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Abstract. Noether’s First Theorem guarantees conservation laws provided that the

Lagrangian is invariant under a Lie group action. In this paper, via the concept

of Killing vector fields and the Minkowski metric, we first construct an important

Lie group, known as Hyperbolic Rotation-Translation group. Then, according to

Gonçalves and Mansfield’s method, we obtain the invariantized Euler-Lagrange equa-

tions and the space of conservation laws in terms of vectors of invariants and the

adjoint representation of a moving frame, for Lagrangians, which are invariant un-

der Hyperbolic Rotation-Translation (or HRT) group action, in the case where the

independent variables are not invariant.
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1. Introduction

The vast significance of the concept of conservation laws in a large num-
ber of applications in physics and mechanics is beyond any doubt. In 1918
Emmy Noether in seminal paper [8], proved that for every system arising
from a variational principle, conservation laws of the system come from Lie
group actions that leave the Lagrangian invariant. (See Theorem 4.29. in
page 272 of [9].)

Recently in [4], [6], [7], Gonçalves and Mansfield considered diverse La-
grangians, which are invariant under a Lie group action, where independent
variables are invariant. They presented the mathematical structure behind
both the Euler-Lagrange equations and the set of conservation laws, and
they showed Noether’s conservation laws can be displayed as the product of
adjoint representation of a right moving frame, which is equivariant, and a
matrix where the columns are vectors of invariants. These results were pre-
sented in [6] for all three inequivalent SL(2) actions in the complex plane,
and in [4] for the standard SE(2) and SE(3) actions.
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In recent works [5], Gonçalves and Mansfield considered invariant La-
grangians under a Lie group action, where independent variables are no
longer invariant. They proved in this case, Noether’s conservation laws have
an analogous form as ones mentioned in [6], but with an additional term –
the matrix representing the group action on the space of (p−1)-forms, where
p is the number of independent variables.

In this paper, first we take a relevant moving frame, for Hyperbolic
Rotation-Translation group action, and obtain differential relations or
syzygies between normalized differential invariants, then according to [5],
we calculate conservation laws associated to special case of the Monge–
Ampère equation, which Lagrangian is invariant under Hyperbolic Rotation-
Translation group action, and the two independent variables are not invari-
ant.

In Section 2, we briefly recall concepts of the Minkowski metric,
Lorentzian manifold and killing vector fields, that will motivate us to create
a Lie group, known as Hyperbolic Rotation-Translation group. The main
goal of this section is to find a group action, via the Lorentzian metric and
Killing vector fields on a pseudo-Riemannian manifold known as Lorentzian
manifold.

In Section 3, we will briefly give some background on moving frames,
differential invariants of a group action, invariant differentiation operators
and invariant forms. Throughout Section 3 we will use the group action of
Hyperbolic Rotation-Translation on the space (x, y, u(x, y)).

In Section 4, we concentrate on invariant calculus of variations and find
the adjoint representation associated to Hyperbolic Rotation-Translation
group action. Then we end this section with the calculation of Noether’s
conservation laws associated to a case of the Monge–Ampère equation, in
terms of vectors of invariants, the adjoint representation of the moving frame
and a matrix which represents the group action on the 1-forms.

2. The structure of Lie group

In this section, we recall some motivational concepts, to create the Hy-
perbolic Rotation-Translation group action. Here we present some vital
concepts, which leads to structure of a group action, the Lie group that we
will use in this paper.

Recall that, if V be an n-dimensional real vector space, we define a
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Lorentzian scalar product on V as a non-degenerate symmetric bilinear form
〈. , .〉 of index 1, i.e. one can find a basis e1, . . . , en of V such that

〈ei, ej〉 =





−1 i = j = 1

1 i = j = 2, . . . , n

0 otherwise

.

Definition 2.1 In cartesian coordinates (x1, . . . , xn) on Rn, the
Minkowski metric is defined by g = −(dx1)2 + (dx2)2 + · · ·+ (dxn)2.

Definition 2.2 A pseudo-Riemannian manifold (or semi-Riemannian
manifold) (M, g) with dim(M) > 2, is a differentiable manifold M equipped
with a non-degenerate, smooth, symmetric metric tensor g, so that, the
signature of this metric is (p, q), where both p and q are non-negative.

Definition 2.3 A Lorentzian manifold is a pair (M, g) where M is an
n-dimensional smooth manifold and g associates with each point p ∈ M a
Lorentzian scalar product gp on the tangent space TpM , it means that, g

is a Lorentzian metric. In other words, a Lorentzian manifold is a pseudo-
Riemannian manifold in which the signature of the metric is (1, n− 1) (or,
equivalently, (n− 1, 1)).

We now state the major definition of this section, known as Killing vector
field, that via it we obtain an important Lie group, known as the Hyperbolic
Rotation-Translation group, and group action associated to it. For more
details of the Killing vector fields, see [1]. We know the Lie derivative,
describes the action of a vector field on tensors such as one forms, the
metric or another vector field. We now investigate the vector fields which
are symmetries of the metric.

Definition 2.4 Let σt be the integral curve of the vector field v on a
Riemannian or Lorentzian manifold (M, g). Then v is called a Killing vector
field if σt is an isometry, i.e. it leaves the metric invariant σt

∗(g) = g. This
means that, the Lie derivative of the metric g along v vanishes, Lvg = 0.

Equivalently, if ∇µ is the covariant derivative defined by the Christoffel
connection of the metric g, and vµ = gµνvν is the dual vector corresponding
to the vector field vµ, then vµ is a Killing vector field if and only if it solves
the Killing equations:
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∇µvν +∇νvµ = Lvgµν = 0.

Remark 2.5 The set of Killing vectors of metric g, form a Lie algebra
using the commutator of vector fields as the Lie bracket.

We know that, n-dimensional Minkowski spaces, are equipped with
n(n + 1)/2 Killing vector fields. Now if we set n = 2, the Minkowski metric
(or Lorentzian metric) is given by

(g)αβ =
(−1 0

0 1

)
,

then the line element is ds2 = gαβdxαdxβ = −(dx1)2 +(dx2)2, or ds2 =
−(dx)2 + (dy)2. Therefore, we obtain the Killing vector fields as follows

v1 = −∂x, v2 = ∂y, v3 = y∂x + x∂y. (1)

Remark 2.6 These three linearly independent Killing vector fields on the
hyperbolic plane are the generators of translations and rotation.

Definition 2.7 A group action of G on M is a map

G×M −→ M, (g, z) 7−→ z̃ = g.z,

which satisfies either g.(h.z) = (gh).z, called a left action, or g.(h.z) =
(hg).z, called a right action.

Remark 2.8 Any linear combination of two Killing vector fields is a
Killing vector field. Also, the set of vector fields {v1 = v1 + v2,v2 =
−v1 + v2,v3 = v3} forms a basis for the same space as the one generated by
{v1, v2, v3}.

The action of the Lie group associated to Killing vector fields (1) on a
2-dimensional manifold M with coordinates (x, y), is given as follows

x̃ = −a + b + x cosh θ + y sinh θ, ỹ = a + b + x sinh θ + y cosh θ, (2)

where a, b and θ are constants that parametrize the group action. Thus, we
consider the Killing vector fields
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v1 = −∂x + ∂y, v2 = ∂x + ∂y, v3 = y∂x + x∂y. (3)

Therefore, in next sections we consider the Lie group associated to vector
fields (3), and we call this group the Hyperbolic Rotation-Translation.

3. Moving frames, differential invariants of a group action and
invariant forms

In this section, we will introduce some concepts regarding moving
frames, differential invariants of a group action, invariant differential opera-
tors and invariant forms as formulated by Fels and Olver [2], [3], Gonçalves
and Mansfield [4], [5], [6] and Mansfield [7]. We will use the Hyperbolic
Rotation-Translation action on the space as our applied problem.

Suppose M = Jn(X × U) is the n-th jet bundle, with coordinates

z = (x1, . . . , xp, u
1, . . . , uq, u1

1, . . . ),

where X and U are the space of independent variables with coordinates
x = (x1, . . . , xp) and the space of dependent variables with coordinates u =
(u1, . . . , uq) respectively. On this space, the total differentiation operator is
defined by

Di =
D

Dxi
=

∂

∂xi
+

q∑
α=1

∑

K

uα
Ki

∂

∂uα
K

where

uα
K =

∂|K|uα

∂xk1
1 ∂xk2

2 . . . ∂x
kp
p

is the derivatives of uα with a multi-index notation, and the p-tuple K =
(k1, . . . kp), is a multi-index of differentiation of order |K| = k1 + · · ·+ kp.

Definition 3.1 We say two smooth surfaces K and O contained in Rn,
such that, dim(K) = α, dim(O) = β, 0 6 α, β 6 n, α + β > n, intersect
transversally if for every x ∈ K ∩ O, the tangent spaces TxK and TxO, as
subspaces of TxRn, satisfy

TxK + TxO = TxRn.
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Suppose G is a Lie group which acts freely and regularly on some domain
Ω in smooth manifold M , then as given in page 115 of [7], for every x ∈ Ω,
there is a neighbourhood U of x such that the following hold.

• The group orbits all have the same dimension of the group and foliate
U .

• There is a surface K ⊂ U that crosses these orbits transversally at a
single point. This surface is called the cross section.

• If O(z) represents the orbit through z, then the element g ∈ G taking
z ∈ U to {k} = O(z) ∩ K is unique.

By above conditions, a right moving frame is defined as the map ρ :
U → G that sends an element z ∈ U to the unique group element g = ρ(z)
such that

ρ(z).z = k, {k} = O(z) ∩ K.

For obtaining the right moving frame, according to [7] in page 117, first
we define the cross section K as the locus of the set of equations ψj(z) = 0,
for j = 1, . . . , r = dim(G). Then, to obtain the group element that takes z

to k, we solve the so called normalization equations

ψj(z̃) = ψj(g.z) = 0, j = 1, . . . , r,

for the r group parameters that describe the Lie group near its identity
element, which yields the frame ρ in parametric form.

We now consider the action of obtained group in previous section on the
space (x, y, u(x, y)), associated to transformation (2), that u is invariant.

Example 3.2 Consider the Hyperbolic Rotation-Translation group action
on the space (x, y, u(x, y)) as follows

(
x̃
ỹ

)
=

(
cosh θ sinh θ
sinh θ cosh θ

)(
x
y

)
+

(
b− a
b + a

)
, ũ = u, (4)

where a, b and θ are constants that parametrize the group action. The
prolonged action on ux and uy is given explicitly by

g.ux = ũx = D̃xũ, g.uy = ũy = D̃yũ.
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The transformed total differentiation operators D̃i are defined by

D̃i =
d

dx̃i
=

p∑

k=1

(
dx̃

dx

)−T

ik

Dk,

where (dx̃/dx) is the Jacobian matrix. Therefore,

ũx = ux cosh θ − uy sinh θ, ũy = −ux sinh θ + uy cosh θ.

If we take M to be the space with coordinates (x, y, u, ux, uy, ux2 ,

uxy, uy2 , . . . ), then the action is locally free near the identity of group Hy-
perbolic Rotation-Translation and regular. Therefore, if we take the nor-
malization equations to be x̃ = 0, ỹ = 0 and ũx = 0, we obtain

a =
1
2

(−y + x)(ux − uy)√−ux
2 + uy

2
, b = −1

2

√−ux
2 + uy

2(x + y)
ux − uy

,

θ =
1
2

ln
(

ux + uy

−ux + uy

)
, (5)

as the frame in parametric form.

Theorem 3.3 Let ρ(z) be a right moving frame. Then the quantity I(z) =
ρ(z).z is an invariant of the group action. [2]

According to above Theorem 3.3, as given in page 128 of [7], if z =
(z1, . . . , zn) ∈ M , and the normalization equations are z̃i = ci for i =
1, . . . , r = dim(G), then the components of

ρ(z). z = (c1, . . . , cr, I(zr+1), . . . , I(zn)),

where

I(zk) = g. zk|g=ρ(z), k = r + 1, . . . , n,

are all invariants.

Definition 3.4 For any prolonged action in the jet space M = Jn(X ×
U), the invariantized jet coordinates known as the normalized differential
invariants are denoted as
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J i = I(xi) = x̃i

∣∣
g=ρ(z)

, Iα
k = I(uα

k ) = ũα
k

∣∣
g=ρ(z)

,

which is the original M. Fels and P.J. Olver notation [3]. According to
Replacement Theorem (Theorem 10.3 in page 38 of [3]), any invariant is
a function of the I(zk). Particularly, the set {J i, Iα

k } is a complete set of
differential invariants for a prolonged action.

Now we turn our attention to considering the invariants for the Example
3.2:

Example 3.2. (cont.) The normalized differential invariants up to order
two are as follows

g.z = (x̃, ỹ, ũ, ũx, ũy, ũxx, ũxy, ũyy)
∣∣
g=ρ(z)

= (Jx, Jy, Iu, Iu
1 , Iu

2 , Iu
11, I

u
12, I

u
22)

=
(

0, 0, u, 0,−
√
−ux

2 + uy
2,−uxxuy

2 − 2uxyuxuy + uyyux
2

ux
2 − uy

2
,

− −uxxuxuy + uxyux
2 + uxyuy

2 − uyyuxuy

ux
2 − uy

2
,

− uxxux
2 − 2uxyuxuy + uyyuy

2

ux
2 − uy

2

)
.

The first, second and fourth components correspond to the normalization
equations and are known as the phantom invariants.

Definition 3.5 The invariant differential operators denoted as Di =
D̃i

∣∣
g=ρ(z)

, where

D̃i =
d

dx̃i
=

p∑

k=1

(
dx̃

dx̃

)−T

ik

Dk.

According to Example 4.5.1 in [7], we know in general DiI
α
k 6= Iα

ki. This
fact motivates the definition of the invariant differentiation and syzygy that
will be required in the next section.

Definition 3.6 As defined in [7], we define the invariant differentiation
of the jet coordinates, J i and Iα

k , by
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DjJ
i = δij + Nij , DjI

α
K = Iα

Kj + Mα
Kj ,

where Nij and Mα
Kj are the correction terms, and δij is the Kronecker delta.

For more information on correction terms see Section 4.5 of [7].

Now let Iα
J and Iα

L be two generating differential invariants, and let
JK = LM such that Iα

JK = Iα
LM . Thus, as given in [7], we will have the so

called syzygies or differential identities

DKIα
J −DMIα

L = Mα
JK −Mα

LM .

To obtain the correction terms, we define the infinitesimals of the pro-
longed group action with respect to the group parameters aj , evaluated at
the identity element e, as

ξi
j =

∂x̃i

∂aj

∣∣∣∣
g=e

, ϕα
K,j =

∂ũα
K

∂aj

∣∣∣∣
g=e

.

Now let the normalization equations be {ψλ(z) = 0, λ = 1, . . . , r =
dim(G)} and suppose the n variables actually occurring in the ψλ(z) are
ζ1, . . . , ζn such that m of these are independent variables and n−m of them
are dependent variables and their derivatives. Let T denote the invariant
p× n total derivative matrix

Tij := I

(
D

Dxi
ζj

)
.

Also, define ϕ to be the r × n matrix as follows,

ϕij :=
(

∂(g.ζj)
∂gi

∣∣∣∣
g=e

)
(I).

Moreover, define J to be the n× r matrix

Jij :=
∂ψj(I)
∂I(ζi)

,

that is, transpose of the Jacobian matrix of the normalization equations
ψ1, . . . , ψr, with invariantised arguments.
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Using the above defined matrices, the correction terms can be obtained
as follows, that has been proved in [7].

Theorem 3.7 The formulae for the correction terms are

Nij =
r∑

l=1

Kjlξ
i
l (I), Mα

Kj =
r∑

l=1

Kjlϕ
α
K,l(I),

where l is the index for the group parameters, r = dim(G), and the p × r

correction matrix K, is given by K = −TJ(ϕJ)−1.

Now we calculate the invariant differentiation of the jet coordinates and
the syzygies of the transformation (4) in Example 3.2.

Example 3.2. (cont.) If we set u = u(x, y, t) and t̃ = t and take the
normalization equations as before, we obtain

ũt

∣∣
g=ρ(z) = Iu

3 = ut,

ũy

∣∣
g=ρ(z) = Iu

2 = −
√
−ux

2 + uy
2,

ũxx

∣∣
g=ρ(z) = Iu

11 = −uxxuy
2 − 2uxyuxuy + uyyux

2

ux
2 − uy

2
,

ũxy

∣∣
g=ρ(z) = Iu

12 = −−uxxuxuy + uxyux
2 + uxyuy

2 − uyyuxuy

ux
2 − uy

2
,

ũyy

∣∣
g=ρ(z) = Iu

22 = −uxxux
2 − 2uxyuxuy + uyyuy

2

ux
2 − uy

2
,

ũxxy

∣∣
g=ρ(z) = Iu

112 =

−uxxyuy
3 + uxyyux

3 + 2uxyyuxuy
2

−uyyyux
2uy + uxxxuxuy

2 − 2uxxyux
2uy

(−ux
2 + uy

2)3/2
,

ũxyy

∣∣
g=ρ(z) = Iu

122 =

uxxyux
3 − uxyyuy

3 − 2uxyyux
2uy

+uyyyuxuy
2 − uxxxux

2uy + 2uxxyuxuy
2

(−ux
2 + uy

2)3/2
.

According to Theorem 3.7 we obtain the invariant differentiation of the
jet coordinates as follows
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DxIu
2 = Iu

12, DyIu
2 = Iu

22, DtI
u
2 = Iu

23,

DxIu
11 = Iu

111 −
2Iu

11I
u
12

Iu
2

, DxIu
22 = Iu

122 −
2Iu

11I
u
12

Iu
2

,

DyIu
11 = Iu

112 −
2(Iu

12)
2

Iu
2

, DyIu
22 = Iu

222 −
2(Iu

12)
2

Iu
2

,

DtI
u
11 = Iu

113 −
2Iu

12I
u
13

Iu
2

, DtI
u
22 = Iu

223 −
2Iu

12I
u
13

Iu
2

,

DxIu
12 = Iu

112 −
Iu
11

Iu
2

(Iu
11 + Iu

22), DyIu
12 = Iu

122 −
Iu
12

Iu
2

(Iu
11 + Iu

22),

DtI
u
12 = Iu

123 −
Iu
13

Iu
2

(Iu
11 + Iu

22).

We know that there are two ways to reach Iu
112 and since both ways

must be equal, we get the following syzygy between Iu and Iu
11:

D2I
u
(
(D1)2D2I

u −D2I
u
11

)
+ (Iu

11)
2 + Iu

11(D2)2Iu − 2(D1D2I
u)2 = 0. (6)

Similarly, there are two possibilities to obtain Iu
113. Thus, we get a syzygy

between Iu
3 and Iu

11 and the syzygy is:

D3I
u
11 =

(
(D1)

2 − 2Iu
12D1

Iu
2

+
Iu
11D2

Iu
2

)
Iu
3 , (7)

and likewise, the syzygy between Iu
3 and Iu

22 is:

D3I
u
22 =

(
(D2)

2 − Iu
12D1

Iu
2

)
Iu
3 . (8)

Finally, there are two syzygies between Iu
3 and Iu

12, which are as follows:

D3I
u
12 =

(
D1D2 − Iu

22D1

Iu
2

)
Iu
3 , (9)

D3I
u
12 =

(
D2D1 +

Iu
12D2

Iu
2

− Iu
11D1

Iu
2

− Iu
22D1

Iu
2

)
Iu
3 . (10)
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From Equations (9) and (10) we can verify that the invariant operators
Dx and Dy do not commute. In general, the invariant total differentiation
operators do not commute. In fact, we have the following Theorem [3]:

Theorem 3.8 Denote the invariantized derivatives of the infinitesimals
ξk
l , for k, i = 1, . . . , p and l = 1, . . . , r, by Ξk

li = D̃iξ
k
l (z̃)

∣∣
g=ρ(z)

, then the
commutators are given by

[Di,Dj ] =
p∑

k=1

Ak
ijDk, Ak

ij =
r∑

l=1

KjlΞk
li −KilΞk

lj .

We now define invariant one-forms that will be required in the next
section.

Definition 3.9 The invariant one-forms are denoted as

I(dxi) = dx̃i

∣∣
g=ρ(z)

=
( p∑

j=1

Dj(x̃i)dxj

)

g=ρ(z)

.

By Theorem 3.10 below, we see that an invariant total differentiation
operator Di sends invariant differential forms to invariant differential forms.
In fact, if Di is the invariant differentiation operator and ω is a form, then
Di(ω) denote as a Lie derivative. For more details see [5].

Theorem 3.10 Consider the set of invariant total differentiation opera-
tors, {Di}, and the set of invariant one-forms, {I(dxj)}. Therefore, if

Di(I(dxj)) =
p∑

k=1

Bk
ijI(dxk),

then Bj
ki = Ai

jk.

Finally, in the end of this section, from the above Theorem 3.10 we
obtain the Lie derivatives of I(dxj) with respect to Di for the Hyperbolic
Rotation-Translation group action on (x, y, t), that has been given in Ex-
ample 3.2.

Example 3.2. (cont.) Recall that g ∈ G (the it Hyperbolic Rotation-
Translation group) act on (x, y, t), where t is an invariant dummy indepen-
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Table 1. Lie derivatives of the I(dxj) with respect to the Di.

Lie derivative I(dx) I(dy) I(dt)

Dx
Iu
11

Iu
2

I(dy) −Iu
12

Iu
2

I(dy)− Iu
13

Iu
2

I(dt) 0

Dy −Iu
11

Iu
2

I(dx)− Iu
13

Iu
2

I(dt)
Iu
12

Iu
2

I(dx) 0

Dt
Iu
13

Iu
2

I(dy)
Iu
13

Iu
2

I(dx) 0

dent variable introduced to effect variation. Therefore, the Lie derivatives
of I(dxj) with respect to Di are as shown in the Table 1.

4. Invariant calculus of variations and structure of Noether’s con-
servation laws

In this section, we will use the concept of invariant calculus of variations
as formulated by Gonçalves and Mansfield [4], [5], [6] and Mansfield [7].
Suppose the Lagrangian L̄[u] of the variational problem ϕ̄[u] =

∫
L̄[u] dx is

a smooth function of x = (x1, . . . , xp) , u = (u1, . . . , uq) and finite number
of derivatives of uα, where ϕ̄[u] is invariant under some group action with
finite set of generators {κ1, . . . , κN}. Thus, as given in [5], we can rewrite
ϕ̄[u] as ϕ[κ] =

∫
L[κ] I(dx), in which I(dx) = I(dx1) . . . I(dxp) denotes the

invariant volume form and dx = dx1 . . . dxp is the standard volume form.
Now we suppose the functional ϕ̄[u] be extremized by x → (x,u(x)), then
for a small perturbation of u

0 =
d

dε

∣∣∣∣
ε=0

ϕ̄[u + εv]

=
∫ q∑

α=1

[
Eα(L̄)vα +

p∑

i=1

d

dxi

(
∂L̄

∂uα
i

vα + · · ·
)]

dx,

where Eα =
∑

K

(−1)K D|K|

Dxk1
1 Dxk2

2 · · ·Dx
kp
p

∂

∂uα
K

,

is the Euler operator with respect to the dependent variable uα, and sym-



570 Y. Masoudi and M. Nadjafikhah

bolically,

d

dε

∣∣∣∣
ε=0

ϕ̄[u + εv] =
d

dt

∣∣∣∣
ut=v

ϕ̄[u].

According to [5], we have

0 = Dt

∫
L[κ] I(dx)

= Dp+1

∫
L[κ] I(dx)

=
∫ ( ∑

α

Eα(L)Iα
τ I(dx)

+
p∑

i=1

Di

( p+1∑

j=1

FijI(dx1) . . . Î(dxj) . . . I(dxp+1)
))

,

where Eα(L) are the invariantized Euler-Lagrange equations, Fij depend on
Iα
K,p+1 and Iα

J with K and J multi-indices of differentiation with respect to
xi, for i = 1, . . . , p, and

I(dx1) . . . Î(dxj) . . . I(dxp+1) = I(dx1) . . . I(dxj−1)I(dxj+1) . . . I(dxp+1).

Theorem 4.1 The process of calculating the invariantized Euler-Lagrange
equations produces boundary terms

∫ p∑

i=1

Di

(p+1∑

j=1

FijI(dx1) . . . Î(dxj) . . . I(dxp+1)
)

,

that can be written as

∫ p∑

i=1

d

(
(−1)i−1

{∑

K,α

Iα
K,τCα

K,i

}
I(dx1) . . . Î(dxj) . . . I(dxp+1)

)
,

where K is a multi-index of differentiation with respect to xi, for i = 1, . . . , p,
and Cα

K,i are functions of Iα
J , with J a multi-index of differentiation with

respect to xi. [5]
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Now in this section we consider a variational problem associated to an
spacial case of an important equation known as the Monge–Ampère equa-
tion.

Example 4.2 Consider the variational problem
∫∫ [

u(ux2uy2 − u2
xy) + ux2 − uy2

]
dxdy, (11)

associated to a type of the Monge–Ampère equation, which is invariant
under the action presented in Example 3.2. To find the invariantized Euler-
Lagrange equation, introduce a dummy invariant independent variable t to
effect the variation, and set u = u(x, y, t), therefore ũt

∣∣
g=ρ(z) = Iu

3 = ut.
Rewriting the above variational problem in terms of the invariants of the
group action yields

∫∫ [
Iu(Iu

11I
u
22 − (Iu

12)
2) + Iu

11 − Iu
22

]
I(dx) I(dy). (12)

To obtain the invariantized Euler-Lagrange equation and boundary terms,
after differentiating (12) under the integral sign we obtain

Dt

∫∫ [
Iu(Iu

11I
u
22 − (Iu

12)
2) + Iu

11 − Iu
22

]
I(dx)I(dy)

=
∫∫ [(Dt(Iu)(Iu

11I
u
22 − (Iu

12)
2) + IuIu

22DtI
u
11 + IuIu

11DtI
u
22

− 2IuIu
12DtI

u
12 +DtI

u
11 −DtI

u
22

)
I(dx)I(dy)

+
(
Iu(Iu

11I
u
22 − (Iu

12)
2) + Iu

11 − Iu
22

)Dt(I(dx)I(dy))
]
.

Using Table 1 we see that Dt(I(dx)I(dy)) = 0. Then substituting DtI
u
11,

DtI
u
22, and DtI

u
12 by (7), (8), and (9), respectively, and performing integra-

tion by parts yields
∫∫

3
(
Iu
11I

u
22 − (Iu

12)
2
)
Iu
3 I(dx) I(dy)

+
∫∫ [

Dx

({(
IuIu

11I
u
12

Iu
2

+
IuIu

22I
u
12

Iu
2

− IuIu
122

)
Iu
3 + IuIu

22I
u
13
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+ Iu
13 − 2IuIu

12I
u
23

}
I(dx) I(dy)

+
{

IuIu
22I

u
13I

u
3

Iu
2

+
Iu
13I

u
3

Iu
2

}
I(dx) I(dt)

)

+Dy

({(
IuIu

112 − Iu
2 Iu

11 −
Iu(Iu

11)
2

Iu
2

− IuIu
11I

u
22

Iu
2

)
Iu
3

+ IuIu
11I

u
23 − Iu

23

}
I(dx) I(dy)

− 2IuIu
12I

u
13I

u
3

Iu
2

I(dx) I(dt) +
{

Iu
13I

u
3

Iu
2

− IuIu
11I

u
13I

u
3

Iu
2

}
I(dy) I(dt)

)]
,

where all forms involving I(dt), because there is no integration along t, have
been discarded. Thus, we obtain the invariantized Euler-Lagrange equation

Eu(L) = 3(Iu
11I

u
22 − (Iu

12)
2) = 3(ux2uy2 − u2

xy).

Therefore, according to Theorem 4.1 the boundary terms can be written as
∫∫

d

({(
IuIu

12(I
u
11+Iu

22)
Iu
2

− IuIu
122

)
Iu
3 + (IuIu

22+1)Iu
13 − 2IuIu

12I
u
23

}
I(dy)

−
{(

IuIu
112 − Iu

2 Iu
11 −

IuIu
11(I

u
11 + Iu

22)
Iu
2

)
Iu
3

+ (IuIu
11 − 1)Iu

23

}
I(dx)

)
. (13)

Theorem 4.3 ([5]) Let
∫

L(k1, k2, . . . ) I(dx) be invariant under G×M →
M , where M = Jn(X, U), with generating invariants κj, for j = 1, . . . , N .
Introduce a dummy invariant variable t to effect the variation and then in-
tegration by parts yields

Dt

∫
L(k1, k2, . . . ) I(dx)

=
∫ [∑

α

Eα(L)Iα
t I(dx)

+
p∑

k=1

d

(
(−1)k−1

(∑

J,α

Iα
JtC

α
J,k

)
I(dx1) . . . Î(dxk) . . . I(dxp+1)

)]
,
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where this defines the vectors Cα
k = (Cα

J,k).

Recall that Eα(L) are the invariantized Euler- Lagrange equations and
Iα
Jt = I(uα

Jt), where J is a multi-index of differentiation with respect to
the variables xi, for i = 1, . . . , p. Let (a1, . . . , ar) be the coordinates of G

near the identity e, and vi, for i = 1, . . . , r, the associated infinitesimal
vector fields. Furthermore, let Ad(g) be the Adjoint representation of G

with respect to these vector fields. For each dependent variable, define the
matrices of characteristics to be

Qα(z̃) =
(
D̃K(Qα

i )
)
, α = 1, . . . , q,

where K is a multi-index of differentiation with respect to the xk, and

Qα
i = ϕα

i −
p∑

k=1

ξk
i uα

k =
∂ũα

∂ai

∣∣∣∣
g=e

−
p∑

k=1

∂x̃k

∂ai

∣∣∣∣
g=e

uα
k

are the components of the q-tuple Qi known as the characteristic of the
vector field vi. Let Qα(J, I), for α = 1, . . . , q, be the invariantization of
the above matrices. Then, the r conservation laws obtained via Noether’s
Theorem can be written in the form

d(Ad(ρ)−1(υ1, . . . , υp)MJ dp−1x̂) = 0,

where

υk =
∑
α

(−1)k−1(Qα(J, I)Cα
k + L(Ξ(J, I))k),

are the vectors of invariants, with (Ξ(J, I))k the kth column of Ξ(J, I), MJ
is the matrix of first minors of the Jacobian matrix evaluated at the frame,
J = (dx̃/dx)|g=ρ(z), and

dp−1x̂ =




d̂x1dx2 . . . dxp

dx1d̂x2dx3 . . . dxp

...
dx1 . . . dxp−1d̂xp




=




dx2dx3 . . . dxp

dx1dx3 . . . dxp

...
dx1dx2 . . . dxp−1




.
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Lemma 4.4 The inverse of the Adjoint representation of the Hyperbolic
Rotation-Translation group with respect to its generating vector fields eval-
uated at the frame (5) is

Ad(ρ(z))−1 =




ux − uy√
uy

2 − ux
2

0 0

0 − ux + uy√
uy

2 − ux
2

0

1
2

(x− y)(ux − uy)
√

uy
2 − ux

2
−1

2
(x + y)(ux + uy)√

uy
2 − ux

2
1




. (14)

Proof. Consider the action (4) and let it act on the infinitesimal vector
fields generating the Hyperbolic Rotation-Translation group,

v1 = −∂x + ∂y, v2 = ∂x + ∂y, v3 = y∂x + x∂y,

as follows

g.(α(−∂x + ∂y) + β(∂x + ∂y) + γ(y∂x + x∂y))

= α(−∂x̃ + ∂ỹ) + β(∂x̃ + ∂ỹ) + γ(ỹ∂x̃ + x̃∂ỹ)

= α(− cosh(θ)∂x + sinh(θ)∂y − sinh(θ)∂x + cosh(θ)∂y)

+ β(cosh(θ)∂x − sinh(θ)∂y − sinh(θ)∂x + cosh(θ)∂y)

+ γ((a + b + x sinh(θ) + y cosh(θ))(cosh(θ)∂x − sinh(θ)∂y)

+ (−a + b + x cosh(θ) + y sinh(θ))(− sinh(θ)∂x + cosh(θ)∂y))

= α(cosh(θ)(−∂x + ∂y) + sinh(θ)(−∂x + ∂y))

+ β(cosh(θ)(∂x + ∂y)− sinh(θ)(∂x + ∂y))

+ γ([(a + b) cosh(θ) + (a− b) sinh(θ)]∂x

+ [(−a + b) cosh(θ)− (a + b) sinh(θ)]∂y + (y∂x + x∂y))

= α(cosh(θ)(−∂x + ∂y) + sinh(θ)(−∂x + ∂y))

+ β(cosh(θ)(∂x + ∂y)− sinh(θ)(∂x + ∂y))

+ γ([−a cosh(θ)− a sinh(θ)](−∂x + ∂y)

+ [b cosh(θ)− b sinh(θ)](∂x + ∂y) + (y∂x + x∂y))
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= (α β γ)




cosh(θ) + sinh(θ) 0 0

0 cosh(θ)− sinh(θ) 0

−a(cosh(θ)+sinh(θ)) b(cosh(θ)−sinh(θ)) 1






−∂x + ∂y

∂x + ∂y

y∂x+x∂y


 ,

where the above 3×3 matrix, Ad(g), is the Adjoint representation of G with
respect to its generating infinitesimal vector fields. Thus, Ad(g)−1 is

Ad(g)−1 =




cosh θ − sinh θ 0 0

0 cosh θ + sinh θ 0

a −b 1


 .

Now evaluating Ad(g) and Ad(g)−1 at the frame (3.2), leads




− ux + uy√
uy

2 − ux
2

0 0

0
ux − uy√
uy

2 − ux
2

0

−1
2
x +

1
2
y −1

2
x− 1

2
y 1




,




ux − uy√
uy

2 − ux
2

0 0

0 − ux + uy√
uy

2 − ux
2

0

1
2

(x− y)(ux − uy)√
uy

2 − ux
2

−1
2

(x + y)(ux + uy)√
uy

2 − ux
2

1




,

respectively. ¤

We now calculate the Noether’s conservation laws of Euler-Lagrange
equations for the variational problem (11), associated to the Monge–Ampère
equation.

Theorem 4.5 The three Noether’s conservation laws of Euler-Lagrange
equations for the variational problem

∫∫ [
u(ux2uy2 − u2

xy) + ux2 − uy2

]
dxdy
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are

d







ux − uy√
uy

2 − ux
2

0 0

0 − ux + uy√
uy

2 − ux
2

0

1
2

(x− y)(ux − uy)√
uy

2 − ux
2

−1
2

(x + y)(ux + uy)√
uy

2 − ux
2

1




×




Iu(−Iu
11I

u
12 + Iu

2 Iu
122 − (Iu

12)
2)− Iu

12 + Iu
22

Iu(−Iu
11I

u
12 + Iu

2 Iu
122 + (Iu

12)
2)− Iu

12 − Iu
22

−IuIu
2 Iu

22 − Iu
2

IuIu
11(−Iu

11 − Iu
12 − Iu

22) + Iu(Iu
2 Iu

112 + (Iu
12)

2)− Iu
11(I

u
2 )2 + Iu

12 − Iu
11

IuIu
11(−Iu

11 + Iu
12 − Iu

22) + Iu(Iu
2 Iu

112 + (Iu
12)

2)− Iu
11(I

u
2 )2 − Iu

12 − Iu
11

0




×




−uy√
uy

2 − ux
2

−ux√
uy

2 − ux
2

−ux√
uy

2 − ux
2

−uy√
uy

2 − ux
2




(
dy
dx

)




= 0.

Proof. According to Theorem 4.3 the elements of Cu
1 ,Cu

2 correspond to
the coefficients of the Iα

Jt in (13), respectively, as follows




IuIu
12(I

u
11 + Iu

22)/Iu
2 − Iu

1 Iu
22 − IuIu

122

IuIu
22 + 1

−2IuIu
12


 ,




IuIu
112 − Iu

2 Iu
11 − IuIu

11(I
u
11 + Iu

22)/Iu
2

0

IuIu
11 − 1


 ,

and the (Ξ(J, I))i, for i = 1, 2, are



Conservation laws of a HRT-invariant Lagrangian 577

(Ξ(J, I))1 =




ξx

a −1
b 1
θ 0


, (Ξ(J, I))2 =




ξy

a 1
b 1
θ 0


.

Since Iu
1 = 0, the invariantized matrix of characteristics is

Qu(J, I) =




Qu Dx(Qu) Dy(Qu)

a −Iu
2 Iu

11 − Iu
12 Iu

12 − Iu
22

b −Iu
2 −Iu

11 − Iu
12 −Iu

12 − Iu
22

θ 0 −Iu
2 0


,

thus, the vectors of invariants are

υ1 =




Iu(−Iu
11I

u
12 + Iu

2 Iu
122 − (Iu

12)
2)− Iu

12 + Iu
22

Iu(−Iu
11I

u
12 + Iu

2 Iu
122 + (Iu

12)
2)− Iu

12 − Iu
22

−IuIu
2 Iu

22 − Iu
2


 ,

υ2 =




IuIu
11(−Iu

11−Iu
12−Iu

22) + Iu(Iu
2 Iu

112+(Iu
12)

2)− Iu
11(I

u
2 )2 + Iu

12 − Iu
11

IuIu
11(−Iu

11+Iu
12−Iu

22) + Iu(Iu
2 Iu

112+(Iu
12)

2)− Iu
11(I

u
2 )2 − Iu

12 − Iu
11

0


 ,

and according to Lemma 4.4, the inverse of the Adjoint representation
Ad(ρ)−1 is as (14). Finally, the Jacobian matrix J is

J =




∂x̃

∂x

∣∣∣∣
g=ρ(z)

∂x̃

∂y

∣∣∣∣
g=ρ(z)

∂ỹ

∂x

∣∣∣∣
g=ρ(z)

∂ỹ

∂y

∣∣∣∣
g=ρ(z)


 =

(
cosh(θ) sinh(θ)
sinh(θ) cosh(θ)

)

=




−uy√
uy

2 − ux
2

−ux√
uy

2 − ux
2

−ux√
uy

2 − ux
2

−uy√
uy

2 − ux
2


,

and its matrix of first minors, MJ , is
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MJ =




−uy√
uy

2 − ux
2

−ux√
uy

2 − ux
2

−ux√
uy

2 − ux
2

−uy√
uy

2 − ux
2


.

Thus, the conservation laws are

d
(
Ad(ρ)−1

.(υ1 υ2).MJ .d1x̂
)

= 0, where d1x̂ =
(

dy
dx

)
. ¤

5. Concluding remarks

We see that the three Noether’s conservation laws are in terms of vectors
of invariants, the adjoint representation of the moving frame and a matrix
which represents the group action on the 1-forms. Also, we notice that for
calculation of (13) in Example 4.2 if we substitute DtI

u
12 by Equation (10)

instead of Equation (9), or we use a combination of the two; in any case the
conservation laws are equivalent.
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