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Introduction. On the geometric form of the Hahn-Banach theoreml)

(e.g. [16, Ch. 2]) it seems to the author that “only if” part of the theorem
has not yet been fully discussed. In this note, he deals with this nature
in a real spase and considers some related problems.
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Let E be a real linear space with some non-zero vectors.
DEFINITION 1. a) The algebraic dual of E is denoted by E^{*} .
b) For brevity, a finite system in E is called positively dependent if it

is linearly dependent with positive coeffiffifficients, otherwise, positively inde-
pendent. An arbitrary system A in E is called positively independent if
every finite system with members in A is positively independent. As a
convention, the empty set is regarded as positively independent.

c) If on E there is defined a binary relation, \mathscr{T}, such that for all
x, y, z\in E :

1) reflexive, 2) asymmetric, 3) transitive, 4) comparable,
5) x\mathscr{T}z implies x+z\mathscr{T}y+z, 6) x\mathscr{T}y implies \alpha x\mathscr{T}\alpha y for \alpha\geq 0 ;

then E is called a totally ordered linear space(abbreviated t. 0.1. s. ) with
respect to \mathscr{T} , and denoted by (E, \mathscr{T}) . The order isomorphism between these
t. 0.1. s . structures of given E by the identity map is written by ”= ”- From
now on, we shall write x\leq y(\mathscr{T}) (resp. x<y(,\mathscr{T})) instead of x\mathscr{T}y (resp. instead
of x\mathscr{T}y and x\neq y). “

x<y(\mathscr{T})” is read “y is greater than x with respect

1) Formulated in more detail, on the present subject, the space does not need to be
topologized. As a geometric form of the Hahn-Banach theorem, in this note, the fol-
lowing is chosen: Let E be a real linear space, K a convex set in E which is ab-
sorbing at all its points, and let M be a linear subspace of E not meeting K. Then
there exists a maximal subspace which contains M and does not meet K.

As well known, this is an essential part in the proof of the Hahn-Banach separa-
tion theorem (i . e. , so called Mazur’s theorem) ina locally convex space.
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to \mathscr{T} ”- Let us denote by (E, \mathscr{T})^{+} the set of all positive (i.e. , greater than
0 with respect to \mathscr{T} ) vectors in (E, \mathscr{T}) , a priori, which is a salient, without
vertex 0, convex cone in E ; and at the same time a maximal element (by
set inclusion) of all such.

d) When only a single total ordering \mathscr{T} on E is considered, for con-
venience, we define |x|(x\in E) to mean \max\{x,-x\} with respect to \mathscr{T} . With
this notation, u\in E is called an order unit of (E, \mathscr{T}) if for each x\in E there
exists a real number \alpha_{x}>0 for which |x|<\alpha_{x}u(\mathscr{T}) holds.

e) In this note, a subset B of E is called absorbing at b if for each
vector, x\in E there exists a real number \beta_{x}>0 such that b+\beta_{x}x\in B, a priori,
b\epsilon B.

We first give some lemmas. Lemma 1 owes much to [15, p. 418].

LEMMA 1. Let A be a subset of E. A necessary and suffiffifficient condi-
tion that there exists a t.0.l.s. (E, \mathscr{T}) with A\subset(E, \mathscr{T})^{\vdash}is that A is positively
independent.

PROOF. Necessity of the condition is evident. (Sufficiency) By virtue
of Kuratowski-Zorn lemma, there exists a maximal positively independent
subset P which contains A. Then P has the following properties:

1) P\ni p, q implies P\ni p+q ,
2) Pap and \alpha>0 imply P\ni\alpha p ,
3) P\cup(-P)\cup\{0\}=E ,
4) P_{\cap}(-P)=\emptyset .

Therefore, by defining x<y(\mathscr{T}) to mean y-x\in P, we obtain a t. 0.1. s . (E, \mathscr{T})

as desired.
LEMMA 2. Let a t.0.l.s. (E, \mathscr{T}) and an f\in E^{*} be given. If we define

on E a new binary relation \mathscr{T}_{1} as follows:
i) when f(x-y)=0\backslash , let the rdation \mathscr{T}_{1} between x and y b\‘e. \mathscr{T} ,
ii) whm f(x-y)\neq 0 , let x<y(\mathscr{F}_{1}) if and only if f(y-x)>0 ;

then E is a t.0.l.s. with respect to new \mathscr{F}_{1}’ .
PROOF. The new relation \mathscr{T}_{1} defined above still fulfills the ordering

conditions of t.0.1.s ..
Such an ordering .\mathscr{F}_{1} on E induced by f from \mathscr{T} is denoted by f(.r).
LEMMA 3. (1) Let a t.o.l.s. (E, ,\mathcal{J}\vee) and a non-zero f\in E^{*} be given,

then u\in E is an order unit of (E,f(\mathscr{F})) if and only if f(u)>0 .
(2) Let a t.0.l.s. (E,,\mathscr{T}) with order unit be given, then there exists a

non-zero f\in E^{*} which satisfies
(E, \mathscr{T})=(E,f(.\Psi)) .
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And two non-zero linear forms satisfy the above if and only if they are
posittve scalar mnltiples each of the other.

PROOFS. Part (1) is an immediate consequence of Lemma 2. (2) To
this end, let the set N consist of all z\in E such that |z| is not the order
unit of (E, \mathscr{T}) . Then, by the totally ordered character of (E,.\mathscr{T}), N consti-
tutes the linear subspace of E. Let an order unit u_{0} of (E_{ c},r) be fixed.
Putting

\xi-- sup \{\alpha:\alpha u_{0}\leq|u|(,\mathscr{T})\} ,

where |u| being an order unit of (E_{ \sim},r), let us determine a real number
\xi>0 for |u| . Provided that |u|-\xi u_{0}\overline{\in}N, there exists \kappa>0 such that

u_{0}<\kappa||u|-\xi u_{0}||(\mathscr{T}) ,

i.e. , ( \xi+\frac{1}{\kappa})u_{0}<|u|(\mathscr{T}) or |u|<( \xi-\frac{1}{\kappa})u_{0}(\mathscr{T}) , a contradiction at any rate.

This yields

|u|=z+\xi u_{0}(z\in N, \xi>0)

which implies that an arbitrary x\in E is uniquely expressed in the form

x=z_{x}+\xi_{x}u_{0}(z_{x}\in N)

since u_{0} is an order unit of (E, \mathscr{T}) and N is linear. Hence defining f by
f(x)=\xi_{x}(x\in E) , we get a non-zero f\in E^{*} which establishes (E, \mathscr{T})=(E,J(\mathscr{T}’)) .
The remains are easy, and this completes the proof.

By Definition 1 ( c), d) and e)) we have easily (as is seen in part in the
proof of Krein’s extension theorem^{2)} , or as is seen in [13, p. 32] ) :

LEMMA 4. Let (E, \mathscr{T}) be a t.0.l.s. and suppose that A is a subset of
E such that A\subset(E, .\mathscr{T})^{+} . A necessary and suffiffifficimt condition that u\in E

(resp. a_{0}\in A , each a\in A) is an order unit of (E, \mathscr{T}) is that the subset (E, \mathscr{T})^{+}

is absorbing at u (resp. at a_{0} , at each a\in A).

DEFINITION 2. In this note, a system A in E is said to lie (resp. lie
semi-strictly, lie strictly) on one side of a maximal subspace N(f)=\{x\in E :
f(x)=0\} ( f\in E^{*} being non-zero) if 0\leq f(a) (resp. 0\leq f(a) and not all zero,
0<f(a)) for each member a in A. But we restrict ourselves, here, to the
case where a system A is positively independent unless finite system.

We now obtain the following
THEOREM 1. Let A be a positively independent subset of E. A ne-

2) Cf. [14, p. 136].
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cessary and suffiffifficient condition that A lies (resp. lies semi-strictly, lies stricdy)
on one side of a maximal subspace of E is that there exists a t.0.l.s. (E, \mathscr{T}),
with A\subset(E, \mathscr{T})^{+} , such that some u\in E (resp. a_{0}\in A , each a\in A) becomes an
order unit of (E, \mathscr{T}) .

PROOF. We work with the semi-strict case, the remains are likewise
obtained by Lemmas 1, 2 and 3. Of course, the result nearly follows when
A is a system in E, although A is a subset in E in this theorem. (Necessity)
Let the maximal subspace in hypothesis be N(f), that is

0\leq f(a) , 0<f(a_{0})(a, a_{0}\in A) .
Take (E, \mathscr{T}) such that A\subset(E_{ e},K)^{+} by Lemma 1, and consider (E,f(.\mathscr{T})) by
Lemma 2. Then our assertion is obtained by Lemma 3 (1). (Sufficiency)
Since a_{0}\in A is an order unit of (E, \mathscr{T}) and A lies in (E, \mathscr{T})^{+} , our assertion
is nothing other than Lemma 3 itself.

REMARK 1. In the strict case above, the initial hypothesis is redundant.
(The same is in Theorem 2.)

REMARK 2. As a result, the dense cone^{3)} in the finite sequence space
R^{\infty} does not lie on one side of any maximal subspace of R^{\infty} . While, if
E is an n-dimensional linear space R^{n}, then a positively independent system
A in R^{n} (resp. R^{1}) lies semi-strictly (resp. lies strictly) on one side of a
maximal subspace of E.

In accordance with Theorem 1 and Lemma 4, we can state as
THEOREM 2. Let A be a positively indepmdmt subset of E. A ne-

cessary and suffiffifficient condition that A lies (resp. lies semi-stricdy, lies strictly)
on one side of a maximal subspace of E is that there exists a t.0.l.s. (E, \mathscr{T}),
with A\subset(E, \mathscr{T})^{+} , such that the subset (E, \mathscr{T})^{+} is absorbing at some point
b\in E (resp. at a_{0}\in A , at each a\in A).

We proceed to the form
THEOREM 3. Let K be a convex set in E and M a linear subspace of

E not meeting K. A necessary and suffiffifficimt condition that K lies (resp. lies
semi-stricdy, lies strictly) on one side of a maximal subspace H of E with
H\supset M is that there exists a t.0.l.s. (E/M, \mathscr{T}), with \varphi(K)\subset(E/M, \mathscr{T})^{+} , such
that the subset (E/M, \mathscr{T})^{+} is absorbing at some point (resp. at k_{0}+M(k_{0}\in K) ,
at each k+M(k\in K) in E/M, where \varphi is the canonical mapping of Eont\sigma

the quotient space E/M.
PROOF. By hypothesis, the image \varphi(K) is convex and does not contain

the origin. That is, \varphi(K) is a positively independent subset of E/M. More-

3) For the concept, cf. [13, p. 10].
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over, under the postulate f(x)=F(x+M)(x\in E) , the following assertions are
equivalent:

1) in E, K lies (resp. lies semi-strictly, lies strictly) on one side of
a maximal subspace H=N(f) of E with H\supset M ;

2) in E/M, the subset \varphi(K) lies (resp. lies semi-strictly, lies strictly)
on one side of a maximal subspace N(F) of E/M.

Hence, the result follows immediately from Theorem 2.
REMARK 3. In particular, in the above, if K is absorbing at all its

points in E, so is \varphi(K) at all its points in E/M. Hence, a fortiori, the
geometric form of the Hahn-Banach theorem follows from Lemma 1 and
Theorem 3. For the author, above proof (self-contained) based on t.0.1.s.
structures seems to be new.

In view of Theorem 2 we obtain the following theorem from which,
a fortiori, Krein’s extension theorem^{4)} follows:

THEOREM 4. Let E be a partially ordered linear space^{5)} and C the set
of all positive vectors in E. Let M be a linear subspace of E, f a linear
form on M, and set A=\{x\in M:f(x)>0\} . Then we have

(1) f is positive^{6)} if and only if A^{(\lrcorner}.C is positively independent.
(2) Suppose that f is positive and is not identically zero. A necessary

and suffiffifficient condition that f can be extended to a positive linear form F
on E is that there exists a t.0.l.s. (E, \mathscr{T}) , with A\cup C\subset(E, \mathscr{T})^{+} , such that
the subset (E, \mathscr{T})^{+} is absorbing at some point of M.

PROOFS. (1) For the “if” part, it is easy whether A=\ell J or not. The
converse is also easy whether f is identically zero or not. (2) (Necessity)
It suffices to take A\cup C as A in Theorem 2. (Suffiffifficiency) According to
Theorem 2, there exists F_{1}\in E^{*} such that (E, \mathscr{T})=(E, F_{1}(.\mathscr{T})) for which (E, \mathscr{T})^{+}

is absorbing at b\in E if and only if F_{1}(b)>0 . On the other hand, since
A\subset(E, \mathscr{T})^{+} , if (E, \mathscr{T})^{+} is absorbing at m\in M, this reduces to f(m)>0 . Hence
by observing the above facts in the whole of M, we get a real number
\alpha>0 which satisfies

\alpha F_{1}(x)=f(x)(x\in M) .
Finally, since C\subset(E, \mathscr{T})^{+} , \alpha F_{1}(x)(x\in E) is an extension as desired.

By the way, in view of Theorem 2, we can prove the following (gener-

4) See [11, \S 8.3] or [16, Ch. 2, \S 3, n^{o}1 ]. Also 1oc . cit . 2).
5) That is, the ordering relation-p on E satisfifies all postulates of Definition1c) except-

ing perhaps 4).
6) This means that if x\in M and 0\leq x(\mathscr{F}) (i. e. , the induced structure) imply f(x)\geq 0 .
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alization of Stiemke-Carver-Dines theorem^{7)} ) due to Ky Fan^{8)} . With regard
to this form, the proof below is somewhat shorter and more direct.

COROLLARY. Let A be a non-empty finite system in E. A necessary
and suffiffifficient condition that A does not lie strictly (resp. does not lie semi-
strictly, does not lie) on one side of any maximal subspace of E is that A
is positively depmdent (resp. positively dependent with coeffiffifficimts all not
zero, positively dependent with coeffiffifficients all not zero and further the span
of A is E).

PROOF. Let A=\{a_{1}, a_{2}, \cdots, a_{n}\} . To prove the first assertion, we let A
be positively independent. The set defined by

D= \{(\lambda_{1}, \lambda_{2}, \cdots, \lambda_{n}):\sum_{i=1}^{n}\lambda_{i}=1 , \lambda_{i}\geq 0(i=1,2, \cdots, n)\}

which lies in the Euclidean n-space is a bounded closed set. Introducing
an inner product on E, we consider the function r with domain D such that

r(\lambda_{1}, \lambda_{2}, \cdots, \lambda_{n})=||\lambda_{1}a_{1}+\lambda_{2}a_{2}+\cdots+\lambda_{n}a_{n}||\Gamma

Then r is a continuous function on D, and hence we may put the minimum
value of r on D be 2\epsilon>0 .

Now let us observe the following set-theoretic union of the spheres:

B= \bigcup_{i=1}^{n}\{a_{i}+x : ||x||<\epsilon , x\in E\} .

Consider the convex combinations of B :

\sum\alpha_{t}(a_{t}+x_{t}) , where \sum\alpha_{t}=1
,\cdot

\alpha_{t}>0 .

Then, since
|| \sum\alpha_{t}(a_{t}+x_{t})||\geq||\sum\alpha_{t}a_{t}||-||\sum\alpha_{t}x_{t}||\geq 2\epsilon-\epsilon(\sum\alpha_{t})=\epsilon>0 ,

we see that B is positively independent. Whereas, a priori, B is absorbing
at every point of A. Hence, a fortiori, the first assertion follows from
Lemma 1 and Theorem 2. The remains of the proof follow from this by
reductio ad absurdum and by use of quotient space.

Supplement to Corollary. The author dealt with this nature in [17,
18] too, with no use of separation theorem.

Muroran Inst. Tech.,
Hokkaido, Japan

7) Cf. [1-4].

8) For the first two, see [9, Part I. Corollaries 5, 4].
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