Complete surfaces in 3-dimensional space forms

Dedicated to Professor Yoshie Katsurada on her sixtieth birthday

By Takehiro ITOH

For surfaces in a Euclidean 4-space E^4 , the author [4] proved the following

THEOREM. A complete, connected, oriented and pseudo-umbilical surfaces immersed in E^4 with non-vanishing constant mean curvature H and the Gaussian curvature K which does not change its sign is necessarily either a Clifford flat torus in E^4 or a sphere with radius 1/H in a hyperplane E^3 .

In this case, by Lemma 2.2 in [4] we see that surfaces are minimal in a hypersphere S^3 in E^4 . In this paper, the author will study surfaces with constant mean curvature H in a 3-dimensional Riemannian manifold \overline{M} of constant curvature \overline{c} . Our main result is the following

THEOREM. Let M be a complete, connected and oriented 2-dimensional Riemannian manifold isometrically immersed in a 3-dimensional oriented Riemannian manifold \overline{M} of constant curvature \overline{c} . If $H^2 + \overline{c}$ is positive constant and the Gaussian curvature K does not change its sign, then we have

(I) M is umbilic free and K=0 on M,

or

(II) M is totally umbilic and $K=H^2+\bar{c}$ on M.

By this theorem, we can verify the following results:

COROLLARY 1. Let M be a complete, oriented and connected 2-dimensional Riemannian manifold isometrically immersed in a unit 3-sphere S^3 in E^4 . If the mean curvature H is constant and the Gaussian curvature K does not change its sign, then M is a sphere or a Clifford flat torus.

COROLLARY 2. (T. Klotz and R. Osserman [3]) Let M be a complete, oriented and connected 2-dimensional Riemannian manifold isometrically immersed in a Euclidean 3-space E^3 . If H is non-zero constant and K does not change its sign, then M is a sphere or a right circular cylinder.

COROLLARY 3. Let M be a complete, oriented and connected 2-dimensional Riemannian manifold isometrically immersed in a hyperbolic 3-space H^3 of constant curvature -1. If H^2-1 is positive constant and K does not change its sign, then M is a sphere or a right circular cylinder.

Let M be a 3-dimensional Riemannian manifold of constant curvature

 \overline{c} and M be a 2-dimensional Riemannian manifold isometrically immersed in \overline{M} with the immersion $x: M \to \overline{M}$. Let $F(\overline{M})$ and F(M) be the bundles of all orthonormal frames over \overline{M} and M respectively. Let B be the set of all elements $b = (p, e_1, e_2, e_3) \in F(\overline{M})$ such that $(p, e_1, e_2) \in F(M)$, identifying $p \in M$ with x(p) and e_i with $dx(e_i)$, i=1, 2. Then B is cosidered as a smooth submanifold of $F(\overline{M})$. We have, as is well known, a system of differential 1-forms $\omega_1, \omega_2, \omega_{12} = -\omega_{21}, \omega_{13} = -\omega_{31}, \omega_{23} = -\omega_{32}$ on B associated with the immersion x such that

(0.1)
$$\begin{cases} d\omega_i = \omega_{ij} \wedge \omega_j, & (i, j = 1, 2, i \neq j) \\ d\omega_{12} = -\omega_{13} \wedge \omega_{23} - \bar{c} \omega_1 \wedge \omega_2, \\ d\omega_{i3} = \omega_{ij} \wedge \omega_{j3}, & (i, j = 1, 2, i \neq j) \end{cases}$$

and

(0.2)
$$\omega_{i3} = \sum_{j} A_{ij} \omega_{j}, \quad A_{ij} = A_{ji}, \quad (i, j = 1, 2)$$

We call $H=1/2\sum_{i} A_{ii}$ the mean curvature. M is said to be umbilic at p if $A_{11}=A_{22}=H$ and $A_{12}=0$ at p. We say M to be totally umbilic if M is umbilic at each point of M. We may consider M as a Riemann surface, because M is a 2-dimensional oriented Riemannian manifold. We say M to be *parabolic* if there are non-constant negative subharmonic functions on M. We shall prove the theorem for the case (1) $K \leq 0$ and the case (2) $K \geq 0$.

§1. The proof of the theorem. We first prove the following

PROPOSITION 1. Let M be a complete, oriented and connected 2-dimensional Riemannian manifold immersed in a 3-dimensional oriented Riemannian manifold \overline{M} of constant curvature \overline{c} . If $H^2 + \overline{c}$ is positive constant and K is not greater than zero, then M is umbilic free and K=0 on M.

PROOF. The Gaussian curvature K is given by the equation $d\omega_{12} = -K\omega_1 \wedge \omega_2$. On the other hand, by (0.1) and (0.2) we have $d\omega_{12} = -(\varepsilon + det A)\omega_1 \wedge \omega_2$, where A is the matrix (A_{ij}) . Writting $\omega_{13} = (H+h_1)\omega_1 + h_2\omega_2$ and $\omega_{23} = h_2\omega_1 + (H-h_1)\omega_2$, we have

(1.1)
$$K = \bar{c} + H^2 - (h_1^2 + h_2^2),$$

which, together with $K \leq 0$ and $H^2 + \bar{c} > 0$, implies that M is umbilic free. Hence, we can choose locally frames $b \in B$ such that A is given by

(1.2)
$$A = \begin{pmatrix} H+h & 0 \\ 0 & H-h \end{pmatrix},$$

where the function h is differentiable and defined globally on M, because det $A = H^2 - h^2$ is a global differentiable function on M. Since M is umbilic free, we may suppose h > 0 on M. Using the structure equations (0.1) for ω_{i3} , we have

$$2hd\omega_1 + dh \wedge \omega_1 = 0,$$

$$2hd\omega_2 + dh \wedge \omega_2 = 0,$$

which show that we have a neighborhood U of a point $p \in M$ in which there exist the following isothermal coordinates (u, v):

(1.3)
$$ds^2 = \lambda \{ du^2 + dv^2 \}, \quad \omega_1 = \sqrt{\lambda} \, du \,, \quad \omega_2 = \sqrt{\lambda} \, dv \,, \quad h\lambda = 1 \,,$$

where $\lambda = \lambda(u, v)$ is a positive function on U. Now, we get the following

LEMMA 1. The universal covering surface \overline{M} of M is conformally equivalent to the entire plane, so that M is parabolic.

PROOF OF LEMMA. Since $H^2 + \bar{c}$ is positive constant, the conformal metric $\sqrt{H^2 + \bar{c}} \, ds^2$ is complete on M. However, since $\sqrt{H^2 + \bar{c}} \leq h$, the conformal metric hds^2 is also complete on M. Furthermore, the metric hds^2 is flat from (1.3). Hence the covering surface \tilde{M} with the lifted metric from hds^2 on M is isometric to the entire plane. Thus \tilde{M} is conformally equivalent to the entire plane, so that \tilde{M} is parabolic. Hence M is also parabolic.

As is well known, the Gaussian curvature K is given by

$$K = -(1/2\lambda) \varDelta \log \lambda$$
, $\varDelta = \partial^2/\partial u^2 + \partial^2/\partial v^2$,

with respect to the isothermal coordinates (u, v). Since $K \leq 0$ and $h\lambda = 1$, we have

$$\Delta \log h = -\Delta \log \lambda \leq 0,$$

which implies that the function $\log h$ is a superharmonic function on M. Since $0 < H^2 + \bar{c} \le h^2$, the superharmonic function $\log h$ on M is bounded from below by $(1/2) \log (H^2 + \bar{c})$, so that $\log h$ must be constant, because Mis parabolic by Lemma 1. Therefore, K is identically zero on M. Thus we have proved Proposition 1.

We next prove the following

PROPOSITION 2. Let M be a complete, oriented and connected 2-dimensional Riemannian manifold immersed in a 3-dimensional oriented Riemannian manifold \overline{M} of constitut curvature \overline{c} . If $H^2 + \overline{c}$ is positive constant and K is not less than zero, then we have

(i) M is umbilic free and K=0 on M,

or

(ii) M is totally umbilic and $K=H^2+\bar{c}$ on M.

PROOF. We first prove.

LEMMA 2. K is a superharmonic function on M.

PROOF of LEMMA. Let M_0 be the set of all points at which M is umbilic, i.e., $A_{11}=A_{22}=H$ and $A_{12}=0$. Since M_0 is closed in M, $M_1=M-M_0$ is open in M. Then, analogously in the proof of Proposition 1, we can choose a neighborhood U of a point $p \in M_1$ in M_1 where there exist isothermal coordinates (u, v) such that

(1.4)
$$\begin{cases} ds^2 = \lambda \{ du^2 + dv^2 \}, \quad \omega_1 = \sqrt{\lambda} \, du \,, \quad \omega_2 = \sqrt{\lambda} \, dv \,, \\ A = \begin{pmatrix} H + h & 0 \\ 0 & H - h \end{pmatrix}, \quad h > 0 \,, \quad h\lambda = 1 \,, \end{cases}$$

where h is a differentiable function on U: Since K is given by

$$K = -(1/2\lambda) \Delta \log \lambda = (h/2) \Delta \log h \leq 0 \quad \text{and} \quad h > 0,$$

we have $\Delta h \ge 0$, so that we get

$$\Delta K = -\Delta h^2 = -2\left\{ (\partial h/\partial u)^2 + (\partial h/\partial v)^2 \right\} - 2h\Delta h \leq 0.$$

Thus we have $\Delta K \leq 0$ on M_1 . We next prove that $\Delta K \leq 0$ at any point of M_0 . Take a point p_0 of M_0 and consider the isothermal coordinates (u, v) and frames on a neighborhood V of p_0 such that

$$ds^2 = \lambda \{ du^2 + dv^2 \}, \quad \omega_1 = \sqrt{\lambda} \, du \,, \quad \omega_2 = \sqrt{\lambda} \, dv \,.$$

In this case, the second foundamental form A may be represented by

$$A = \begin{pmatrix} H+h_1 & h_2 \\ h_2 & H-h_1 \end{pmatrix},$$

where h_1 and h_2 are functions on V. Then we have

$$K = \bar{c} + H^2 - (h_2^2 + h_2^2)$$
 on V.

Hence, with respect to the isothermal coordinates (u, v), we get on V

(1.5)
$$\Delta K = -2\left\{ (\partial h_1 / \partial u)^2 + (\partial h_1 / \partial v)^2 + (\partial h_2 / \partial u)^2 + (\partial h_2 / \partial v)^2 \right\}$$
$$-2h_1 \Delta h_1 - 2h_2 \Delta h_2 .$$

Since h_1 and h_2 attain zero at p_0 , we have

$$\Delta K \leq 0$$
 at p_0 .

Thus we have $\Delta K \leq 0$ at a point of M_0 . We have proved Lemma.

Now, if M is compact, the superharmonic function K on M attains

its minimum at some point on M, so that K must be constant on M. On the other hand, if M is non compact, M is parabolic by Theorem 15 in Huber [2], because $K \ge 0$. Since K is non-negative superharmonic function on M, K must be constant on M. Thus K is constant on M. Since $K = \bar{c} + H^2 - (h_1^2 + h_2^2) = \text{constant}$ and $H^2 + \bar{c} = \text{constant} > 0$, we can consider the following two cases:

Case (a): M_0 is not empty.

Case (b): M_0 is empty.

We first consider the case (a). If M_0 is not empty, $H^2 + \bar{c} - K$ attains zero at points of M_0 , so that $H^2 + \bar{c} - K$ must be identically zero on M. Hence, $K = H^2 + \bar{c} = \text{constant.} > 0$ holds identically on M.

We next consider the case (b). If M_0 is empty, in the same manner as the proof of Proposition 1, we can choose a neighborhood U of a point $p \in M$ satisfying (1.2) and (1.3). Then, since $K = \vec{c} + H^2 - h^2$ is constant, h^2 is also constant, which implies K=0, because $K=(h/2) \Delta \log h$. Thus, we have proved Proposition 2.

Tokyo University of Education

in the second second

References

- [1] E. CARTAN: Familles de surfaces isoparamétriques dans les espaces à courbure constante. Ann. Mat. Pura Appl. 17 (1938) 177-191.
- [2] A. HUBER: On subharmonic functions and differential geometry in the large. Comm. Math. Helv. 32 (1957), 13-72.
- [3] T. KLOTZ and R. OSSERMAN: Complete surfaces in E³ with constant mean curvature. Comm. Math. Helv. 41 (1966–67), 313–318.
- [4] T. ITOH: Complete surfaces in E⁴ with constant mean curvature. Ködai Math. Sem. Rep. 22 (1970), 150-158.

(Received July 29, 1972)

r" .

1