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Spatial Asymptotic Profiles of Solutions
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Abstract. The nonstationary Navier-Stokes system for a viscous, incompressible

fluid influenced by a Coriolis force in the whole space R3 is considered at large dis-

tances. The solvability of the corresponding integral equations of these equations in

weighted L∞-spaces is established. Furthermore, the leading terms of the asymptotic

profile of the solution at fixed time t > 0 for |x| > t and far from the axis of rotation

are investigated.

Key words: Rotating Navier-Stokes equations, Coriolis operator, mild solutions,

weighted L∞-spaces, rate of spatial decay.

1. Introduction

In this paper we study the 3-dimensional “rotating” Navier-Stokes equa-
tions

(NSC)





ut −∆u + u · ∇u + Ωe3 × u +∇p = f in R3 × (0, T ),

div u = 0 in R3 × (0, T ),

u(0) = u0 in R3,

with a given constant Coriolis parameter Ω 6= 0, initial data u0 and external
force f . The unknowns u = (u1(x, t), u2(x, t), u3(x, t)) and p = p(x, t) denote
the velocity vector field and the pressure of the fluid at the point (x, t) ∈
R3 × [0, T ), respectively. Here e3 denotes the unit vector (0, 0, 1), the term
Ωe3 × u describes the Coriolis force, and u0 denotes a solenoidal initial
velocity field. These equations above are also referred to as the Navier-
Stokes-Coriolis equations.
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One of the most important features that distinguishes flows in fluid dy-
namics from those in ocean and atmospherical dynamics is the influence
of the rotation of the earth. The equations (NSC) describe the motion of
rotating fluids influenced by the Coriolis force. Almost all of the models of
oceanography and meteorology dealing with large-scale phenomena include
a Coriolis force. Many important features of oceanic flows, e.g. the inten-
sification of the Gulf stream near the Gulf of Mexico, can be explained by
the rotation of the earth. Although precise explanations require models in-
cluding temperature effects, boundaries describing the sea ground or coasts.
A first step is to neglect these additional influences and to investigate the
simplified equations (NSC).

The investigation of the spatial behaviour of the velocity field at large
distances and of the leading asymptotic term is an important research topic,
e.g. in the error analysis of numerical approximations. Bae, Brandolese and
Vigneron found out the leading terms in the non-rotating case, see [2], [3].
For the spatial behaviour of the Boussinesq system including heat convection
the reader can find in [8].

To investigate the spatial behaviour of the solutions of the rotating
Navier-Stokes system it will be helpful to consider the solvability of these
equations in weighted L∞-spaces. In the case of slow decay of u0 the so-
lution decreases almost in the same way as the initial velocity. However,
Brandolese, Vigneron and Bae have already proved in the case of the non-
rotating Navier-Stokes equations that in general we can not expect a faster
decay behavior than |x|−4 or even |x|−3 if the flow is influenced by an ex-
ternal force.

The present Navier-Stokes equations in a rotational frame have been
investigated by several authors, see e.g. [1], [4], [9], [10], [11], [12], [15]. In
particular, the technique for proving the global regularity has recently been
developed in Sobolev space setting in [14]. However, up to now the spatial
asymptotics is almost disregarded.

Recently there is also an intensive research on Navier-Stokes flow around
a rotating obstacle which leads to an additional linear term not subordinate
to the Laplacian. In particular Farwig, Galdi, Hishida and Kyed considered
the asymptotic structure of stationary solutions, see e.g. [5], [6], [7], [13],
[16].

Let us introduce some elementary concepts. Using the Riesz transforms



Spatial asymptotics of the rotating Navier-Stokes flow 503

Rj = ∂j(−∆)−1/2 with symbol R̂j(ξ) = i
ξj

|ξ| , 1 ≤ j ≤ 3, (1.1)

and the Riesz vector R = (R1,R2,R3) the Helmholtz projection is given by

P = I +R⊗R =
(
δj,h +RjRh

)3

j,h=1
.

Furthermore, with the matrix

J :=




0 −1 0
1 0 0
0 0 0




characterising the linear map J : R3 → R3, Jv = e3 × v and the Coriolis
operator C = PJP we transform the first equation of (NSC) into the abstract
equation

ut + AΩu + P(u · ∇u) = Pf in R3 × (0, T ); (1.2)

here AΩ := −P∆ + ΩC is the so-called Stokes-Coriolis operator combining
the Stokes operator A = −P∆ and the Coriolis operator. We also define the
Riesz symbol

R(ξ) =
(
Ri,j(ξ)

)3

i,j=1
=

1
|ξ|




0 −ξ3 ξ2

ξ3 0 −ξ1

−ξ2 ξ1 0


 , (1.3)

i.e., R represents the linear map a 7→ Ra = (ξ × a)/|ξ| for a ∈ R3 and
Ri,j(ξ) = (1 − δi,j)(−1)1/2+|1/2+i−j|(ξ6−i−j)/|ξ|. The symbol C(ξ) of C is
nothing but (ξ3/|ξ|)R(ξ) and thus

C = R3




0 R3 −R2

−R3 0 R1

R2 −R1 0


 .

Note that we used the Fourier transform, e.g. of a Schwartz function φ ∈
S(R3), in the form
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F(φ)(ξ) :=
∫

R3
φ(x)e−2πix·ξ dx.

Using this notation, (1.2) leads to the integral equation

u(t) = e−tAΩu0 −
∫ t

0

e−(t−τ)AΩP(u · ∇u− f)(τ) dτ, (1.4)

where the semigroup e−tAΩ associated with the linearised problem of (NSC)
is given explicitly by the symbol

e−4π2t|ξ|2
(

cos
(

ξ3

|ξ|Ωt

)
I− sin

(
ξ3

|ξ|Ωt

)
R(ξ)

)
, (1.5)

see [10]. A solution u of (1.4) is called a mild solution.
To describe the spatial asymptotic structure in terms of u0 and of the

external force f = (f1, f2, f3) we have to take into account the Helmholtz
projection involved in (1.4), i.e., it is necessary to control not only e−tAΩ ,
but also Pe−tAΩ = e−tAΩP the symbol of which is given by

(
I + R̂ ⊗ R̂)

e−4π2t|ξ|2
(

cos
(

ξ3

|ξ|Ωt

)
I− sin

(
ξ3

|ξ|Ωt

)
R(ξ)

)

= e−4π2t|ξ|2 cos
(

ξ3

|ξ|Ωt

)(
I + R̂ ⊗ R̂)

− e−4π2t|ξ|2 sin
(

ξ3

|ξ|Ωt

)
R(ξ); (1.6)

here we used that R̂R = 0 with the vector of symbols R̂ = (R̂1, R̂2, R̂3),
see (1.1).

This paper is organized as follows. In Section 2 we present the main
results, Theorem 2.1 on existence and uniqueness of mild solutions to (1.4),
and on their asymptotic spatial decay for fixed t > 0, see Theorem 2.2. In
contrast to previous works e.g. [12], [14], Theorem 2.1 concerns with the
solvability of (1.4) in weighted L∞-spaces, which are useful for the inves-
tigation of the spatial asymptotic profile. Next, in Section 3 we present
several auxiliary lemmata to be proved in Section 4. Whereas the proof of
Theorem 2.1 is already sketched in Section 3, the proof of Theorem 2.2 will
be postponed to Section 5.
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2. Main Results

In this paper we assume that the initial data u0 and the external force f

belong to weighted L∞-spaces. The Banach space L∞µ (R3), µ > 0, is defined
as the set of all measurable functions h on R3 such that

‖h‖L∞µ := ess sup
x∈R3

(1 + |x|)µ|h(x)| < ∞.

Its solenoidal subspace is denoted by

L∞µ,σ(R3) = {u ∈ L∞µ (R3)3 : div u = 0}.

Furthermore, for any κ > 0, we introduce the space

L∞κ ([0, T ];L∞µ (R3)) := {u : R3 × (0, T ] → R | u is measurable,

ess sup0<t<T tκ‖u(t)‖L∞µ < ∞}.

Using Banach’s fixed point theorem we get the following existence theo-
rem of mild solutions in spaces of weakly∗-continuous functions in time with
values in weighted L∞-spaces.

For simplicity we assume the external force f to be independent of time.

Theorem 2.1 (Existence and Uniqueness of Mild Solutions) Let ε ∈
(0, 1/3) and µ ∈ (0, 3]. For every initial velocity u0 ∈ L∞µ+ε,σ(R3) and
external force f ∈ L∞µ+ε(R3)3 there exists a constant T0 > 0 and a unique
solution

u ∈ L∞κ
(
[0, T0];L∞µ (R3)3

) ∩ Cω

(
(0, T0];L∞µ (R3)3

)

to the integral equation (1.4) for all κ ∈ (0, 3ε2/2(1 + ε2)). In particular,
with the bound C0 = C0(Ω) for the operator norms in Lemma 3.2 below, T0

is estimated from below as

10C0

(
10
9

C0‖u0‖L∞µ+ε
+

(‖u0‖L∞µ+ε
+ ‖f(t)‖L∞µ+ε

)1/2
)(

T
1/2−κ
0 + T 6−κ

0

)
< 1.

The space Cω((0, T ];L∞µ ) denotes all L∞µ -valued weakly*-continuous
functions v(t) defined in (0, T ], i.e., v(t′) converges to v(t) in the weak∗

sense on L∞µ as t′ → t for all t ∈ (0, T ]. The necessity for working in the
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space Cω lies in the fact that already for the heat semigroup et∆ the term
et∆h, with h ∈ L∞µ , does not converge to h in L∞µ as t ↘ 0, but only weakly*.
But at least, since the Stokes operator A = P∆ generates a bounded ana-
lytic semigroup e−tA on Lp

σ(R3) for all p ∈ (1,∞), by perturbation theory,
see [18, Chapter 3], we conclude that the operator AΩ generates also an
analytic semigroup e−tAΩ on Lp

σ(R3), since the Coriolis operator C = PJP
is bounded on Lp

σ(R3).
In view of the result u(t) ∈ L∞µ (R3)3 with µ ∈ (0, 3] for mild solutions in

Theorem 2.1 it is an interesting question whether the upper bound 3 for µ

is optimal in some sense. Actually, the decay |x|−4 is optimal for solutions
to the non-rotating Navier-Stokes equations without external forces; see
Brandolese and Vigneron [3] who proved that the result of Theorem 2.1 can
not be true for µ > 4. Analogously, we will see that one can not get the
same results for µ > 3 in Theorem 2.2 below.

For our purpose it is useful to introduce Bessel functions Jν for ν ∈ N0,
which can be represented as the series

Jν(z) =
∞∑

n=0

(−1)n

n!(n + ν)!

(
z

2

)2n+ν

, z ∈ R. (2.1)

They are analytic functions, and behave asymptotically as

Jν(z) ∼ (sgn z)ν

√
2

π|z| cos
(
|z| − π

4
(2ν + 1)

)
|z| → ∞, (2.2)

J0(z) ∼ 1−
(

z

2

)2

, J1(z) ∼ z

2
− 1

2

(
z

2

)3

,

J2(z) ∼ 1
2

(
z

2

)2

− 1
6

(
z

2

)4

|z| → 0,

see e.g. [19, Chapter 3, Chapter 7]. In our main result these three functions
play a crucial role by describing the asymptotic profile. Hence we define the
vector V := (V0, V1, V2, V3, V4, V5) by

V (x, t) =
(

J0,
J1

η
,
J2

η2

)
(η)



Spatial asymptotics of the rotating Navier-Stokes flow 507

×




ζ − 1 −1 Ωt− 3
ζ

Ωt
3Ωt 3 0

−(η2 + ζ) −4ζ
ζη2

Ωt
Ωtζ 6ζ −3(Ωt)2

0 −ζ2 0 0 ζ2 −(Ωt)2ζη




(2.3)

where η(x, t) := |Ω|t(|x′|/|x|), ζ(x, t) := (Ωt(x3/|x|))2 and x′ = (x1, x2, 0).
Comparing z, h introduced in the proof of Lemma 3.5 below there holds
η =

√
z + h and ζ = −h. Moreover, we define the vector A := (A0, A1,

A2, A3, A4, A5) as the integral over time of V , i.e., Ai(x, t) =
∫ t

0
Vi(x, τ) dτ ,

i = 0, 1, . . . , 5. We remark that the formal singularities of V for |η| → 0 as
|Ωt| → 0 or |x′| → 0 actually do not appear, hence Jν/ην is continuously
well-defined, see (2.2).

Theorem 2.2 (Spatial Asymptotic Profile) For an initial velocity u0 ∈
L∞µ,σ(R3), µ > 4, and an external force f ∈ L∞µ (R3)3, let u be the mild
solution of Theorem 2.1. Then the following profile holds for almost all
|x| À √

t:

u(x, t) =
1

4π|x|3







A0 A2 0
−A2 A0 0

0 0 A1


 (x, t)

∫

R3
f(y) dy

+ A3(x, t)
x3

|x|2 x′ ×
∫

R3
f(y) dy + A4(x, t)

x⊗ x

|x|2
∫

R3
f(y) dy

+A5(x, t)
x3

|x|2




0 0 x1

0 0 x2

x1 x2 0




∫

R3
f(y) dy


 +Ot(|x|−4).

As long as the external force f belongs to L∞µ (R3)3 for µ > 4, hav-
ing non-zero mean, this theorem shows that in general we only expect an
|x|−3-decay of the velocity. It is remarkable that if the external force f

has vanishing mean value, the solution even decays as |x|−4, although the
convolution kernel, see (3.1) below, on which the study of spatial asymp-
totics is based has |x|−3-decay. In contrast, the Coriolis force does not affect
the rate of decay, essentially the structure of the leading terms, cf. [2]. In
particular, no matter how small the external force f is, it has a significant
effect at large scale analysis. Although the general formula given in The-
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orem 2.2 does not look manageable, for some special cases it simplifies to
better understandable representations in what follows.

For Ω = 0 the equations (NSC) turn to the usual Navier-Stokes
equations. In this case the vector V , see (2.3), equals to V (x, t)|Ω=0 =
(−1,−1, 0, 0, 3, 0). However, Theorem 2.2 yields the asymptotic representa-
tion

u(x, t) = − t

4π
∇ x

|x|3 ·
∫

R3
f(y) dy +Ot(|x|−4) for |x| À

√
t,

see [3] or [8, Theorem 2.3], i.e., we obtain the spatial asympotic profile of
the Navier-Stokes equations with external forces.

For the asymptotic profile along the x3-axis, i.e., |x3| À
√

t and |x′| = 0
the components of vector A can be simplified to polynomials with respect
to Ω and t:

A0 = −t +
1
6
Ω2t3, A3 =

3
2
Ωt2 +

1
8
Ω3t4,

A1 = −t− 2
3
Ω2t3 − 1

10
Ω4t5, A4 = 3t + Ω2t3 +

1
10

Ω4t5,

A2 =
1
2
(Ω− 3|Ω|)t2, A5 = −1

2
Ω2t3.

Finally, let us consider the asymptotic profile that arises in some sense
far from the rotating axis, i.e., for |x| À √

t there exists ε ∈ (0, 1) such that
|x3| ≤ |x|ε. This case leads to ζ(x, t) = Ot(|x|2ε−2) and the leading terms
V ′ in V , see (2.3), are given by

V ′(x, t) =
(

J0,
J1

η

)
(η)×

( −1 −1 Ωt 3Ωt 3 0
−η2 0 0 0 0 −3(Ωt)2

)
.

Due to the function ζ, the remaining terms of the asymptotic profile of u

with higher decay only behave like |x|−min{3+2(1−ε),4} instead of |x|−4.

3. Preliminaries

In this section we analyse the spatial asymptotics of the matrix-valued
convolution kernel K = (Ki,j)3i,j=1 defined by
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K(x, t) =
∫

R3
e−4π2t|ξ|2+2πix·ξ

×
[

cos
(

ξ3

|ξ|Ωt

)(
I + R̂ ⊗ R̂)− sin

(
ξ3

|ξ|Ωt

)
R(ξ)

]
dξ (3.1)

which corresponds to the operator Pe−tAΩ , see (1.6); here I denotes the 3×3-
unit matrix and R, R(ξ) have been defined in (1.1), (1.3), respectively. In
[17, Proposition 11.1] the operator Pet∆ which deals with the non-rotating
Navier-Stokes equations was treated as a pseudo-differential operator and
the derivatives of the corresponding convolution kernel satisfy certain decay
properties. Unfortunately, in the case of a rotating frame the convolution
kernel of the semigroup e−tAΩ does not belong to L1(R3) for t > 0, since
the symbol (1.5) is not continuous at ξ = 0. Giga et al. [10] proved that
this convolution kernel decays like |x|−3 and thus lies in Lp(R3) ∩ C0(R3),
p ∈ (1,∞], since the symbol (1.5) is integrable. However, as in [17] we need
a more precise investigation about the derivatives of this kernel given by the
next Lemma.

Lemma 3.1 Given the Riesz transforms Rj let Kt = (Kh,k,t)3h,k=1 de-
note the matrix-valued kernel related to the pseudo-differential operators
(RhRke−tAΩ)3h,k=1, i.e., RhRke−tAΩf = Kh,k,t ∗ f for t > 0. Then Kt(x)
= t−3/2K(x/

√
t, Ωt) with a smooth function K(·, ·) on R3 × R+ satisfying

[
(x, t) 7→ (1 + (|Ω|t)4+|α|)−1(1 + |x|)3+|α|∂α

xK(x,Ωt)
] ∈ L∞(R3 × R+)

for all multi-indices α ∈ N3
0.

Since e−tAΩ = −∑3
j=1R2

je
−tAΩ , the above Lemma 3.1 implies that the

derivatives of the corresponding kernel K̃(x, t) := −∑3
j=1Kj,j,t(x) decay

similarly to those of K. This Lemma also leads to the estimate

∣∣∂α
xKt(x)

∣∣ ≤ t−3/2

∣∣∣∣∂α
xK

(
x√
t
,Ωt

)∣∣∣∣ . (1 + (|Ω|t)4+|α|)(
√

t + |x|)−3−|α|

for all α ∈ N3
0.

To construct a unique mild solution of (1.4) for given initial data u0 ∈
L∞µ+ε,σ(R3)3 and given external force f ∈ L∞µ+ε(R3)3, it is useful to study
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the integral operators

B(u1, u2)(t) := −
∫ t

0

e−(t−s)AΩP∇ · (u1 ⊗ u2)(s) ds (3.2)

D(f)(t) :=
∫ t

0

e−(t−s)AΩPf ds. (3.3)

Lemma 3.2 Let T > 0, ε > 0, µ ∈ (0, 4]. Then the operators

B(·, ·) : L∞
(
[0, T ];L∞µ

)× L∞([0, T ];L∞) → Cω

(
[0, T ];L∞µ

)
,

D(·) : L∞µ+ε → Cω

(
[0, T ];L∞µ

)
,

defined by (3.2) and (3.3), are continuous with operator norm O(
√

T + T 6).

Thanks to the previous result, the estimates for B and D can be proved
in a similar way as in [17, Proposition 25.1].

Sketch of the proof of Theorem 2.1. The existence and uniqueness of mild
solutions to (1.4) base on the abstract formulation of a solution u as a fixed
point of the coupled system cf. (1.4)

u(t) = e−tAΩu0 + B(u, u)(t) +D(f)(t)

in the Banach space L∞κ ([0, T0];L∞µ (R3)3)∩Cω((0, T0];L∞µ (R3)3). With the
help of Lemmata 3.1 and 3.2 the result is easily proved by Banach’s fixed
point theorem. ¤

Similarly to [3], [8] we proceed to get an asymptotic profile of the so-
lutions of the rotating Navier-Stokes equations and have to handle mainly
the terms of the integral equation (1.4). Due to the symbol (1.5) of e−tAΩ

the present issue exacerbates this method by dealing with an infinite sum
of Riesz operators applied to the heat kernel

Gt(x) :=
1

(4πt)3/2
e−|x|

2/4t.

The next statements are useful to manage this difficulty. At first we easily
obtain the following Lemma by induction.
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Lemma 3.3 Let R := (R1,R2,R3) be the vector of Riesz transforms, and
α ∈ N3

0 be any multi-index of even order, i.e. |α| = 2n with n ∈ N. Then
for all x ∈ R3 and t > 0 there holds

RαGt(x) =
∫ ∞

t

(s− t)n−1

(n− 1)!
∂α

xGs(x) ds.

The purpose of Lemmata 3.4, 3.5 below is to ascertain the leading terms
of Pe−tAΩ . To handle high order derivatives of the heat kernel it is reasonable
to introduce Hermite polynomials

Hn(y) := ey2 dn

dyn
e−y2

= n!
bn/2c∑

l=0

(−1)l+n

l!(n− 2l)!
(2y)n−2l,

y ∈ R, n ∈ N0, (3.4)

using the floor function b.c. Consider any mixed derivative ∂α = ∂α1
1 ∂α2

2 ∂α3
3

of order |α| = 2n, and define the multivariate Hermite polynomial

Hα(y) = Hα1(y1)Hα1(y2)Hα3(y3), y = (y1, y2, y3).

Substituting yj = xj/
√

4t in the identity (d/ dyj)αj e−y2
j = Hαj (yj)e−y2

j , we
get that

∂α
xGs(x) =

1
(4s)n

Hα

(
x√
4s

)
Gs(x). (3.5)

Since the series

e−4π2t|ξ|2
( ∞∑

n=0

(−1)n

(2n)!

(
ξ3

|ξ|Ωt

)2n(
I +

iξ ⊗ iξ

|ξ|2
)

−
∞∑

n=0

(−1)n

(2n + 1)!

(
ξ3

|ξ|Ωt

)2n+1

R
)

converges for fixed t > 0 to the symbol of (1.6) in L1, the corresponding
inverse Fourier transform of this series converges uniformly to the kernel
K(x, t), see (3.1). Thanks to Lemma 3.3 and (3.5) we get for x ∈ R3 three
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converging infinite series consisting of terms

(Ωt)2n

(2n)!
RαGt(x) for

{|α| = 2n or

|α| = 2n + 2, 2n ≤ α3 ≤ 2n + 2,
(3.6)

(Ωt)2n+1

(2n + 1)!
RαGt(x) for |α| = 2n + 2, 2n + 1 ≤ α3 ≤ 2n + 2. (3.7)

For a typical term RαGt(x) with |α| = 2n we will use the change of variables
λ = |x|/√4s to get that

RαGt(x) =
∫ ∞

t

(s− t)n−1

(n− 1)!
∂αGs(x) ds

=
∫ ∞

t

(s− t)n−1

(n− 1)!
1

(4s)n
Hα

(
x√
4s

)
Gs(x) ds

=
∫ |x|/√4t

0

1
(n− 1)!

( |x|2
4λ2

− t

)n−1(
λ

|x|
)2n

Hα

(
λx

|x|
)

e−λ2

2π3/2|x| dλ.

To find the leading term we simplify the above identity, split the term
(|x|2/4λ2)n−1 from (|x|2/4λ2 − t)n−1 and decompose the last integral as
follows:

RαGt(x) =
4−n

π3/2|x|3
∫ ∞

0

λ2Hα

(
λx

|x|
)

e−λ2
dλ + · · · ,

see [3, Lemma 2.1]. This equation is crucial to obtain the leading terms of
the integrals in (3.6) and (3.7) and of the asymptotic profile.

To this aim, we introduce the functions

L(0)
n (x) :=

(2n)!
π3/2

n∑

l=0

(−1)lΓ(n− l + 3/2)
4ll!(2n− 2l)!

(
x3

|x|
)2(n−l)

, (3.8)

L
(1)
i,n(x) :=

(2n− 1)!
π3/2

xi

|x|
n−1∑

l=0

(−1)lΓ(n− l + 3/2)
4ll!(2n− 1− 2l)!

(
x3

|x|
)2n−1−2l

, (3.9)

L
(2)
i,j,n(x) :=

(2n− 2)!
2π3/2

n−1∑

l=0

(−1)lΓ(n− l + 1/2)
4ll!(2n− 2− 2l)!

(
x3

|x|
)2n−2−2l
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×
[
2
xixj

|x|2
(

n− l +
1
2

)
− δi,j

]
, (3.10)

for all i, j ≤ 2 and establish the next result as a first step.

Lemma 3.4 Let n ∈ N, i, j = 1, 2, 3, i ≤ j and |x|2 À t. Then there holds

∫ ∞

t

(s− t)n−1∂i∂j∂
2n−2
3 Gs(x) ds = |x|−3Li,j,n(x) + |x|−3Ψi,j,n

(
x√
t

)

with leading term

Li,j,n =





L
(0)
n , if i = j = 3,

L
(1)
i,n, if i < j = 3,

L
(2)
i,j,n, if i ≤ j < 3

defined in (3.8), (3.9) or (3.10), respectively, and a remainder term
Ψi,j,n(y) = O(|y|−2) as |y| → ∞.

Due to the crucial Lemma 3.4 and (2.3) we obtain the spatial asymp-
totics of the considered kernel K in Lemma 3.5 and 3.6 below. For this
let

Ṽ0 := ζJ0(η)− ηJ1(η) (3.11)

with η(x, t) := |Ω|t(|x′|/|x|), ζ(x, t) := (Ωt(x3/|x|))2. The kernel K̃ =
(K̃i,j)3i,j=1 corresponding to the semigroup e−tAΩ is

K̃(x, t) =
∫

R3
e−4π2t|ξ|2+2πix·ξ

[
cos

(
ξ3

|ξ|Ωt

)
I − sin

(
ξ3

|ξ|Ωt

)
R(ξ)

]
dξ,

and hence only differs from the kernel K of Pe−tAΩ in the additional term

K+(x, t) :=
∫

R3
e−4π2t|ξ|2+2πix·ξ cos

(
ξ3

|ξ|Ωt

)
R̂ ⊗ R̂dξ,

i.e., K = K̃ + K+. Therefore, it is reasonable to investigate the spatial
asymptotic behaviour of K̃ and of K+ apart:



514 R. Farwig, R. Schulz and Y. Taniuchi

Lemma 3.5 For |x|2 À t the convolution kernel K̃ has the decomposition
K̃(x, t) = K̃∗(x, t) + |x|−3Ψ̃(x, t) with a remainder Ψ̃(x, t) = Ot(|x|−2).
Moreover, the leading term K̃∗(x, t) has the form

K̃∗
i,j(x, t) =

1
4π|x|3

[
δi,j Ṽ0(x, t) + si,j

x6−i−jx3

|x|2 V3(x, t)
]

when i + j 6= 3; here si,j = (1− δi,j)(−1)1/2+|1/2+i−j|. Finally,

K̃∗
i,j(x, t) = (−1)1/2+|1/2+j−i| 1

4π|x|3 V2(x, t)

when i + j = 3.

The proof of the next lemma follows the same line as of the previous
Lemma 3.5. Since the remaining term K+ corresponds to (3.6) where |α| =
2n + 2 and 2n ≤ α3 ≤ 2n + 2, three distinct cases have to be considered.

Lemma 3.6 For |x|2 À t the convolution kernel K+ has the decompo-
sition K+(x, t) = K+,∗(x, t) + |x|−3Ψ+(x, t) with a remainder Ψ+(x, t) =
Ot(|x|−2). Moreover, the leading term K+,∗(x, t) has the form

K+,∗
i,j (x, t) =

1
4π|x|3

[
δi,j

(
(1− δi,3)(V0 − Ṽ0)(x, t) + δi,3(V1 − Ṽ0)(x, t)

)

+
xixj

|x|2
(
V4(x, t) + (δi,3 + δj,3 − 2δi,3δj,3)V5(x, t)

)]

when i, j ≤ 3.

Combining Lemma 3.5 and 3.6 we obtain the decomposition K(x, t) =
K∗(x, t) + |x|−3Ψ(x, t) with K∗ := K̃∗ + K+,∗ and Ψ := Ψ̃ + Ψ+.

4. Proof of Lemmata 3.1, 3.4 and 3.5

First of all let us briefly introduce some notation for the Littlewood-
Paley decomposition needed in the next proof. Let φ ∈ S(R3) denote a
non-negative Schwartz function supported in the annulus {ξ ∈ R3 : 1/2 ≤
|ξ| ≤ 2} such that

∑∞
k=−∞ φ(2−kξ) = 1 for all ξ 6= 0. We define for all j ∈ Z

a function ϕj as follows
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ϕ̂j(ξ) := φ(2−jξ) for all ξ 6= 0.

Further we define

ψ0(ξ) := F−1

(
1−

∞∑

j=0

ϕ̂j(ξ)
)

for all ξ ∈ R3.

Proof of Lemma 3.1. We define K by

K(·,Ωt) := −F−1

(
ξ ⊗ ξ

|ξ|2 g(ξ, Ωt)e−4π2|ξ|2
)

with the bounded matrix-valued function

g(ξ,Ωt) := cos
(

ξ3

|ξ|Ωt

)
I− sin

(
ξ3

|ξ|Ωt

)
R(ξ).

By this definition and (1.5) there holds

Kt(x) = t−3/2K
(

x√
t
,Ωt

)
.

In what follows, we write shortly K instead of K(·,Ωt) for fixed Ωt. Thanks
to its rapid decay, the symbol

ξ ⊗ ξ

|ξ|2 g(ξ, Ωt) e−4π2|ξ|2

is integrable when multiplied by any polynomial. Thus ∂αK ∈ C0(R3) for all
α ∈ N3 and fixed Ωt. For |x| ≥ 1 we use the Littlewood-Paley decomposition
and write

K = (K − ψ0 ∗ K) +
∑

l<0

ϕl ∗ K

with K − ψ0 ∗ K ∈ S(R3). By substituting ξ = 2lξ̃ we have for all l < 0

ϕl ∗ K(·) = F−1
(
φ(2−lξ)K̂(ξ)

)
(·)

= 23lF−1
(
φ(ξ̃)K̂(2lξ̃)

)
(2l·) ∈ S(R3).
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Since the set of functions
{F−1

(
φ(ξ̃)K̂(2lξ̃)

)
: l < N

}
, N ∈ N, is bounded

in S(R3), we get for each N ∈ N and α ∈ N3
0 a constant CN,α > 0 such that

(
1 + 2l|x|)N2−l(3+|α|) |∂α(ϕl ∗ K)(x)| ≤ CN (1 + |Ω|t)N .

This gives for N := 4 + |α| and |x| > 1

|∂α(ψ0 ∗ K)(x)|

≤ C(1 + |Ω|t)N

( ∑

l:2l|x|≤1

2l(3+|α|) +
∑

l:2l|x|>1

2l(3+|α|−N)|x|−N

)

≤ C(1 + |Ω|t)N |x|−3−|α|.

Since K − ψ0 ∗ K ∈ S(R3) Lemma 3.1 is proved. ¤

Proof of Lemma 3.4. First let i = j = 3. Then by (3.5) we have

∂2n
3 Gs(x) =

1
(4s)n

H2n

(
x3√
4s

)
· Gs(x)

and thus by (3) and the substitution λ = |x|/√4s we get

∫ ∞

t

(s− t)n−1∂2n
3 Gs(x) ds =

∫ ∞

t

(s− t)n−1 1
(4s)n

H2n

(
x3√
4s

)
· Gs(x) ds

= (2n)!
n∑

l=0

(−1)l

l!(2n− 2l)!

∫ ∞

t

(s− t)n−1

(4s)n

(
2x3√

4s

)2(n−l)

· Gs(x) ds

=
(2n)!
2π3/2

n∑

l=0

(−1)l

l!(2n− 2l)!

×
∫ |x|/√4t

0

( |x|2
4λ2

− t

)n−1(
λ

|x|
)2n(

2
x3

|x|λ
)2(n−l)

|x|−1e−λ2
dλ.

Therefore, we obtain

∫ ∞

t

(s− t)n−1∂2n
3 Gs(x) ds
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=
(2n)!

π3/2|x|3
n∑

l=0

(−1)l

l!(2n− 2l)!

n−1∑

k=0

(
n− 1

k

)
21+2k−2l (−t)k

|x|2k

(
x3

|x|
)2(n−l)

×
∫ |x|/√4t

0

λ2+2n+2k−2le−λ2
dλ. (4.1)

By the definition of the gamma function there holds

∫ |x|/√4t

0

λ2+2n+2k−2le−λ2
dλ

=
1
2
Γ
(

3 + 2n + 2k − 2l

2

)
−

∫ ∞

|x|/√4t

λ2+2n+2k−2le−λ2
dλ

for all k, l = 0, . . . , n. Now in (4.1) we fix k = 0 and get for each l = 0 . . . , n

(−1)l(2n)!21−2l

π3/2l!(2n− 2l)!|x|3
(

x3

|x|
)2(n−l) ∫ |x|/√4t

0

λ2+2n−2le−λ2
dλ

=
(−1)l(2n)!

π3/2l!(2n− 2l)!|x|3
[
4−lΓ

(
n− l +

3
2

)(
x3

|x|
)2(n−l)

+ Ψ(1)
3,n,l

(
x√
t

)]

with the exponentially decaying remainder function

Ψ(1)
3,3,n,l(y) := −21−2l

(
y3

|y|
)2(n−l) ∫ ∞

|y|/2

λ2+2n−2le−λ2
dλ,

which satisfies the estimate

∣∣Ψ(1)
3,3,n,l(y)

∣∣ ≤ 21−2le−|y|
2/8

∫ ∞

|y|/2

λ2+2n−2le−λ2/2dλ

≤ 23/2+n−3l(n− l + 1)!e−|y|
2/8.

To establish the above estimate we applied the equality

∫ ∞

0

τde−τ2/2 dτ = 2(d−1)/2Γ
(

d + 1
2

)
, d > −1. (4.2)

This yields for
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Ψ(1)
3,3,n(y) :=

(2n)!
π3/2

n∑

l=0

(−1)l

l!(2n− 2l)!
Ψ(1)

3,3,n,l(y)

the exponential decay

∣∣Ψ(1)
3,3,n(y)

∣∣ ≤
√

8e1/4

π3/2
(n + 1)(2n)!e−|y|

2/8

since (n− l + 1)! ≤ (n + 1)2l−n(2n− 2l)! and
∑n

l=0(1/l!)2−2l ≤ e1/4.

In the same way we see that for all k 6= 0 and l = 0, . . . , n the term

(
x3

|x|
)2(n−l) ∫ |x|/√4t

0

λ2+2n+2k−2le−λ2
dλ ≤ 1

2
Γ
(

3 + 2n + 2k − 2l

2

)

≤ (2n− l + 1)!
2n

uniformly in x ∈ R3. Thus we put the left terms into the remainder Ψ(2)
3,3,n

defined as

Ψ(2)
3,3,n

(
x√
t

)
:=

(2n)!
π3/2

n∑

l=0

(−1)l

l!(2n− 2l)!

n−1∑

k=1

(
n− 1

k

)
21+2k−2l (−t)k

|x|2k

(
x3

|x|
)2(n−l)

×
∫ |x|/√4t

0

λ2+2n+2k−2le−λ2
dλ

and get for y = x/
√

t with |y| ≥ 1 the estimate

∣∣Ψ(2)
3,3,n(y)

∣∣ ≤ (2n)!
nπ3/2|y|2

n∑

l=0

2−2l (2n− l + 1)!
l!(2n− 2l)!

n−1∑

k=1

(
n− 1

k

)
22k.

Since the inner sum over k equals 5n−1 it suffices to estimate the term

n∑

l=0

2−2l (2n− l + 1)!
l!(2n− 2l)!

=
n∑

l=0

2−2l

B(l + 1, 2n− 2l + 1)
(4.3)

where B denotes the beta function. Since
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B(l + 1, 2n− 2l + 1) =
∫ 1

0

τ l(1− τ)2n−2l dτ

≥
∫ 1

0

τ2l(1− τ)2n−2l dτ =
(2l)!(2n− 2l)!

(2n + 1)!
,

we see that the term in (4.3) can be estimated by

≤ (2n + 1)
n∑

l=0

(
2n

2l

)
2−2l ≤ (2n + 1)

2n∑

j=0

(
2n

j

)
2−j = (2n + 1)

(
3
2

)2n

.

Finally, with Ψ3,3,n := Ψ(1)
3,3,n + Ψ(2)

3,3,n, (4.1) and a summary of the previous
estimates yield

∫ ∞

t

(s− t)n−1∂2n
3 Gs(x) ds = |x|−3L(0)

n (x) + |x|−3Ψ3,3,n

(
x√
t

)
,

where L
(0)
n has been defined in (3.8) and, using that 6n(3/2)2n ≤ 14n,

|Ψ3,3,n(y)| . 14n(2n)!|y|−2 (4.4)

for all n ∈ N and |x| À √
t.

Now, let i < j = 3. In this case there holds

∂i∂
2n−1
3 Gs(x) = −xi

2s
(4s)−(2n−1)/2H2n−1

(
x3√
4s

)
· Gs(x).

Repeating the previous procedure we get with L
(1)
i,n as in (3.9)

∫ ∞

t

(s− t)n−1∂i∂
2n−1
3 Gs(x) ds = |x|−3L

(1)
i,n(x) + |x|−3Ψi,3,n

(
x√
t

)
,

with the remainder

Ψi,3,n(y) := 2π−3/2(2n− 1)!
yi

|y|
n−1∑

l=0

(−1)l4−l

l!(2n− 1− 2l)!

×
[ n−1∑

k=1

(
n− 1

k

)
(−1)k4k|y|−2k

(
y3

|y|
)2(n−l)−1
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×
∫ |y|/2

0

λ2+2n+2k−2le−λ2
dλ

−
(

y3

|y|
)2(n−l)−1 ∫ ∞

|y|/2

λ2+2n−2le−λ2
dλ

]
.

The term corresponding to (4.3) now reads

n−1∑

l=0

2−2l (2n− l)!
l!(2n− 2l − 1)!

=
n−1∑

l=0

2−2l

B(l + 1, 2n− 2l)
,

which comes from the inequality B(l+1, 2n−2l)−1 ≥ B(2l+1, 2n−2l)−1 =
2n

(
2n−1

2l

)
bounded by 2n(3/2)2n−1. Hence Ψi,3,n satisfies the estimate

|Ψi,3,n(y)| . 14n(2n)!|y|−2, see (4.4).
Finally, let i ≤ j < 3. Since there holds

∂i∂j∂
2n−2
3 Gs(x) =

[
xixj

4s2
− δi,j

2s

]
(4s)−(n−1)H2n−2

(
x3√
4s

)
· Gs(x)

we obtain in the same line as above
∫ ∞

t

(s− n)n−1∂i∂j∂
2n−2
3 Gs(x) ds = |x|−3L

(2)
i,j,n(x) + |x|−3Ψi,j,n

(
x√
t

)
,

with the remainder

Ψi,j,n(y) := π−3/2(2n− 2)!
n−1∑

l=0

(−1)l4−l

l!(2n− 2− 2l)!

[ n−1∑

k=1

(
n− 1

k

)
(−1)k4k|y|−2k

×
(

y3

|y|
)2(n−l)−2 ∫ |y|/2

0

(
2
yiyj

|y|2 λ2 − δi,j

)
λ2n+2k−2le−λ2

dλ

−
(

y3

|y|
)2(n−l)−2 ∫ ∞

|y|/2

(
2
yiyj

|y|2 λ2 − δi,j

)
λ2n−2le−λ2

dλ

]
.

Again the remainder Ψi,j,n satisfies |Ψi,j,n(y)| . 14n(2n)!|y|−2, see (4.4). ¤

Proof of Lemma 3.5. Applying Lemma 3.4 to (3.6), we get for |α| = 2n
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F−1

(
cos

(
ξ3

|ξ|Ωt

)
e−4π2t|ξ|2

)

= Gt(x) +
1
|x|3

∞∑
n=1

(Ωt)2n

(2n)!(n− 1)!

[
L(0)

n (x) + Ψ3,3,n

(
x√
t

)]

=
1
|x|3

∞∑
n=1

(Ωt)2n

(2n)!(n− 1)!
L(0)

n (x) +
1
|x|3 Ψ(0)(x, t),

where Ψ(0)(x, t) := |x|3Gt(x) +
∑∞

n=1((Ωt)2n/(2n)!(n− 1)!)Ψ3,3,n(x/
√

t).
Since the heat kernel Gt(x) decays for fixed t > 0 exponentially fast as
|x| → ∞, we now pay attention to the absolutely convergent series

∞∑
n=1

(Ωt)2n

(2n)!(n− 1)!
L(0)

n (x)

=
1

π3/2

∞∑
n=1

n∑

l=0

(−1)n+lΓ(l + 3/2)
4n−l(n− 1)!(n− l)!(2l)!

(Ωt)2n

(
x3

|x|
)2l

=
1
π

∞∑

l=1

l + 1/2
l!

(
x3

|x|
)2l ∞∑

n=0

(−1)n

(n + l − 1)!n!

(
Ωt

2

)2n+2l

+
1
2π

∞∑
n=1

(−1)n

4nn!(n− 1)!
(Ωt)2n

=
1
π

∞∑

l=1

l + 1/2
l!

(
x3

|x|
)2l(Ωt

2

)l+1

Jl−1(Ωt)− 1
4π

ΩtJ1(Ωt).

By Lommel’s expansion [19, Section 5.22] of (z + h)−ν/2Jν(
√

z + h) with
h := −(Ωt)2(x3/|x|)2, z := (Ωt)2 and ν ∈ {0,−1} we obtain the equation

∞∑
n=1

(Ωt)2n

(2n)!(n− 1)!
L(0)

n (x)

=
1
π

∞∑

l=0

1
l!

(
x3

|x|
)2l+2(Ωt

2

)l+2

(sgnΩ)lJl(|Ω|t)
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+
1
2π

∞∑

l=0

1
l!

(
x3

|x|
)2l(Ωt

2

)l+1

(sgnΩ)l−1Jl−1(|Ω|t)

− 1
2π

Ωt

2
J−1(Ωt)−

√
π

4
ΩtJ1(Ωt)

=
1
4π

(
Ωt

x3

|x|
)2

J0

(√
z + h

)
+

1
4π

√
z + hJ−1

(√
z + h

)

− 1
4π

ΩtJ−1(Ωt)− 1
4π

ΩtJ1(Ωt).

Actually, since J−1 = −J1 we have

∞∑
n=1

(Ωt)2n

(2n)!(n− 1)!
L(0)

n (x)

=
1
4π

[(
Ωt

x3

|x|
)2

J0

(√
z + h

)−
√

z + hJ1

(√
z + h

)]

and thus by (3.11)

F−1

(
cos

(
ξ3

|ξ|Ωt

)
e−4π2t|ξ|2

)
=

1
4π|x|3 Ṽ0(x, t) + |x|−3Ψ(0)(x, t).

Let us now apply Lemma 3.4 to (3.7)

F−1

(
− ξi

|ξ| sin
(

ξ3

|ξ|Ωt

)
e−4π2t|ξ|2

)

= |x|−3
∞∑

n=0

(Ωt)2n+1

(2n + 1)!n!

[
Li,3,n+1(x) + Ψi,3,n+1

(
x√
t

)]
.

We have to differ the cases if either i = 3 or i 6= 3 to analyse the second
term further. Let i = 3, then we obtain again by Lommel’s expansions

F−1

(
− ξi

|ξ| sin
(

ξ3

|ξ|Ωt

)
e−4π2t|ξ|2

)

= π−3/2|x|−3
∞∑

n=0

n+1∑

l=0

(−1)lΓ(n + 1− l + 3/2)(2n + 2)
4ln!l!(2n + 2− 2l)!
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× (Ωt)2n+1

(
x3

|x|
)2(n+1−l)

+ |x|−3
∞∑

n=0

(Ωt)2n+1

(2n + 1)!n!
Ψi,3,n+1

(
x√
t

)

= − 1
4π|x|3 V2(x, t) + |x|−3Ψ(1)

i (x, t),

where we define Ψ(1)
i (x, t) :=

∑∞
n=0((Ωt)2n+1/(2n + 1)!n!)Ψi,3,n+1(x/

√
t).

Now let i 6= 3. This case implies

F−1

(
− ξi

|ξ| sin
(

ξ3

|ξ|Ωt

)
e−4π2t|ξ|2

)

= π−3/2 xix3

|x|5
∞∑

n=0

n∑

l=0

(−1)lΓ(n− l + 5/2)
4ln!l!(2n + 1− 2l)!

(Ωt)2n+1

(
x3

|x|
)2(n−l)

+ |x|−3
∞∑

n=0

(Ωt)2n+1

(2n + 1)!n!
Ψi,3,n+1

(
x√
t

)

=
xix3

4π|x|5 V3(x, t) + |x|−3Ψ(1)
i (x, t).

Now, by (3.1), for i + j 6= 3

K̃i,j(x, t) = (−1)1/2+|1/2+i−j|(1− δi,j)
x6−i−jx3

4π|x|5 V3(x, t)

+
1

4π|x|3 δi,j Ṽ0(x, t) + |x|−3Ψ̃i,j(x, t),

and for i + j = 3

K̃i,j(x, t) = (−1)1/2+|1/2+j−i| 1
4π|x|3 V2(x, t) + |x|−3Ψ̃i,j(x, t).

Here the remainder term Ψ̃i,j is defined by

Ψ̃i,j(x, t) := δi,jΨ(0)(x, t) + (−1)1/2+|1/2+i−j|(1− δi,j)Ψ
(1)
6−i−j(x, t).
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It remains to verify the decay of this function. Therefore, due to (4.4) we
obtain

∣∣Ψ̃i,j(x, t)
∣∣ ≤ ∣∣Ψ(0)(x, t)

∣∣ +
∣∣Ψ(1)

6−i−j(x, t)
∣∣

. |x|3Gt(x) + |x|−2t(1 + |Ω|t)
[ ∞∑

n=1

16n

(n− 1)!
(Ωt)2n + 1

]

. |x|3Gt(x) + |x|−2t(1 + |Ω|t)3[1 + e16(Ωt)2
]

(4.5)

and the proof is complete. ¤

Note that due to (4.5) the remainder term Ψ̃i,j may glow up at most
exponentially in time at t → ∞. In fact, also Ψ+

i,j , see Lemma 3.6, can be
estimated by (4.5).

5. Proof of Theorem 2.2

In this section we strongly refer to [3]. Since a mild solution solves (1.4)
we can rewrite each component of the velocity as

ui(t) =
3∑

j=1

K̃i,j(t) ∗ u0,j −
3∑

j,h=1

∫ t

0

∂hKi,j(t− s) ∗ (ujuh)(s) ds

+
3∑

j=1

∫ t

0

Ki,j(t− s) ∗ fj ds,

where K̃i,j and Ki,j = (δi,j +RiRj)K̃i,j denotes the corresponding compo-
nents of the convolution operator e−tAΩ and Pe−tAΩ , see (3.1), respectively.
Assuming µ > 4 we obtain with Lemma 3.1

∫ t

0

(
∂h(δi,j +RiRj)Ki,j(t− s) ∗ (ujuh)(s)

)
(x) ds .

(√
t + t6

)
(1 + |x|)−4

for all j, h = 1, 2, 3, i.e.

∫ t

0

e−(t−τ)AΩP(u · ∇u)(τ) dτ = Ot(|x|−4). (5.1)

Thus it suffices to analyse only the terms dealing either with the initial data
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or with the external force more precisely. Note that the profile of (Ki,j)
3
i,j=1

has already been investigated in Section 3.
Let us define the auxiliary functions vj and wj , j = 1, 2, 3, as follows:

u0,j = G1(x)
∫

R3
u0,j(y) dy + vj(x), (5.2)

fj = G1(x)
∫

R3
fj(y) dy + wj(x). (5.3)

This leads us to

(Ki,j(t) ∗ fj)(x) = (Ki,j(t) ∗ G1)(x)
∫

R3
fj(y) dy + (Ki,j(t) ∗ wj)(x)

= K∗
i,j(x, t)

∫

R3
fj(y) dy + |x|−3(ΨG1

i,j)(x, t)
∫

R3
fj(y) dy

+ (Ki,j(t) ∗ wj)(x)

and the Fourier transform yields

(Ki,j(t) ∗ G1)(x)

= F−1

(
e−4π2(t+1)|ξ|2

[
cos

(
ξ3

|ξ|Ωt

)
(δi,j +RiRj)− sin

(
ξ3

|ξ|Ωt

)
Ri,j(ξ)

])
.

Due to Lemma 3.4 we get the same leading term Li,j,n independent on time
for the shifted integral

∫ ∞

t+1

(s− t + 1)n−1∂i∂j∂
2n−2
3 Gs(x) ds = |x|−3

[
Li,j,n(x) + Ψi,j,n

(
x√

t + 1

)]
.

Dealing with Ki,j(t) ∗ G1 instead of Ki,j(t) thus only requires a slight mod-
ification on the remainder terms Ψi,j . Since, e.g.

Ψ̃G1
i,j(x, t) := δi,j |x|3Gt+1(x) + δi,j

∞∑
n=1

(Ωt)2n

(2n)!(n− 1)!
Ψ3,3,n

(
x√

t + 1

)

+ (−1)1/2+|1/2+i−j|(1− δi,j)
∞∑

n=0

(Ωt)2n+1

(2n + 1)!n!
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×Ψ6−i−j,3,n+1

(
x√

t + 1

)

decays like |x|−2, comparing (4.5), it remains to investigate the decay of the
convolution Ki,j(t) ∗ wj . Since

∫
R3 wj(y) dy = 0 the Taylor formula yields

∣∣(Ki,j(t) ∗ wj)(x)
∣∣ ≤

∫

|y|≤|x|/2

|y||wj(y)|dy sup
|z|≤|x|/2

|∇Ki,j(x + z, t)|

+
∫

|y|>|x|/2

|wj(y)|dy|Ki,j(x, t)|

+
∫

|y|>|x|/2

|wj(y)||Ki,j(x− y, t)|dy.

Let 0 < ε < (µ− 4)/3. The definition of wj , see (5.3), implies

|wj(y)| ≤ |fj(y)|+ G1(y)‖fj‖1 . (1 + |y|)−µ.

Applying Lemma 3.1 for any κ > 0 as well as the Hölder inequality yield

∣∣(Ki,j(t) ∗ wj)(x)
∣∣ .

(
1 + (|Ω|t)5)(

√
t + |x|)−4

∫

|y|≤|x|/2

|y||wj(y)|dy

+ (1 + (|Ω|t)4)(
√

t + |x|)−3
∫

|y|>|x|/2

|wj(y)|dy

+ ‖Ki,j(t)‖1+ε

( ∫

|y|>|x|/2

|wj(y)|(1+ε)/ε dy

)ε/(1+ε)

.
(
1 + (|Ω|t)5 + ‖Ki,j(t)‖1+ε

)(
min{

√
t, 1}+ |x|)−4

.

Note that due to the choice of ε there holds (µ − 4)((1 + ε)/ε) > 3 which
ensures the convergence of the integral

∫
R3(1 + |y|)(µ−4)((1+ε)/ε) dy.

Due to the assumptions on the solenoidal initial data u0 ∈ L∞4 (R3)3 we
obtain that the Fourier transform F(u0) is continuous and ξ · F(u0)(ξ) = 0
for all ξ ∈ R3. By continuity this implies F(u0)(ξ) = 0 for all ξ ∈ R3 and
thus in particular
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∫

R3
u0(y) dy = 0.

Therefore, repeating the above procedure with K̃i,j ∗vj , see (5.2), we finally
get for i = 1, 2 the asymptotic profile

ui(x, t) =
1

4π|x|3
[
A0(x, t)

∫

R3
fi(y) dy + (−1)i+1A2(x, t)

∫

R3
f3−i(y) dy

+
(

(−1)i+1 x3−ix3

|x|2 A3(x, t) +
xix3

|x|2 A5(x, t)
) ∫

R3
f3(y) dy

+
3∑

k=1

xixk

|x|2 A4(x, t)
∫

R3
fk(y) dy

]
+Ot(|x|−4),

u3(x, t) =
1

4π|x|3
[
A1(x, t)

∫

R3
f3(y) dy +

(
x1x3

|x|2 A5(x, t)− x2x3

|x|2 A3(x, t)
)

×
∫

R3
f1(y) dy +

(
x1x3

|x|2 A3(x, t) +
x2x3

|x|2 A5(x, t)
) ∫

R3
f2(y) dy

+
3∑

k=1

x3xk

|x|2 A4(x, t)
∫

R3
fk(y) dy

]
+Ot(|x|−4),

which is the component-wise presentation of the assertion. This completes
the proof of Theorem 2.2. ¤
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