Complete surfaces in 3-dimensional space forms

Dedicated to Professor Yoshie Katsurada on her sixtieth birthday

By Takehiro Itoн

For surfaces in a Euclidean 4 -space E^{4}, the author [4] proved the following

Theorem. A complete, connected, oriented and pseudo-umbilical surfaces immersed in E^{4} with non-vanishing constant mean curvature H and the Gaussian curvature K which does not change its sign is necessarily either a Clifford flat torus in E^{4} or a sphere with radius $1 / H$ in a hyperplane E^{3}.

In this case, by Lemma 2.2 in [4] we see that surfaces are minimal in a hypersphere S^{3} in E^{4}. In this paper, the author will study surfaces with constant mean curvature H in a 3-dimensional Riemannian manifold \bar{M} of constant curvature \bar{c}. Our main result is the following

Theorem. Let M be a complete, connected and oriented 2-dimensional Riemannian manifold isometrically immersed in a 3-dimensional oriented Riemannian manifold \bar{M} of constant curvature \bar{c}. If $H^{2}+\bar{c}$ is positive constant and the Gaussian curvature K does not change its sign, then we have
(I) M is umbilic free and $K=0$ on M, or
(II) M is tottally umbilic and $K=H^{2}+\bar{c}$ on M.

By this theorem, we can verify the following results:
Corollary 1. Let M be a complete, oriented and connected 2-dimensional Riemannian manifold isometrically immersed in a unit 3 -sphere S^{3} in E^{4}. If the mean curvature H is constant and the Gaussian curvature K does not change its sign, then M is a sphere or a Clifford flat torus.

Corollary 2. (T. Klotz and R. Osserman [3]) Let M be a complete, oriented and connected 2-dimensional Riemannian manifold isometrically immersed in a Euclidean 3-space E^{3}. If H is non-zero constant and K does not change its sign, then M is a sphere or a right circular cylinder.

Corollary 3. Let M be a complete, oriented and connected 2-dimensional Riemannian manifold isometrically immersed in a hyperbolic 3 -space H^{3} of constant curvature -1 . If $H^{2}-1$ is positive constant and K does not change its sign, then M is a sphere or a right circular cylinder.

Let \bar{M} be a 3-dimensional Riemannian manifold of constant curvature
\bar{c} and M be a 2-dimensional Riemannian manifold isometrically immersed in \bar{M} with the immersion $x: M \rightarrow \bar{M}$. Let $F(\bar{M})$ and $F(M)$ be the bundles of all orthonormal frames over \bar{M} and M respectively. Let B be the set of all elements $b=\left(p, e_{1}, e_{2}, e_{3}\right) \in F(\bar{M})$ such that $\left(p, e_{1}, e_{2}\right) \in F(M)$, identifying $p \in M$ with $x(p)$ and e_{i} with $d x\left(e_{i}\right), i=1,2$. Then B is cosidered as a smooth submanifold of $F(\bar{M})$. We have, as is well known, a system of differential 1 -forms $\omega_{1}, \omega_{2}, \omega_{12}=-\omega_{21}, \omega_{13}=-\omega_{31}, \omega_{23}=-\omega_{32}$ on B associated with the immersion x, such that

$$
\begin{cases}d \omega_{i}=\omega_{i j} \wedge \omega_{j}, & (i, j=1,2, \quad i \neq j) \tag{0.1}\\ d \omega_{12}=-\omega_{13} \wedge \omega_{23}-\bar{c} \omega_{1} \wedge \omega_{2}, & (i, j=1,2, \quad i \neq j) \\ d \omega_{i 3}=\omega_{i j} \wedge \omega_{j 3}, & \end{cases}
$$

and

$$
\begin{equation*}
\omega_{i 3}=\sum_{j} A_{i j} \omega_{j}, \quad A_{i j}=A_{j i}, \quad(i, j=1,2) \tag{0.2}
\end{equation*}
$$

We call $H=1 / 2 \sum_{i} A_{i c}$ the mean curvature. M is said to be umbilic at p if $A_{11}=A_{22}=H$ and $A_{12}=0$ at p. We say M to be totally umbilic if M is umbilic at each point of M. We may consider M as a Riemann surface, because M is a 2 -dimensional oriented Riemannian manifold. We say M to be parabolic if there are non-constant negative subharmonic functions on M. We shall prove the theorem for the case (1) $K \leqq 0$ and the case (2) $K \geqq 0$.
§ 1. The proof of the theorem. We first prove the following
Proposition 1. Let M be a complete, oriented and connected 2-dimensional Riemannian manifold immersed in a 3-dimensional oriented Riemannian manifold \bar{M} of constant curvature \bar{c}. If $H^{2}+\bar{c}$ is positive constant and K is not greater than zero, then M is umbilic free and $K=0$ on M.

Proof. The Gaussian curvature K is given by the equation $d \omega_{12}=$ $-K \omega_{1} \wedge \omega_{2}$. On the other hand, by (0.1) and (0.2) we have $d \omega_{12}=-$ $(\bar{c}+\operatorname{det} A) \omega_{1} \wedge \omega_{2}$, where A is the matrix $\left(A_{i j}\right)$. Writting $\omega_{13}=\left(H+h_{1}\right) \omega_{1}+h_{2} \omega_{2}$ and $\omega_{23}=h_{2} \omega_{1}+\left(H-h_{1}\right) \omega_{2}$, we have

$$
\begin{equation*}
K=\bar{c}+H^{2}-\left(h_{1}^{2}+h_{2}^{2}\right), \tag{1.1}
\end{equation*}
$$

which, together with $K \leqq 0$ and $H^{2}+\bar{c}>0$, implies that M is umbilic free. Hence, we can choose locally frames $b \in B$ such that A is given by

$$
A=\left(\begin{array}{cc}
H+h & 0 \tag{1.2}\\
0 & H-h
\end{array}\right),
$$

where the function h is differentiable and defined globally on M, because $\operatorname{det} A=H^{2}-h^{2}$ is a global differentiable function on M. Since M is umbilic free, we may suppose $h>0$ on M. Using the structure equations (0.1) for $\omega_{i 3}$, we have

$$
\begin{aligned}
& 2 h d \omega_{1}+d h \wedge \omega_{1}=0, \\
& 2 h d \omega_{2}+d h \wedge \omega_{2}=0,
\end{aligned}
$$

which show that we have a neighborhood U of a point $p \in M$ in which there exist the following isothermal coordinates (u, v) :

$$
\begin{equation*}
d s^{2}=\lambda\left\{d u^{2}+d v^{2}\right\}, \quad \omega_{1}=\sqrt{\lambda} d u, \quad \omega_{2}=\sqrt{\lambda} d v, \quad h \lambda=1, \tag{1.3}
\end{equation*}
$$

where $\lambda=\lambda(u, v)$ is a positive function on U. Now, we get the following
Lemma 1. The universal covering surface \widetilde{M} of M is conformally equivalent to the entire plane, so that M is parabolic.

Proof of Lemma. Since $H^{2}+\bar{c}$ is positive constant, the conformal metric $\sqrt{H^{2}+\bar{\varepsilon}} d s^{2}$ is complete on M. However, since $\sqrt{H^{2}+\bar{c}} \leqq h$, the conformal metric $h d s^{2}$ is also complete on M. Furthermore, the metric $h d s^{2}$ is flat from (1.3). Hence the covering surface \widetilde{M} with the lifted metric from $h d s^{2}$ on M is isometric to the entire plane. Thus \widetilde{M} is conformally equivalent to the entire plane, so that \widetilde{M} is parabolic. Hence M is also parabolic.

As is well known, the Gaussian curvature K is given by

$$
K=-(1 / 2 \lambda) \Delta \log \lambda, \quad \Delta=\partial^{2} / \partial u^{2}+\partial^{2} / \partial v^{2},
$$

with respect to the isothermal coordinates (u, v). Since $K \leqq 0$ and $h \lambda=1$, we have

$$
\Delta \log h=-\Delta \log \lambda \leqq 0,
$$

which implies that the function $\log h$ is a superharmonic function on M. Since $0<H^{2}+\bar{c} \leqq h^{2}$, the superharmonic function $\log h$ on M is bounded from below by $(1 / 2) \log \left(H^{2}+\bar{c}\right)$, so that $\log h$ must be constant, because M is parabolic by Lemma 1. Therefore, K is identically zero on M. Thus we have proved Proposition 1.

We next prove the following
Proposition 2. Let M be a complete, oriented and connected 2-dimensional Riemannian manifold immersed in a 3-dimensional oriented Riemannian manifold \bar{M} of consttant curvature \bar{c}. If $H^{2}+\bar{c}$ is positive constant and K is not less than zero, then we have
(i) M.is umbilic free and $K=0$ on M,
or
(ii) M is totally umbilic and $K=H^{2}+\bar{c}$ on M.

Proof. We first prove.
Lemma 2. K is a superharmonic function on M.
Proof of Lemma. Let M_{0} be the set of all points at which M is umbilic, i. e., $A_{11}=A_{22}=H$ and $A_{12}=0$. Since M_{0} is closed in $M, M_{1}=$ $M-M_{0}$ is open in M. Then, analogously in the proof of Proposition 1, we can choose a neighborhood U of a point $p \in M_{1}$ in M_{1} where there exist isothermal coordinates (u, v) such that

$$
\left\{\begin{array}{l}
d s^{2}=\lambda\left\{d u^{2}+d v^{2}\right\}, \quad \omega_{1}=\sqrt{\lambda} d u, \quad \omega_{2}=\sqrt{\lambda} d v \tag{1.4}\\
A=\left(\begin{array}{cc}
H+h & 0 \\
0 & H-h
\end{array}\right), \quad h>0, \quad h \lambda=1
\end{array}\right.
$$

where h is a differentiable function on U : Since K is given by

$$
K=-(1 / 2 \lambda) \Delta \log \lambda=(h / 2) \Delta \log h \leqq 0 \quad \text { and } \quad h>0
$$

we have $\Delta h \geqq 0$, so that we get

$$
\Delta K=-\Delta h^{2}=-2\left\{(\partial h / \partial u)^{2}+(\partial h / \partial v)^{2}\right\}-2 h \Delta h \leqq 0
$$

Thus we have $\Delta K \leqq 0$ on M_{1}. We next prove that $\Delta K \leqq 0$ at any point of M_{0}. Take a point p_{0} of M_{0} and consider the isothermal coordinates (u, v) and frames on a neighborhood V of p_{0} such that

$$
d s^{2}=\lambda\left\{d u^{2}+d v^{2}\right\}, \quad \omega_{1}=\sqrt{\lambda} d u, \quad \omega_{2}=\sqrt{\lambda} d v
$$

In this case, the second foundamental form A may be represented by

$$
A=\left(\begin{array}{cc}
H+h_{1} & h_{2} \\
h_{2} & H-h_{1}
\end{array}\right)
$$

where h_{1} and h_{2} are functions on V. Then we have

$$
K=\bar{c}+H^{2}-\left(h_{2}^{2}+h_{2}^{2}\right) \quad \text { on } \quad V .
$$

Hence, with respect to the isothermal coordinates (u, v), we get on V

$$
\begin{align*}
\Delta K= & -2\left\{\left(\partial h_{1} / \partial u\right)^{2}+\left(\partial h_{1} / \partial v\right)^{2}+\left(\partial h_{2} / \partial u\right)^{2}+\left(\partial h_{2} / \partial v\right)^{2}\right\} \tag{1.5}\\
& -2 h_{1} \Delta h_{1}-2 h_{2} \Delta h_{2} .
\end{align*}
$$

Since h_{1} and h_{2} attain zero at p_{0}, we have

$$
\Delta K \leqq 0 \quad \text { at } \quad p_{0}
$$

Thus we have $\Delta K \leqq 0$ at a point of M_{0}. We have proved Lemma.
Now, if M is compact, the superharmonic function K on M attains
its minimum at some point on M, so that K must be constant on M. On the other hand, if M is non compact, M is parabolic by Theorem 15 in Huber [2], because $K \geqq 0$. Since K is non-negative superharmonic function on M, K must be constant on M. Thus K is constant on M. Since $K=\bar{c}+H^{2}-\left(h_{1}^{2}+h_{2}^{2}\right)=$ constant and $H^{2}+\bar{c}=$ constant >0, we can consider the following two cases:

Case (a): M_{0} is not empty.
Case (b): M_{0} is empty.
We first consider the case (a). If M_{0} is not empty, $H^{2}+\bar{c}-K$ attains zero at points of M_{0}, so that $H^{2}+\bar{c}-K$ must be identically zero on M. Hence, $K=H^{2}+\bar{c}=$ constant. >0 holds identically on M.

We next consider the case (b). If M_{0} is empty, in the same manner as the proof of Proposition 1, we can choose a neighborhood U of a point $p \in M$ satisfying (1.2) and (1.3). Then, since $K=\vec{c}+H^{2}-h^{2}$ is constant, h^{2} is also constant, which implies $K=0$, because $K=(h / 2) \Delta \log h$. Thus, we have proved Proposition 2.

Tokyo University of Education

References

[1] E. CARTAN: Familles de surfaces isoparamétriques dans les espaces à courbure constante. Ann. Mat. Pura Appl. 17 (1938) 177-191.
[2] A. HUBER: On subharmonic functions and differential geometry in the large. Comm. Math. Helv. 32 (1957), 13-72.
[3] T. Klotz and R. Osserman: Complete surfaces in E^{3} with constant mean curvature. Comm. Math. Helv. 41 (1966-67), 313-318.
[4] T. ITOH: Complete surfaces in E^{4} with constant mean curvature. Kōdai Math. Sem. Rep. 22 (1970), 150-158.

