.

L= }; UH+z,

, where H+x,% H+xn if n5m, and Hf‘HzngF‘m%H-

Set An=fais, *0_s, (n=1,2, ), where d_,_is the Dirac measure at —x,.
Then, 1,& M(H), and p= 3 6, *2.

For r&n7'(E), r-l—sE;;‘l(E) for every s€F.

Hence,

1n

1

F(T)> (_ Zns 5)

M8

TN
)

ZJII?”(T_‘—S) (_xm T+5)

I

Ay +9)
0 for every s€F.

Since i |2, (rp(y))] < oo and F is dense in its Bohr compacti fication F3,
n=1
Ao (7 (1)) (—Zay 7)=0 (n=1,2, --).
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That is, ,,EM?(H) (n=1,2,---). On the other hand,

o oo

pr= 2 - Z( A )%0s_4..ta, -

i,=1
Hence, by lemma 4, p? belongs to L!(G). Q.E.D.

LemMma 6. Let G be a LCA group, and let A be an open subgroup
of G. E is a subset of A. Then, E is a small p set in G if and only if
E is a small p set in A.

ProOOF. Suppose E is a small p set in 4. For a p& Mz(G), there exists
a measure 1S ME(G/AL) such that fi|,=2, where AL is an annihilator of 4.

Since L1( V4= Ll/(\G//lL), there exists a function g& L'(G) such that
gl,=2. Let mu be a normalized Haar measure on 4. Then, pr=
mauxge LY(G).

Conversely, if E is a small p set in G, for a i& Mz(G/4Y), there exists
a measure // & M(G) such that @|,=2.

Let p=¢/*m,.. Then, p belongs to Mz(G), and so, by the hypothesis,
(P is absolutely continuous with respect to a Haar measure on G. Hence,
by Theorem 2.7.4 of [6], 22 belongs to L(G/A%L). Q.E.D.

Lemma 7. Let Gy, be a LCA group, and let G, be a compact abelian
group. Let p be a positive integer. A subset E, of G, is a small p set in

O~
G, E, is a compact subset. Then, E,XE, is a small p set in G,PG,.
Proor. Set E,= {7,715 --»7.}. Let g be a measure belonging to
Mg «z,(GiDG,). For each k (k=1,2,---, n), define a continuous function ¢
on G, as follows. '
Gulr) = 20> 12) - |
Then, by Theorem 1.9.1 of [6], there exists a measure & Mg (G)
such that f;(r)=¢x(y). Hence, p= i U X (Y, 1) me, where mg_ is a normal-
k=1

ized Haar measure on G, Since E, is a small p set,

»

;:'"*F‘: i: e -+ K phye X 7k, Mg )% (Tk mg,)
Eyyrkp=1
= 3 X (rame) € L{G@®G3). Q.E.D.

LemMMA 8. Let G be a LCA group and p be a positive intiger.
Let E be a small p subset of G, and let F be a compact subset of R™.

A~
Then, EXF is a small p set in GPR".
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Proor. For p& My w(GPR"), let (¢?); be a singular part of p? =
b4

px---xp with respect toa Haar measure on G. Suppose (¢?),%0. For a
positive number ¢, we define a homeomorphism I, on GPR" as follows.

Io(z,y) =(z,cy)  for (,)EGDR"

, where ¥=(1, Y -+, Yo) ER™ and cy=(c¥s, Yz, ***, CYn)-
For a measure & M(GAPR"), I;oA denotes the continuous image of 2

under I;. Since Ijop?=(Ipop)? and p is regular, we may hypothesize that

(] (G (=, 27)> 3|

Let ¢ be a natural homomorphism from GEPR" onto GPT™.
That is, ¢(x,y)=(x, €¥) for (z,y)€GPDR". Then, ¢o(y?), is also a sin-

gular measure on GPT™. And, since |(¢?),|(G X (—m, r:]”)>—%—]](g1’)s|1, Po(u?),

0. Hence, ¢o(p?); (image of (#?), under ¢) is a nonzero singular part of
¢o(p?) with respect to a Haar measure on GPT™.

On the other hand, since F is a compact subset of R”, there exists
a positive integer m, such that FCGC,,

Co, ={r=(20 25 T)ER™; || Sm,, i=1,2,,7}.

N\
For s&G and k=(ky, -+, k) E 28, o(u?) (s, k) =f? (s, k).

That is, supp (gb/o(\yp)) is included in Ex(Z*NCy). Hence, by lemma 7,
¢o(p?) belongs to LY{GE@PT™). This is a contradiction. Q.E.D.

THEOREM 9. Let G, and G, be LCA groups. Let p be a positive
integer. If E is a small p subset of G, and F is a compact subset of Gy,

S
then EXF is a small p set in G,PG,.

Proor. Let F; be a compact symmetric neighbourhood of 0 including
F. Let F, be an open subgroup of G, generated by F,. That is, Fy,=

n
o0

PR ——
U (Fy+-:--+F). Then, by Theorem 9.8 of [1], F,=R*PZ*PF*, where m

n=1
and n are nonnegative integers, and F* is a compact abelian group. By
lemma 6, we may show that EXF is a small p set in GPF,=G,@R™
PLrPF*. '

Let K, be a projection of F' to R,, and let K, be a projection of F to
Z*. Then, K, and K, are compact subsets. Hence, by lemma 8, Ex K, is
a small p set in G@PR™, and so, by lemma 7, EXK,;x K, is a small p set
in G, ORP2Z».
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Therefore, by proposition 5, EX K, X K, X F* is a small p set in GPF,.
Since EXF is included in Ex K, x K, X F*, EXF is a small p set in GDF,.
Q.E.D.

DEFINITION 3. Let G be a LCA group, and let E be a subset of G.
E is called a strong Riesz set if its closure with respect to the relative to-
pology of Bohr compactification of G. (See [3]).

CoroLLARY 2. Let G; be LCA groups (i=1,2). If E, is a strong
Riesz set of G, and E, is a compact subset of G,. Then, E,XE, is a strong

- - /\
Riesz in G,PG,.
ProoF. Since E, is compact, E; X Efis included in Ef X E,, where ‘—.#
denotes the closure with respect to the relative topology induced by the

topology of the Bohr compactification.
Hence, by theorem 9, the conclusion is obtained. Q.E.D.

>
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