## The maximal large sieve

Dedicated to Professor Yoshie Katsurada on the occasion of her sixtieth anniversary

By Saburô Uchiyama

Let $M$ and $N$ be integers with $N>0$ and let $a_{M+1}, \cdots, a_{\mathcal{M}+N}$ be any real or complex numbers. Define

$$
S(t)=\sum_{M<n \leqq M+N} a_{n} e(n t)
$$

with the abbreviation $e(t)=e^{2 r i t}$ and set

$$
Z=\sum_{M<n \leqq M+N}\left|a_{n}\right|^{2} .
$$

Let $x_{1}, \cdots, x_{R}(R \geqq 1)$ be any fixed real numbers which satisfy the condition

$$
\left\|x_{u}-x_{v}\right\| \geqq \delta \quad \text { when } \quad u \neq v,
$$

where $\|x\|$ denotes the absolute distance between $x$ and the nearest integer to it, and $0<\delta \leqq 1 / 2$.

In a recent paper [1] E. Bombieri and H. Davenport proved that

$$
\sum_{r=1}^{R}\left|S\left(x_{r}\right)\right|^{2} \leqq\left\{\begin{array}{l}
\left(N^{1 / 2}+\delta^{-1 / 2}\right)^{2} Z  \tag{1}\\
2 \max \left(N, \delta^{-1}\right) Z
\end{array}\right.
$$

and essentially the best possible results of the type (1) have also been obtained by them in [2]. On the other hand, P. X. Gallagher [3] has given a very simple and ingenious proof of the inequality

$$
\begin{equation*}
\sum_{r=1}^{R}\left|S\left(x_{r}\right)\right|^{2} \leqq\left(\pi N+\delta^{-1}\right) Z, \tag{2}
\end{equation*}
$$

which is slightly weaker than, but as powerful as, (1).
Now, our principal objective in this paper is to replace in these inequalities the sum $S(t)$ by the 'maximal function' $S^{*}(t)$ defined by

$$
S^{*}(t)=\sup _{1 \leq n \leqq N}\left|\sum_{M<m<M+n} a_{m} e(m t)\right| .
$$

Indeed, we can show that for $N \geqq 2$

$$
\begin{equation*}
\sum_{r=1}^{R}\left(S^{*}\left(x_{r}\right)\right)^{2} \leqq B\left(N \log N+\delta^{-1} \log ^{2} N\right) Z \tag{3}
\end{equation*}
$$

where, and throughout in what follows, $B$ denotes an unspecified, positive absolute constant.

However, we should like to present our main result in a form slightly more general than (3).

## 1. Notations.

For the sake of simplicity we shall adopt vector notations of dimension $s, s$ being a fixed positive integer. Thus, if

$$
a=\left(a_{1}, \cdots, a_{s}\right)
$$

is an $s$-dimensional integral vector, i. e. a vector with integer components $a_{j}(1 \leqq j \leqq s)$, we set

$$
2^{a}=\left(2^{a_{1}}, \cdots, 2^{a_{s}}\right),
$$

and if $b=\left(b_{1}, \cdots, b_{s}\right)$ is another $s$-dimensional integral vector, we define

$$
a b=\left(a_{1} b_{1}, \cdots, a_{s} b_{s}\right) ;
$$

also, we write

$$
a \leqq b \quad \text { or } \quad b \geqq a
$$

when

$$
a_{j} \leqq b_{j} \quad \text { for } \quad j=1, \cdots, s,
$$

and write

$$
a<b \quad \text { or } \quad b>a
$$

when

$$
a_{j}<b_{j} \quad \text { for } \quad j=1, \cdots, s .
$$

We shall often identify a scalar $a$ with the vector $(a, \cdots, a)$; in particular,

$$
0=(0, \cdots, 0), \quad 1=(1, \cdots, 1) .
$$

Now, let $M$ and $N$ be $s$-dimensional integral vectors with $N>0$. Let the $a_{M+n}(1 \leqq n \leqq N)$ be any real or complex numbers and define

$$
S(t)=\sum_{M<n \leqslant M+N} a_{n} e(\langle n, t\rangle),
$$

where $\langle n, t\rangle$ denotes the inner product of the integral vector $n=\left(n_{1}, \cdots, n_{\mathrm{o}}\right)$ and the vector $t=\left(t_{1}, \cdots, t_{s}\right)$ with real components $t_{j}(1 \leqq j \leqq \mathrm{~s})$, namely

$$
\langle n, t\rangle=n_{1} t_{1}+\cdots n_{s} t_{g} .
$$

We set as before

$$
Z=\sum_{\mathcal{M}\langle n \leq M+N}\left|a_{n}\right|^{2} .
$$

Let

$$
x_{r}=\left(x_{r, 1}, \cdots, x_{r, s}\right) \quad(r=1, \cdots, R)
$$

be any fixed $R$ vectors with real components $x_{r, j}(1 \leqq j \leqq s)$ such that

$$
\left\|x_{u, j}-x_{v, j}\right\| \geqq \delta_{j} \quad \text { when } \quad u \neq v(1 \leqq j \leqq s),
$$

where $0<\delta_{j} \leqq 1 / 2(1 \leqq j \leqq s)$; we put

$$
\delta=\left(\delta_{1}, \cdots, \delta_{s}\right)
$$

and write

$$
\delta^{-1}=\left(\delta_{1}^{-1}, \cdots, \delta_{s}^{-1}\right) .
$$

## 2. A theorem of E. Hlawka.

For any two $s$-dimensional vectors

$$
\xi=\left(\xi_{1}, \cdots, \xi_{s}\right) \quad \text { and } \quad \eta=\left(\eta_{1}, \cdots, \eta_{s}\right)
$$

with real components, we set

$$
\mathrm{C}_{s}(\xi, \eta)=\prod_{j=1}^{s}\left(\xi_{j}+\eta_{j}\right) .
$$

In his very interesting paper [4] E. Hlawka proved substantially the following result.

Theorem 1. Under the notations and conditions described above we have

$$
\sum_{r=1}^{R}\left|S\left(x_{r}\right)\right|^{2} \leqq C_{s}\left(\pi N, \delta^{-1}\right) Z .
$$

This is just an $s$-dimensional version of the inequality (2) of Gallagher's; we note that similar generalizations have also been given by several writers.

## 3. The main theorem.

We are now going to replace the sum $S(t)$ in Theorem 1 by the 'maximal function' $S^{*}(t)$ defined by

$$
S^{*}(t)=\sup _{1 \leq n \leq N}\left|\sum_{M<m \leq M+n} a_{m} e(\langle m, t\rangle)\right| .
$$

We shall prove the following
Theorem 2. Let $N$ and $L$ be s-dimensional integral vectors such that

$$
N \geqq 2 \quad \text { and } \quad 2^{L-1}<N \leqq 2^{I} .
$$

Then we have

$$
\sum_{r=1}^{R}\left(\mathrm{~S}^{*}\left(x_{r}\right)\right)^{2} \leqq C_{s}(L, 1) C_{s}\left(\pi 2^{L+1},(L+1) \delta^{-1}\right) Z
$$

It is clear that for $s=1$ our Theorem 2 reduces to an inequality of the from (3).

In order to prove Theorem 2 we set

$$
a_{m}=0 \quad \text { for } \quad M+N<m \leqq M+2^{L}
$$

and put for $s$-dimensional integral vectors $k, l$ with $1 \leqq k \leqq 2^{l}, 0 \leqq l \leqq L$,

$$
S_{k, l}(t)=\sum_{M+(k-1) 2^{L-l}\left\langle m \leq M+k 2^{L-l}\right.} a_{m} e(\langle m, t\rangle) .
$$

If we write

$$
S^{*}(t)=\sup _{1 \leqq k \leqslant 2^{2}}\left|S_{k, l}(t)\right|
$$

then we easily find that

$$
S^{*}(t) \leqq \sum_{0 \leq l \leq L} S_{l}^{*}(t),
$$

on taking account of the dyadic development of each component of an integral vector $n, 1 \leqq n \leqq N$. Therefore, Cauchy's inequality gives

$$
\left(S^{*}(t)\right)^{2} \leqq C_{s}(L, 1) \sum_{0 \leq \leq \leq L}\left(S_{l}^{*}(t)\right)^{2}
$$

and so

$$
\sum_{r=1}^{R}\left(S^{*}\left(x_{r}\right)\right)^{2} \leqq C_{s}(L, 1) \sum_{0 \leq l \leq L} \sum_{r=1}^{R}\left(S_{l}^{*}\left(x_{r}\right)\right)^{2}
$$

where

$$
\begin{aligned}
\sum_{r=1}^{R}\left(S_{l}^{*}\left(x_{r}\right)\right)^{2} & \leqq \sum_{1 \leq k \leq \Sigma^{2}} \sum_{r=1}^{R}\left|S_{k, l}\left(x_{r}\right)\right|^{2} \\
& \leqq \sum_{1 \leq k \leq 2^{C}} C_{s}\left(\pi 2^{L-l}, \delta^{-1}\right) \sum_{M+(k-1) 2^{L-l} l_{<m \leq M+k 2^{L-l}}\left|a_{m}\right|^{2}} \\
& =C_{s}\left(\pi^{L-l}, \delta^{-1}\right) \sum_{M<m \leqq M+N}\left|a_{m}\right|^{2}
\end{aligned}
$$

by Theorem 1. Hence we obtain the result in Theorem 2, on noticing that

$$
\sum_{0 \leq \leq \leq L} C_{s}\left(\pi 2^{L-l}, \delta^{-1}\right)=C_{s}\left(\pi\left(2^{L+1}-1\right),(L+1) \delta^{-1}\right) .
$$

This completes the proof of Theorem 2.

## 4. An application.

In this and the next sections we shall restrict ourselves to the simplest case of $s=1$. Thus, as before, we define

$$
S(t)=\sum_{M<n \leq M+N} a_{n} e(n t)
$$

and set

$$
Z=\sum_{M<n \leqq M+N}\left|a_{n}\right|^{2},
$$

where $M$ and $N$ are integers with $N>0$ and the $a_{n}$ are any complex numbers; also, we put

$$
S^{*}(t)=\sup _{1 \leq n \leq N}\left|S_{n}(t)\right|
$$

with

$$
S_{n}(t)=\sum_{\mathcal{M}<m \leqq M+n} a_{m} e(m t) .
$$

We shall assume throughout that $N \geqq 2$.
If

$$
0<x_{1}<x_{2}<\cdots<x_{R}=1
$$

are the Farey fractions of order $Q, Q \geqq 1$, then

$$
R=\frac{3}{\pi^{2}} Q^{2}+O(Q \log 2 Q)
$$

and we may take

$$
\delta=\min \left(\frac{1}{2}, \frac{1}{Q^{2}}\right)
$$

It follows from (3) that

$$
\begin{equation*}
\sum_{a \leq Q} \sum_{\substack{a=1 \\(a, q)=1}}^{q}\left(S^{*}\left(\frac{a}{q}\right)\right)^{2} \leqq B\left(N \log N+Q^{2} \log ^{2} N\right) Z . \tag{4}
\end{equation*}
$$

If we write for integers $1 \leqq n \leqq N, q \geqq 1$ and $h$

$$
\begin{equation*}
Z_{n}(q, h)=\sum_{\substack{M \leq m \leq M+n \\ m=n(\bmod q)}} a_{m}, \tag{5}
\end{equation*}
$$

then we have (cf. [5])

$$
\sum_{\substack{a=1 \\(a, q)=1}}^{q}\left|S_{n}\left(\frac{a}{q}\right)\right|^{2}=q \sum_{n=1}^{q}\left|\sum_{d \mid q} \frac{\mu(d)}{d} Z_{n}\left(\frac{q}{d}, h\right)\right|^{2},
$$

where $\mu(d)$ is the Möbius function.
We define

$$
W(q, h)=\sup _{1 \leq n \leq N}\left|\sum_{|d| q} \frac{\mu(d)}{d} Z_{n}\left(\frac{q}{d}, h\right)\right| .
$$

The following theorem can be proved by the method employed in the previous section to establish Theorem 2, though the result obtained is not a direct consequence of the inequality (4).

Theorem 3. We have

$$
\sum_{q \leq Q} q \sum_{n=1}^{q}(W(q, \mathrm{~h}))^{2} \leqq B\left(N \log N+Q^{2} \log ^{2} N\right) Z
$$

Let $L$ be the positive integer for which

$$
2^{L-1}<N \leqq 2^{L} .
$$

## Setting

$$
a_{m}=0 \quad \text { for } \quad M+N<m \leqq+2^{L} \text {, }
$$

we define $Z_{n}(q, h)$ by (5) for integers $1 \leqq n \leqq 2^{L}, q \geqq 1$ and $h$. Put, further, for integers $k, l$ with $1 \leqq k \leqq 2^{2}, 0 \leqq l \leqq L$,

$$
Z_{k, z}(q, h)=\sum_{\substack{m=K+(k-1) L \\ m=h(\bmod q)}}^{M+k^{L-l}+1} a_{m},
$$

and write

$$
W_{\imath}(q, h)=\sup _{1 \leq k \leq 2}\left|\sum_{d \mid q} \frac{\mu(d)}{d} Z_{k, l}\left(\frac{q}{d}, h\right)\right| .
$$

Then we have

$$
W(q, h) \leqq \sum_{l=0}^{L} W_{l}(q, h)
$$

so that

$$
(W(q, h))^{2} \leqq(L+1) \sum_{l=0}^{L}\left(W_{\imath}(q, h)\right)^{2} .
$$

It follows from this that

$$
\sum_{q \leq Q} q \sum_{h=1}^{q}(W(q, h))^{2} \leqq(L+1) \sum_{l=0}^{L} \sum_{q \leq Q} q \sum_{h=1}^{q}\left(W_{l}(q, h)\right)^{2},
$$

where

$$
\begin{aligned}
\sum_{q} q \sum_{h}\left(W_{l}(q, h)\right)^{2} & \leqq \sum_{k=1}^{2^{l}} \sum_{q} q \sum_{h}\left|\sum_{|l| q} \frac{\mu(d)}{d} Z_{k, l}\left(\frac{q}{d}, h\right)\right|^{2} \\
& =\sum_{k=1}^{2^{l}} \sum_{q} \sum_{(a, q)=1}\left|S_{k, l}\left(\frac{a}{q}\right)\right|^{2}
\end{aligned}
$$

with

$$
S_{k, l}(t)=\sum_{m=M+(k-1) 2^{L-l} l_{+1}}^{M+k 2^{L-l}} a_{m} e(m t)
$$

Hence we obtain

$$
\begin{aligned}
\sum_{q} q \sum_{h}\left(W_{l}(q, h)\right)^{2} & \leqq \sum_{k=1}^{2^{l}}\left(\pi 2^{L-l}+Q^{2}\right) \sum_{m=M+(k-1) 2^{L-l}+1}^{M+2_{2} L^{L-l}}\left|a_{m}\right|^{2} \\
& =\left(\pi 2^{L-l}+Q^{2}\right) Z
\end{aligned}
$$

by (2), and so

$$
\sum_{q \leqq Q} q \sum_{h=1}^{q}(W(q, h))^{2} \leqq(L+1)\left(\pi 2^{L+1}+(L+1) Q^{2}\right) Z
$$

This proves Theorem 3, since

$$
L+1<\frac{3}{\log 2} \log N \quad \text { for } \quad N \geqq 2
$$

## 5. A Final remark.

Again, let $M$ and $N$ be integers with $N>0$ and let $a_{M+1}, \cdots, a_{M+N}$ be any complex numbers. Put for each residue character $\chi(\bmod q), q \geqq 1$,

$$
S(\chi)=\sum_{M<n \leqq M+N} a_{n} \chi(n)
$$

and define

$$
S^{*}(\chi)=\sup _{1 \leqq n \leqq N}\left|\sum_{M<m \leqq M+n} a_{m} \chi(m)\right|
$$

Using the inequality (cf. [3; (5)] $)$

$$
\frac{1}{\phi(q)} \sum_{\chi(\bmod q)}|S(\chi)|^{2} \leqq \frac{1}{q} \sum_{\substack{a=1 \\(a, q)=1}}^{q}\left|S\left(\frac{a}{q}\right)\right|^{2}
$$

where $\phi(q)$ is the Euler totient function and $\Sigma_{x}$ indicates that the sum is taken over primitive characters $\chi$ only, we can deduce from (2) that with a positive absolute constant $B$

$$
\begin{equation*}
\sum_{q \leqq Q} \frac{q}{\phi(q)} \sum_{\chi(\bmod q)}\left(S^{*}(\chi)\right)^{2} \leqq B\left(N \log N+Q^{2} \log ^{2} N\right) Z \tag{6}
\end{equation*}
$$

provided $N \geqq 2$.
We write as usual

$$
\psi(x, q, a)=\sum_{\substack{n \leq x \\ n=a\{\bmod q)}} \Lambda(n),
$$

where $\Lambda(n)=\log p$ if $n$ is a power of the prime $p$ and $=0$ otherwise. An immediate consequence of (6) is that for all real $x>1$ and any fixed $A>0$ we have

$$
\sum_{q \leq x(\log x)^{-1}} \sup _{y \leq x} \sum_{\substack{a=1 \\(a, q)=1}}^{q}\left(\psi(y, q, a)-\frac{y}{\phi(q)}\right)^{2} \leqq B_{A} \frac{x^{2}}{(\log x)^{4-3}},
$$

$B_{A}>0$ being a constant depending at most on $A$. However, our method used in the proof of (3), combined with the method of Gallagher [3], will furnish a slightly stronger result than this inequality, namely

$$
\begin{equation*}
\sum_{q \leq x(\log x)^{-4}} \sum_{(a, q)=1}^{q} \sup _{y \leq x}\left(\psi(y, q, a)-\frac{y}{\phi(q)}\right)^{2} \leqq B_{A} \frac{x^{2}}{(\log x)^{4-3}} . \tag{7}
\end{equation*}
$$

This last inequality may have a consequence on the magnitude in the mean of the least prime number in an arithmetic progression of integers. Thus, if we denote by $p(q, a)$ the least prime $p \equiv a(\bmod q),(a, q)=1$, then it follows from (7) that

$$
\begin{equation*}
\sum_{q \leqq x(\log x)^{-4}} \sum_{\substack{a=1 \\(a q)=1}}^{q}\left(\frac{\min (p(q, a), x)}{\phi(q)}\right)^{2} \leqq B_{A} \frac{x^{2}}{(\log x)^{4-3}} \tag{8}
\end{equation*}
$$

for any $A>0$ and some $B_{A}>0$.
Assume now that $A>3$. Let $b$ be any fixed number satisfying $0<b<1$. It then follows from (8) that the number of positive integers $q \leqq x(\log x)^{-4}$ such that one has

$$
p(q, a) \geqq x
$$

for more than $b \phi(q)$ incongruent values of $a(\bmod q)$ with $(a, q)=1$, does not exceed

$$
\frac{B_{A}}{b} \frac{x}{(\log x)^{2 A-3}}=o\left(\frac{x}{(\log x)^{4}}\right) \quad(x \rightarrow \infty) .
$$

(The exponent $2 A-3$ of $\log x$ could be improved to $2 A-1$ in the denominator on the left side of this inequality, if use were made of [3; Theorem 3] instead of (8); however, the present result will suffice for our purposes). Hence, if we possibly remove all such integers $q$ from the interval

$$
\begin{equation*}
\frac{x}{(\log x)^{4+\iota}}<q \leqq \frac{x}{(\log x)^{4}}, \tag{9}
\end{equation*}
$$

$\varepsilon$ being an arbitrary but fixed real number with $0<\varepsilon<(A-3) / 2$, then the number of remaining integers $q$ in (9) for which

$$
p(q, a) \geqq \phi(q)(\log q)^{A}
$$

holds for more than $(1-b) c \phi(q)$ incongruent $a$ 's $(\bmod q)$ with $(a, q)=1$, where $c$ is any number satisfying $0<c<1$, is not greater than

$$
\frac{B_{A}}{(1-b) c} \frac{x}{(\log x)^{2 A-3-2 c}}=o\left(\frac{x}{(\log x)^{A}}\right) \quad(x \rightarrow \infty)
$$

by (8) again.
Therefore, for all but possibly $o\left(x(\log x)^{-A}\right)$ positive integers $q \leqq x(\log x)^{-A}$ one must have

$$
p(q, a)<\phi(q)(\log q)^{A}
$$

for at least $(1-b)(1-c) \phi(q)$ incongruent $a$ 's $(\bmod q)$ with $(a, q)=1$. Rewriting $c$ for $(1-b)(1-c)$, we thus have proved the following

Theorem 4. Let $A$ be an arbitrary real number greater than 3 and $c$ be any number with $0<c<1$. Then, for almost all positive integers $q$ we have

$$
p(q, a)<\phi(q)(\log q)^{A}
$$

for at least $c \phi(q)$ incongruent values of $a(\bmod q)$ with $(a, q)=1$.
Here, 'almost all' means 'all but possibly a set of density zero'.
We note that a celebrated theorem due to Ju. V. Linnik states that there exists an absolute constant $C>0$ such that

$$
p(q, a)<q^{c}
$$

holds true for all $q>1$ and all $a$ with ( $a, q$ )=1 (cf. e.g. [6; Chap. X]).
Note. The results of the present paper have been announced partly in the Seminar on Modern Methods in Number Theory, August 30-September 4, 1971, held at the Institute of Statistical Mathematics, Tokyo.

> Department of Mathematics, Okayama University

## References

[1] E. Bombieri and H. Davenport: On the large sieve method. Number Theory and Analysis (Edited by P. Turán), Plenum Press, New York, and VEB Deutscher Verl. der Wiss., Berlin (1969), 11-22.
[2] E. Bombieri and H. Davenfort: Some inequalities involving trigonometrical polynomials. Ann. Scuola Norm. Sup. Pisa, Ser. III, 23 (1969), 223-241.
[3] P. X. Gallagher: The large sieve. Mathematika, 14 (1967), 14-20.
[4] E. Hlawka: Bemerkungen zum grossen Sieb von Linnik. Österreich. Akad. Wiss. Math.-Natur. Kl. S.-B. II 178 (1970), 13-18.
[5] H. L. Montgomery : A note on the lage sieve. J. London Math. Soc., 43 (1968), 93-98.
[6] K. PRACHAR: Primzahlverteilung. Springer-Verl., Berlin-Göttingen-Heidelberg. (1957).

