Notes on the balayaged measure on the Kuramochi boundary^{*)}

Dedicated to Professor Yoshie Katsurada on her 60th birthday

By Hiroshi TANAKA**)

1. Let p^{μ} , p^{ν} be two Green potentials on a hyperbolic Riemann surface R. Let G be an open set in R. It is well-known that if $p^{\mu} = p^{\nu} + h$ on G for some harmonic function h on G, then the restriction of μ on G equals the restriction of ν on G.

In this paper, we shall prove a similar result to the above is also valid for Kuramochi's potentails and an open set in the Kuramochi compactification R_N^* of R (Theorem 1). As applications, we shall prove the followings: (a) The support of the canonical measure associated with \tilde{g}_b for a non-minimal Kuramochi boundary point b is contained in the closure of the set of all non-minimal Kuramochi boundary points (Theorem 2). As for a non-minimal Martin boundary point, T. Ikegami [2] had obtained an analogous result to (a). (b) Let K be a compact set in $R_0^* = R_N^* - K_0$ (K_0 is a closed disk in R) and \tilde{C} be the Kuramochi capacity on R_0^* . If we denote by Int(K) the set of all interior points of K in R_0^* , then we have $\tilde{C}(K) = \tilde{C}(K-Int(K))$ (Theorem 3).

2. Let R be a hyperbolic Riemann surface. We shall use the same notation as in [1], for instance, \bar{g}_b , \tilde{p}^{μ} , f^F , R_N^* , Δ_N etc. For a subset A of R, we denote by ∂A the relative boundary of A in R and by \bar{A} the closure of A in R_N^* . The Kuramochi boundary Δ_N is decomposed into two mutually disjoint parts: the minimal part Δ_1 and the non-minimal part Δ_0 . By a measure μ on R_0^* , we always mean a positive measure μ on R_N^* such that $\mu(K_0)=0$. For a measure μ on R_0^* , we denote by $S\mu$ the support of μ and by $\mu|E$ the restriction of μ on a Borel set E in R_N^* . If a measure μ on R_0^* satisfies $\mu(\Delta_0)=0$, then it is called *canonical*. It is known that if μ is a measure on R_0^* , then there exists a unique canonical measure ν such that $\tilde{p}^{\mu} = \tilde{p}^{\nu}$. For a closed set F in R and measure μ on R_0^* , we denote by μ_F the canonical associated measure with $\tilde{p}^{\mu}_{\tilde{F}}$.

^{*)} This was presented at a symposium "Maximum principles in a potential theory" held at the Research Institute for Mathematical Sciences of Kyoto University, 1971.

^{**)} 田中博.

A subset A of R is called *polar* if there exists a positive superharmonic function s on R such that $s(a) = +\infty$ at every point a in A. It is known that a polar set is locally of Lebesgue measure zero. We shall say that a property hold $q \cdot p \cdot$ on a set E if it holds on E except for a polar set.

The following properties are known ([1]).

(a) Let F be a non-polar closed set in R and f be a Dirichlet function¹) on R. If G is a component of R-F, then $f^F = f^{\partial G}$ on G.

(b) Let F be a closed set in R. If s is a Dirichlet function on R, s=0 on K_0 and s is a non-negative full-superharmonic function²⁾ on R_0 , then

$$s_{\widetilde{F}} = s^{K_0 \cup F}$$
 on $R_0 - F$.

(c) Let b be any point in $R_0 \cup \mathcal{A}_1$. If F is a closed set in R such that \overline{F} is a neighborhood of b in R_N^* , then $(\tilde{\sigma}_b)_{\widetilde{F}} = \tilde{\sigma}_b$.

(d) Let μ be a measure on R_0^* . If F is a closed set in R, then

$$\left(\int \tilde{g}_b d\mu(b)\right)_{\tilde{F}} = \int (\tilde{g}_b)_{\tilde{F}} d\mu(b) \,.$$

By the aid of (a) and (b), we shall prove

LEMMA. Let s be a non-negative full-superharmonic function on R_0 . If F is a closed subset of R_0 , then

$$s_{\widetilde{F}} = s_{\widetilde{\partial F}}$$
 on $R_0 - F$.

PROOF. We can find an open disk D in R such that $K_0 \subset D$ and $(D \cup \partial D) \cap F = \emptyset$. For each integer n > 0, we set $s_n = \min(s_{\widehat{K_0}-D}, n)$. Since s_n is bounded and the total mass of the associated measure with s_n is finite, it follows from Satz 17.3 in [1] that s_n is a Dirichlet function. Hence it follows from (a) and (b) that

 $(s_n)_{\widetilde{F}} = (s_n)_{\widetilde{\delta}F}$ on $R_0 - F$.

Since $s_{\widetilde{R_0-D}} = s$ on $R_0 - (D \cup \partial D)$, by letting $n \to \infty$, we obtain that $s_{\widetilde{F}} = s_{\widetilde{\partial}F}$ on $R_0 - F$.

3. PROPOSITION. Let F be a closed subset of R_0 and μ be a canonical measure on R_0^* . If we set $\nu = \mu | \overline{R-F}$ and $\lambda = \mu - \nu$, then $\mu_F = \nu_F + \lambda$ and $S\nu_F \subset \overline{F} \cap \overline{R-F}$.

PROOF. (i) First we shall prove that $S\nu_F \subset \overline{F} \cap \overline{R-F}$. Since $S\nu_F \subset \overline{F}$, it is sufficient to prove that $S\nu_F \subset \overline{R-F}$. Let *b* be an arbitrary point of $R_0^* - \overline{R-F}$. Then there is an open neighborhood *U* of *b* in R_0^* such that

¹⁾ This is called eine Dirichletsche Funktion in [1].

²⁾ This is called eine positive vollsuperharmonische Funktion in [1].

H. Tanaka

 $\overline{U} \cap \overline{R-F} = \emptyset$. We set $G = U \cap R$. Since $\overline{G} \cap \overline{R-F} = \emptyset$, $\overline{R_0-G}$ is a neighborhood of each b' in $R - \overline{F \cap R_0^*}$. Hence it follows from (c) and (d) that $\widetilde{p}^{\nu} \widetilde{R_0-G} = \widetilde{p}^{\nu}$ on R_0 . By the Lemma, we obtain that $\widetilde{p}^{\nu} \widetilde{R_0-G} = \widetilde{p}^{\nu} \widetilde{\delta G}$ and $\widetilde{p}^{\nu F} \widetilde{R_0-G} = \widetilde{p}^{\nu F} \widetilde{\delta G}$ on G. Since $\widetilde{p}^{\nu F} = \widetilde{p}^{\nu}$ q. p. on F and $\partial G \subset F$, we have

$$\widetilde{p}^{\nu_{F_{\partial \widetilde{G}}}} = \widetilde{p}^{\nu_{\partial \widetilde{G}}} \qquad \text{on} \quad R_{0}.$$

Thus we obtain that

$$\widetilde{p}^{\nu}_{\widetilde{R_{0}-G}} = \widetilde{p}^{\nu}_{\widetilde{\partial G}} = \widetilde{p}^{\nu_{F}}_{\widetilde{\partial G}} = \widetilde{p}^{\nu_{F}}_{\widetilde{R_{0}-G}} \qquad \text{on} \quad G.$$

Since $\widetilde{p}^{\nu_{F}}_{\widetilde{\partial G}} = \widetilde{p}^{\nu_{F}} q$. p. on G, we see that

$$\widetilde{p}^{\nu_F}_{\widetilde{R_0-G}} = \widetilde{p}^{\nu_F}_{\widetilde{\partial G}} = \widetilde{p}^{\nu_F} \qquad \text{q. p. on } G.$$

This shows that

$$\widetilde{p}^{\nu_F}_{\mathcal{R}_0-\mathcal{G}} = \widetilde{p}^{\nu_F} \qquad \text{q. p. on } R_0.$$

Hence we have

$$\widetilde{p}^{\nu_F} \widetilde{R_{\mathfrak{o}}-G} = \widetilde{p}^{\nu_F} \qquad \text{on } R$$

and $(\nu_F)_{R_0-G} = \nu_F$. Thus $\nu_F(U) = 0$. Since *b* is arbitrary, we see that $S\nu_F \subset \overline{R-F}$.

(ii) Secondly we shall prove that $\lambda_F = \lambda$. Let *b* be an arbitrary point in $R_0^* - \overline{R - F}$. Then there exists an open neighborhood *U* of *b* in R_N^* such that $\overline{U} \cap \overline{R - F} = \emptyset$. Since $U \cap R \subset F$, \overline{F} is a neighborhood of *b*. Hence it follows from (c) and (d) that $\widetilde{p}_{\widetilde{F}}^* = \widetilde{p}^*$ on R_0 . This shows that $\lambda_F = \lambda$. Therefore we complete the proof.

COROLLARY 1. $\mu_F | (R_0^* - \overline{R - F}) = \mu | (R_0^* - \overline{R - F}).$ COROLLARY 2 ([3]). If $S\mu \cap \overline{F} = \emptyset$, then $S\mu_F$ is contained in $\overline{F} \cap \overline{R - F}$.

THEOREM 1. Let μ , ν be canonical measures on R_0^* and s be a nonnegative full-superharmonic function on R_0 . Let G be an open subset of R_N^* such that $K_0 \cap \overline{G} = \emptyset$. If $\widetilde{p}^{\mu} = \widetilde{p}^{\nu} + s$ on $G \cap R_0$, then $\mu | G \ge \nu | G$.

PROOF. We can find an open disk D in R such that $K_0 \subset D$ and $\overline{D} \cap \overline{G} = \emptyset$. Then $s_{\widetilde{R_0}-D}$ is equal to a potential \widetilde{p}^i . Hence $\widetilde{p}^{\mu} = \widetilde{p}^{\nu} + \widetilde{p}^{\lambda}$ on $G \cap R_0$. Let b be an arbitrary point in G. Then there is an open neighborhood U of b in R_N^* such that $\overline{U} \subset G$. If we set $F = \overline{U} \cap R_0$ ($\subset G \cap R_0$), then $\widetilde{p}^{\mu} = \widetilde{p}^{\nu} + \widetilde{p}^{\lambda}$ on F. Hence it follows from Corollary 1 to Proposition that $\mu | U = (\nu + \lambda) | U$. Since b is arbitrary, we obtain that $\mu | G = (\nu + \lambda) G \geq \nu | G$.

COROLLARY. If $s_{\widetilde{R_0-G}} = s$ on R_0 and $\widetilde{p}^{\mu} = \widetilde{p}^{\nu} + s$ on $G \cap R_0$, then $\mu | G = \nu | G$. $\nu | G$. In particular, if $\widetilde{p}^{\mu} = \widetilde{p}^{\nu}$ on $G \cap R_0$, then $\mu | G = \nu | G$. As an application of the above corollary, we shall prove

THEOREM 2. Let b_0 be an arbitrary point in Δ_0 . If μ is the canonical measure associated with $\tilde{\rho}_{b_0}$, then $S\mu$ is contained in $\bar{\Delta}_0$.

PROOF. Suppose $S\mu$ is not contained in $\overline{\mathcal{A}}_0$. Then there exists an open set U in R_N^* such that $\overline{F} \cap \overline{\mathcal{A}}_0 = \emptyset$ and $\mu(U \cap \mathcal{A}_N) > 0$. We can find a closed subset F of R_0 such that $\overline{F} \cap \overline{\mathcal{A}}_0 = \emptyset$ and \overline{F} is a neighborhood of \overline{U} . Since b_0 is contained in $\overline{R_0 - F}$, it follows from the Lemma in [3] that there exists a measure ν on R_0^* such that $S\nu \subset \overline{F} \cap \overline{R - F}$ and $(\overline{g}_{b_0})_{\overline{F}} \leq \overline{\tilde{p}}^* \leq \tilde{\sigma}_{b_0}$ on R_0 . Since $\overline{F} \cap \overline{\mathcal{A}}_0 = \emptyset$, $S\nu \cap \overline{\mathcal{A}}_0 = \phi$. Hence ν is canonical. Since $\widetilde{p}^* = \tilde{r}_{b_0}$ q. p. on F and $U \cap R_0 \subset F$, we see that $\widetilde{p}^* = \tilde{r}_{b_0} = \widetilde{p}^{\mu}$ on $U \cap R_0$. It follows from the Corollary to Theorem 1 that $\nu | U = \mu | U$. Since $S\nu \subset \overline{F} \cap \overline{R - F}$, $S\nu \cap \overline{U} = \emptyset$. Hence $\nu(U \cap \mathcal{A}_N) = 0$. This contradicts the assumption on μ . Therefore we complete the proof.

4. For a compact set K in R_0^* , the (Kuramochi) capacity $\tilde{C}(K)$ is defined by sup $\{\mu(K); \mu \text{ is canonical and } p^{\mu} \leq 1\}$. It is known ([1]) that there exists a unique canonical measure χ^{κ} on K such that $\tilde{p}^{\kappa} \leq 1$, $\tilde{p}^{\kappa} = 1$ on K except for an F_{σ} -set with capacity zero and $\tilde{C}(K) = \chi^{\kappa}(K)$.

THEOREM 3. If K is a compact set in R_0^* , then $\tilde{C}(K) = \tilde{C}(K - Int(K))$.

PROOF. Since $\tilde{C}(K-\operatorname{Int}(K)) \leq \tilde{C}(K)$, it is sufficient to prove the converse inequality. Since $\tilde{p}^{\tau^{K}} = 1$ on K except for an F_{σ} -set with capacity zero, we see that $\tilde{p}^{\tau^{K}} = 1$ on $\operatorname{Int}(K) \cap R_{0}$. Hence, by setting $\mu = \chi^{\kappa}$, $\nu = 0$ and s = 1 in the Corollary to Theorem 1, we have that $\chi^{\kappa}(\operatorname{Int}(K)) = 0$. Thus we obtain that

$$\begin{split} \widetilde{C}\left(K - \operatorname{Int}(K)\right) &= \sup\left\{\mu\left(K - \operatorname{Int}(K)\right); \ \mu \text{ is canonical and } \widetilde{p}^{\mu} \leq 1\right\} \\ &\geq \chi^{\kappa}\left(K - \operatorname{Int}(K)\right) = \chi^{\kappa}(K) = \widetilde{C}(K) \,. \end{split}$$

Department of Mathematics, Hokkaido University

References

- [1] C. CONSTANTINESCU and A. CORNEA: Ideale Ränder Riemannscher Flächen, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1963.
- [2] T. IKEGAMI: On the non-minimal Martin boundary points, Nagoya Math. J., 29 (1967).
- [3] H. TANAKA: Some properties of Kuramochi boundaries of hyperbolic Riemann surfaces, J. F. Sci. Hokkaido Univ., 21 (1970).

(Received February 26, 1972)