A CHARACTERIZATION OF MODULAR NORMS IN TERMS OF SIMILAR TRANSFORMATIONS

Dedicated to Professor Kinjiro Kunugi on his 60 th birthday

By

Tetsuya SHIMOGAKI

1. Introduction. A modulared semi-ordered linear space is a universally continuous semi-ordered linear space¹) R with a non-negative functional m called a modular which satisfies the following conditions:

- M. 1) $|x| \leq |y|, x, y \in R \text{ implies } m(x) \leq m(y);$
- M. 2) $m(\xi x) = 0$ for each $\xi > 0$ implies x = 0;
- M. 3) $\lim m(\xi x) = 0$ for each $x \in R$;
- M. 4) $m(\xi x)$ is a convex function of $\xi > 0$ for each $x \in R$;
- M.5) $x \perp y^{2}$ implies m(x+y) = m(x) + m(y);
- M. 6) $0 \leq x_{\lambda} \uparrow_{\lambda \in A} x$ implies $\sup_{\lambda \in A} m(x_{\lambda}) = m(x)$.

On a modulared space (R. m) a semi-continuous norm³⁾ $\|\cdot\|_m$ can be defined by

,

(1.1)
$$||x||_m = \inf \left\{ \frac{1}{|\xi|}; m(\xi x) \leq 1 \right\}^4$$
 $(x \in R)$

that is, R is a normed semi-ordered linear space with the norm $\|\cdot\|_m$ at the same time. The converse of this, Every normed semi-ordered linear space $(R, \|\cdot\|)$ has an equivalent norm $\|\cdot\|_m$ defined by an appropriate modular m, is not true in general. Counter examples were constructed by the present author [7] and T. Andô [1].

 L_p -spaces $(p \ge 1)$ and Orlicz spaces $L_{\sigma}^{(s)}$ on a σ -finite measure space (E, Ω, μ) , with a countably additive non-negative measure μ defined on a σ -field Ω of E,

3) A norm $\|\cdot\|$ is called semi-continuous, if $|x_{\lambda}| \uparrow_{\lambda \in A} |x|$ implies $||x|| = \sup ||x_{\lambda}||$.

¹⁾ A semi-ordered linear space R is called universally continuous, if $0 \le x_{\lambda} (\lambda \in \Lambda)$ implies $\bigcap_{\lambda \in \Lambda} x_{\lambda} \in R$, i.e. a conditionally complete vector lattice in Birkhoff's sense.

²⁾ $x \perp y$ means that x and y are mutually orthogonal, i.e. $|x| \cap |y| = 0$.

⁴⁾ $\|\cdot\|_m$ is termed the modular norm by m.

⁵⁾ For the definition of an Orlicz space see [4].

are considered as modulared spaces with modulars $m_p(x) = \int_E |x(t)|^p d\mu(t)$ and $m_{\phi}(x) = \int_E \Phi(|x(t)|) d\mu(t)$ respectively, where $x \leq y$ means $x(t) \leq y(t)$ a.e..

A modular m on R is called *finite* if $m(x) < +\infty$ for each $x \in R$, and is called *almost finite* if m is finite on a complete semi-normal manifold⁶ M of R. It is evident that the modulars of L_p -type $(1 \le p < +\infty)$ are finite and the modulars m_p of Orlicz spaces are almost finite. m_p is finite if and only if Φ satisfies the so-called Δ_2 -condition.

An excellent axiomatic characterization of L_p -spaces in terms of norms on semi-ordered linear spaces was established by F. Bohnenblust in [2]. Later on, H. Nakano characterized norms of L_p -spaces as norms of unique indicatrix [5]. Since these chracterizations are based on the particular structure of L_p norms, it seems to be difficult to obtain similarly simple characterizations of general modular norms, even of modular norms of Orlicz spaces, as L_p -norms.

In this paper we shall present a necessary and sufficient condition in order that a norm $\|\cdot\|$ on R be the modular norm by a finite (almost finite) modular, in terms of the existence of a similar transformation T acting from R onto itself with the following property: for any $x, y \in R$ with $\|x\| = 1$ and $x \perp y$, $\|T(x+y)\| = 1$ holds if and only if $\|y\| = 1$ does (Theorems 1, 2). According to the representation theory, this gives also an axiomatic characterization of modulared function spaces $L_{\mathcal{M}(\varepsilon,t)}$.⁷⁾ In 5 we shall state some supplementary remarks with concrete explanations of these results in Banach function spaces.

2. Notations and the theorems. In what follows, let $(R, \|\cdot\|)$ be a nonatomic⁸⁾ universally continuous semi-ordered linear space with a semi-continuous norm $\|\cdot\|$. A norm $\|\cdot\|$ is called *continuous* if $x_{\nu}\downarrow_{\nu=1}^{\infty}0$ implies $\|x_{\nu}\|\downarrow_{\nu=1}^{\infty}0$ always. If there exists a complete semi-normal manifold M such that $\|\cdot\|$ is continuous on M, $\|\cdot\|$ is called *almost continuous*. The modular norm $\|\cdot\|_m$ is continuous if and only if m is finite. We denote by V the unit ball and by S its surface respectively, i. e. $V = \{x : \|x\| \le 1\}$ and $S = \{x : \|x\| = 1\}$. We write $z = x \oplus y$, if z = x + y with $x \perp y$ holds.

A one to one transformation T from R onto R is called *similar*, if it satisfies

- (2.1) T([p]x) = [p](Tx) for each $x \in R$ and projector [p];
- (2.2) $Tx \leq Ty$ if and only if $x \leq y$;
- (2.3) T(-x) = -Tx for each $x \in R$.

6) A linear lattice manifold M is called semi-normal if $|y| \leq |x|$, $x \in M$ implies $y \in M$. A semi-normal manifold M is complete, if $M^{\perp} = \{0\}$.

7) For the definition of $L_{\mathcal{M}(\xi,t)}$ see [3 or 6].

8) R is termed non-atomic, if each $0 \neq x \in R$ can be decomposed into x = y + z with $y, z \neq 0$ and $y \perp z$.

We see easily from the definition that for a similar transformation T, T^{-1} is also such a one, and that T is order-continuous, i. e. $x_{\nu} \uparrow_{\nu=1}^{\infty} a$ (or $x_{\nu} \downarrow_{\nu=1}^{\infty} b$) implies $Tx_{\nu} \uparrow_{\nu=1}^{\infty} Ta$ (resp. $Tx_{\nu} \downarrow_{\nu=1}^{\infty} Tb$).

Here we consider the following condition which establishes a relation between a similar transformation T and the norm on R:

(T.C.) For any x, y with $x \in S$ and $x \perp y$, $T(x+y) \in S$ holds if and only if $y \in S$.

Now we can prove

Theorem 2.1. In order that a given continuous norm $\|\cdot\|$ on R be the modular norm $\|\cdot\|_m$ by a modular m, it is necessary and sufficient that there exists a similar transformation T on R satisfying the condition (T.C.).

If a modular m is almost finite the modular norm is almost continuous. For an almost continuous norm $\|\cdot\|$ we denote by R_c the continuous manifold of R with respect to $\|\cdot\|$, i.e., the totality of all continuous elements⁹⁾ of R. Evidently R_c is a complete semi-normal manifold on which $\|\cdot\|$ is continuous. Here we put $V_c = V \cap R_c$ and $S_c = S \cap R_c$. Then, for almost continuous norms we obtain

Theorem 2.2. In order that a given almost continuous norm $\|\cdot\|$ on R be the modular norm $\|\cdot\|_m$ by a modular m, it is necessary and sufficient that there exists a similar transformation T on R_c onto R_c which satisfies the following condition:

(T.C'.) For any $x, y \in R_c$ with $x \in S_c$ and $x \perp y$, $T(x+y) \in S_c$ holds if and only if $y \in S_c$.

To the proofs of these theorems the succeeding sections 3 and 4 shall be devoted.

3. Construction of orthogonal additive functional ρ . In this section, let $\|\cdot\|$ be continuous on R and T be a similar transformation satisfying the condition (T.C.) From (2.1)~(2.3) it follows that

 $(3.1) T(x \oplus y) = Tx \oplus Ty \text{ and } |Tx| = T(|x|) for x, y \in R.$

First we shall prove several auxiliary lemmas easily derived from the assumption.

Lemma 1. We have $T(V) \subset V - S$.

Proof. Suppose $y \in S$ with $Ty \in S$. Then we have $T(y+0) = Ty \in S$, which implies $0 \in S$ by (T.C.), a contradiction. On account of (2.2) and the semicontinuity of $\|\cdot\|$, it is now clear that $T(V) \subset V - S$ holds. Q. E. D.

⁹⁾ If $||x_{\nu}|| \downarrow 0$ for each $x_{\nu} \downarrow 0$ with $|x_{\nu}| \leq |a| (1 \leq \nu)$, $a \in \mathbb{R}$ is termed a continuous element of \mathbb{R} with respect to $|| \cdot ||$.

T. Shimogaki

In the sequel, we use the following notations:

(3.2) $S_0 = S$ and $S_n = TS_{n-1}$ $(n=1, 2, \cdots).$

Now we have

Lemma 2. $S_i \cap S_j = \phi$ holds for $i \neq j$ $(i, j = 1, 2, \dots)$.

Proof. If $z \in S_i \cap S_j$ for some i, j with i < j, i.e., $z = T^i x = T^j y$ for some $x, y \in S$ we get $x = T^{j-i}y$. Putting $c = T^{j-i-1}y$, we obtain x = Tc and $c \in V$, which is inconsistent with Lemma 1.

Lemma 3. For each $x \in S_n$ $(n=0,1,2,\cdots)$ x can be decomposed into $x = x_1 \oplus x_2$ in such a way that $x_i \in S_{n+1}$ (i=1,2) holds.

Proof. $x \in S_n$ implies $T^{-n}x \in S$, whence $||T^{-(n+1)}x|| > 1$. Now we put $a = T^{-(n+1)}x$. Since R contains no atomic element and $|| \cdot ||$ is continuous, we can find an element p such that $[p]a \in S$ holds. Because of [p]a, $Ta \in S$, it follows from (T.C.) that $(1-[p])a \in S$ holds. Hence $x = T^{n+1} = T^{n+1}[p]a + T^{n+1}((1-[p])a)$ with $T^{n+1}[p]a$, $T^{n+1}((1-[p])a) \in S_{n+1}$ simultaneously.

It is obvious from Lemma 3 that $x \in S$ if and only if x is represented as, for any fixed n,

(3.3)
$$x = T^n(\bigoplus_{i=1}^{2^n} x_i),$$

where $x_i \in S$ $(i=1, 2, \dots, 2^n)$.

Lemma 4. Let $a, b \in S$ and $a \perp b$. Then

$$||T^n a \oplus b|| > 1$$

stands for each $n \ge 1$.

Proof. We shall prove this lemma by inducotin. In case of n=1, $||Ta \oplus b|| = 1$ implies $||T(a \oplus T^{-1}b)|| = 1$, whence $T^{-1}b \in S$, contradicting Lemma 1. Thus (3.4) is valid for n=1. Now suppose that (3.4) holds for each $n \leq k$ and $||T^{k+1}a \oplus b|| = 1$ for some $a, b \in S$ with $a \perp b$. Then $||T(T^ka \oplus T^{-1}b)|| = 1$ holds and $T^{-1}b$ can be represented as $T^{-1}b = b_1 \oplus b_2$, $b_i \in S$ (i=1,2). From this and $||T\{(T^ka \oplus b_1) + b_2\}|| = 1$, it follows that $||T^ka \oplus b_1|| = 1$ holds on account of (T.C.), but this contradicts the induction hypothesis. Q. E. D.

Lemma 5. If $x = \bigoplus_{i=1}^{n} x_i = \bigoplus_{j=1}^{m} y_j \oplus y_0$ with $x_i \in S$, $y_j \in S$ $(i=1,2,\dots,n; j=1,2,\dots,m)$ and furthermore x is not a complete i element, then $n \ge m$ holds.

Proof. Suppose contrarily n < m. Since R is non-atomic, we can find a set of mutually orthogonal elements $\{z_i\}_{i=1}^{\rho} \subset S$ such that $z_i \perp x$ $(1 \leq i \leq \rho)$ and

10) $x \in R$ is called a complete element if $\{x\} \perp = \{0\}$ holds.

 $n + \rho = 2^{\mu} \text{ for some } \mu \ge 1. \text{ Then } T^{\mu}(\bigoplus_{i=1}^{\rho} z_i \oplus x) = T^{\mu}(z_1 \oplus \cdots \oplus z_{\rho} \oplus x_1 \oplus \cdots \oplus x_n) \in S.$ On the other hand, we get $T^{\mu}(\bigoplus_{i=1}^{\rho} z_i \oplus x) = T^{\mu}(z_1 \oplus \cdots \oplus z_{\rho} \oplus y_1 \oplus \cdots \oplus y_m \oplus y_0) =$ $T^{\mu}(y_1 \oplus \cdots \oplus y_n \oplus z_1 \oplus \cdots \oplus z_{\rho}) + T^{\mu}(y_{n+1} \oplus \cdots \oplus y_m) + T^{\mu}(y_0), \text{ which implies } 1 =$ $\|T^{\mu}(x \oplus z)\| \ge \|w + T^{\mu}y_m\|, \text{ where } w = T^{\mu}(y_1 \oplus \cdots \oplus y_n \oplus z_1 \oplus \cdots \oplus z_{\rho}) \text{ belongs to } S.$ However, this is inconsistent with the preceding lemma. O. E. D.

Lemma 6. If x is not a complete element and $x = x_1 \oplus \cdots \oplus x_k = y_1 \oplus \cdots \oplus y_l \oplus y_0$, where $x_{\nu} \in S_{m_{\nu}}$, $y_{\mu} \in S_{n_{\mu}}$ and $y_0 \in V$ $(1 \leq \nu \leq k, 1 \leq \mu \leq l, 0 \leq m_{\nu}, n_{\mu})$, then $\sum_{\nu=1}^{k} \frac{1}{2^{m_{\nu}}} \geq \sum_{\mu=1}^{l} \frac{1}{2^{n_{\mu}}}$ holds.

Proof. We put $N = \underset{\substack{1 \leq \nu \leq k \\ 1 \leq \mu \leq \ell}}{\operatorname{Max}} \{ m_{\nu}, n_{\mu} \}$. Then, for each $\nu (1 \leq \nu \leq k) x$ is decomposed into $x_{\nu} = x_{\nu,1} \oplus x_{\nu,2} \oplus \cdots \oplus x_{\nu,2}^{N-m_{\nu}}$ with $x_{\nu,i} \in S_N$ $(1 \leq i \leq 2^{N-m_{\nu}})$. Similarly $y_{\mu} = y_{\mu,1} \oplus \cdots \oplus y_{\mu,2}^{N-n_{\mu}}$ with $y_{\mu,j} \in S_N$ holds for each j $(1 \leq j \leq 2^{N-n_{\mu}})$. Hence both $x = \bigoplus_{\substack{\nu=1 \ \nu=1}}^{k} \bigoplus_{\substack{j=1 \ \nu=1}}^{2N-m_{\mu}} x_{\nu,i}$ and $x = \bigoplus_{\substack{\mu=1 \ \mu=1}}^{j} \bigoplus_{\substack{j=1 \ j=1}}^{2N-m_{\mu}} y_{\mu,j} \oplus y_0$ holds, which implies $T^{-N}x = \bigoplus_{\substack{\nu=1 \ \nu=1}}^{k} \bigoplus_{\substack{j=1 \ \nu=1}}^{T-N} y_{\mu,j} \oplus T^{-N} y_{\nu,i} \in S$ and $T^{-N} y_{\mu,j} \in S$ for each ν, μ, i , and j. In view of the preceding lemma we find

$$\sum_{\nu=1}^{k} 2^{N-m_{\nu}} \ge \sum_{\mu=1}^{l} 2^{N-n_{\mu}}$$

Thus we obtain $\sum_{\nu=1}^{k} \frac{1}{2^{m_{\nu}}} \ge \sum_{\mu=1}^{l} \frac{1}{2^{n_{\mu}}}$.

Here we turn to define an orthogonal additive functional (i.e. $\rho(x+y) = \rho(x) + \rho(y)$ for $x \perp y$) on R from $\|\cdot\|$. Let R_0 be the set of all non-complete elements of R and \mathfrak{A} be the totality of elements of R_0 which can be represented as $x_1 \oplus \cdots \oplus x_n$ with $x_i \in S_{m_i}$ $(i=1,2,\cdots,n; n=1,2,\cdots)$. On \mathfrak{A} we define a functional ρ' as follows:

(3.5)
$$\rho'(x) = \sum_{i=1}^{n} \frac{1}{2^{m_i}},$$

where $x = x_1 \oplus \cdots \oplus x_n$ with $x_i \in S_{m_i}$ $(1 \le i \le n)$. According to Lemma 6 we see that this definition has a sense. It is evident from the definition that ρ' is orthogonally additive on \mathfrak{A} . Next, we put for each $x \in \mathbb{R}$

(3.6)
$$P(x) = \begin{cases} \sup_{\substack{|y| \le |x|, y \in \mathfrak{A} \\ 0, & \text{if there exists no element } y \in \mathfrak{A} \text{ with } |y| \le |x|. \end{cases}$$

In the succeeding section we shall show that ρ thus defined is in fact a modular on R and that $\|\cdot\|$ is nothing but the modular norm by ρ . 4. Properties of ρ and the proofs of Theorems. In view of construction of ρ and Lemma 6 we see easily that ρ satisfies the modular conditions M.1) and M.2). Since R contains no atomic element, we have also

(4.1)
$$\rho(x) = \rho'(x) \qquad \text{for each} \quad x \in \mathfrak{A}.$$

In order to prove the remaining conditions M. 3), \sim M. 6), we need some lemmas.

Lemma 7. We have

(4.2)
$$P(x) > \frac{1}{2^m} and P(x) < \frac{1}{2^m} imply ||T^{-m}x|| > 1 and ||T^{-m}x||$$

 ≤ 1 respectively $(m=0,1,2,\cdots);$

(4.3)
$$\rho(x) < +\infty$$
, for each $x \in R$;

(4.4)
$$\rho(x) = \sup_{[p] \in \mathfrak{A}} \rho'([p] x), \quad if \quad \rho(x) > 0.$$

Proof. (4.2) follows immediately from the definition of ρ . Since $\|\cdot\|$ is continuous, each element $x \in R$ can be represented as $x = \bigoplus_{i=1}^{n} x_i$ with $\|x_i\| \leq 1$ $(1 \leq i \leq n)$ for some $n \geq 1$. From this we have $\rho(x) \leq n$ in view of (3.5), (4.2) and M.2). Thus (4.3) is valid. Next, we shall show that if $\rho(x) > \frac{k}{2^m} x$ is written as $x = \bigoplus_{i=1}^{k} x_i \oplus x_0$ with $\|T^{-m} x_i\| > 1$ for each i $(1 \leq i \leq k)$. By (3.6) there exists $0 \leq x' \in \mathfrak{A}$ such that $|x| \geq x' = \bigoplus_{i=1}^{k} x'_i \oplus x'_0$ with $x'_i \in S_m$ $(1 \leq i \leq k)$ and $x_0 \in \mathfrak{A}$. Now we decompose x'_0 into $x'_0 = \bigoplus_{i=1}^{k} x''_i$ with $x''_i \in \mathfrak{A}$ for each i. On the ground of Lemma 4 $\|T^{-m}(x'_i \oplus x''_i)\| > 1$ $(1 \leq i \leq k)$ must hold. Putting $x_i = [x'_i \oplus x''_i] x$ and $x_0 = x - \bigoplus_{i=1}^{k} x_i$, we obtain $x = \bigoplus_{i=1}^{k} x_i \oplus x_0$ with $\|T^{-m} x_i\| > 1$ for each i $(1 \leq i \leq k)$.

From this one derives easily that if $\rho(x) > \frac{k}{2^m}$ there exist projectors $\{[p_{\nu}]\}_{\nu=1}^k$ such that $[p_i] \leq [x_i]$ and $||T^{-m}[p_i]x_i|| = 1$ hold $(1 \leq i \leq k)$, where $\{x_i\}_{i=1}^k$ satisfies the above condition. Since $[p_i]x_i \in S_m$ and $\bigoplus_{i=1}^k [p_i]x_i = (\sum_{i=1}^k [p_i])x$, $\rho'([p]x) \geq \frac{k}{2^m}$ follows and (4.4) is proved, where $[p] = \sum_{i=1}^k [p_i]$. Q. E. D.

Lemma 8. ρ is orthogonally additive, i.e., it satisfies M.5). Proof. From the definition of ρ it follows that

$$\rho(x \oplus y) \ge \rho(x) + \rho(y)$$

146

holds. Now suppose $\rho(x \oplus y) > \rho(x) + \rho(y)$ for some $x, y \in \mathbb{R}$ with $x + y \in \mathbb{R}_0$. Then we can choose a natural number m such that $\rho(x \oplus y) > \rho(x) + \rho(y) + \frac{1}{2^m}$. By (4.4) there exist projectors [p], [q] for which $\rho(x) - \rho'([p]x) < \frac{1}{2^{m+2}}, \ \rho(y) - \rho'([q]y) < \frac{1}{2^{m+2}}, \ [p]x \in \mathfrak{A}$ and $[q]y \in \mathfrak{A}$ hold.¹¹⁾ Since $\rho((1-[p])x) \leq \rho(x) - \rho([p]x) < \frac{1}{2^{m+2}}$ and $\rho((1-[q])y) \leq \rho(y) - \rho([q]y) < \frac{1}{2^{m+2}}$ hold, we can find α , $\beta \geq 1$ such that both $\alpha(1-[p])x$ and $\beta(1-[q])y$ belong to S_{m+2} according to (4.2) and the fact that T is similar. Putting $x' = [p]x + \alpha(1-[p])x$ and $y' = [q]y + \beta(1-[q])y$, we obtain $x', y' \in \mathfrak{A}$ and $\rho'(x' \oplus y') = \rho'(x') + \rho'(y') = \rho'([p]x) + \rho'([q]y) + \frac{1}{2^{m+1}}$, since ρ' is orthogonally additive on \mathfrak{A} . Hence we get

$$\begin{aligned} \rho'(x' \oplus y') &\geq \rho(x \oplus y) > \rho(x) + \rho(y) + \frac{1}{2^m} \\ &\geq \rho'([p]x) + \rho'([q]y) + \frac{1}{2^m} = \rho'(x' \oplus y') + \frac{1}{2^{m+1}} \end{aligned}$$

which is, however, a contradiction. Thus we see easily that ρ is orthogonally additive by virtue of Lemma 7. Q. E. D.

Lemma 9. We have

$$(4.5) \qquad \qquad \rho(x) \leq 1 \quad if and only if ||x|| \leq 1.$$

Proof. The fact that $||x|| \leq 1$ implies $\rho(x) \leq 1$ is ovbious by virtue of Lemma 4. On the other hand, for any x with $\rho(x) \leq 1$ we can find a sequence of projectors $\{[p_{\nu}]\}_{\nu=1}^{\infty}$ such that $[p_{\nu}]\uparrow_{\nu=1}^{\infty}[x]$, $[p_{\nu}]x \in \mathfrak{A}$ and $\rho([p_{\nu}]x)\uparrow_{\nu=1}^{\infty}\rho(x) \leq 1$ on account of (4.4) and the orthogonal additivity of ρ . By (4.1) and the definition of ρ' , we now get $||[p_{\nu}]x|| \leq 1$ for each $\nu \geq 1$, hence $||x|| \leq 1$ because of the semi-continuity of $||\cdot||$. Q. E. D.

Lemma 10. ρ is semi-continuous, i.e., it satisfies M.6).

Proof. Let $0 \leq x_{\lambda} \uparrow_{\lambda \in A} x$ and $\rho(x) > \frac{k}{2^m}$. As is shown in the proof of (4.4), there exists $p \in R$ such that $[p]x \in \mathfrak{A}$, $[p]x = \bigoplus_{i=1}^k w_i$ and $||T^{-m}w_i|| > 1$ $(1 \leq i \leq k)$. Then, since $[w_i]x_{\lambda} \uparrow_{\lambda \in A} [w_i]x = w_i$ holds for each i and $||\cdot||$ is semi-continuous, we have for a sufficiently large λ_0 that $||T^{-m}[w_i]x_{\lambda_0}|| > 1$ stands for every i $(1 \leq i \leq k)$. Therefore we have

11) In case of $\rho(x)=0$ (or $\rho(y)=0$), we choose p=0 (resp. q=0).

T. Shimogaki

Q. E. D.

$$P(x_{\lambda_0}) \ge P([p]x_{\lambda_0}) \ge \frac{k}{2^m}$$
,

which shows the semi-continuity of ρ .

Lemma 11. ρ satisfies M.3). *i.e.*, $\lim_{\xi \to 0} \rho(\xi x) = 0$.

Proof. If $\rho(\xi x) > \frac{1}{2^m}$ holds for each $\xi > 0$, we have $||T^{-m}\xi x|| > 1$. Since $\bigcap_{\xi>0} \xi |x| = 0$ stands, $\bigcap_{\xi>0} T^{-m}\xi |x| = 0$ holds. Hence it follows that $||T^{-m}\xi x|| \to 0$ as $\xi \to 0$, because of the continuity of $|| \cdot ||$. This is a contradiction. Q. E. D.

Summing up the above results, we see that ρ satisfies all the conditions of modular except M.4). Next lemma shall show that ρ fulfils M.4) too.

Lemma 12. $\rho(\xi x)$ is a convex function of ξ ($\xi \ge 0$) for each $x \in R$.

Proof. We shall first show that the set $B_{\xi} = \{x : \rho(x) \leq \xi\}$ is convex for every ξ with $0 \leq \xi \leq 1$. Let $x, y \in B_{\xi}$ and $\alpha, \beta > 0$ with $\alpha + \beta = 1$. By virtue of semi-continuity of ρ , we may assume without loss of generality that there exists $0 \neq z \in R$ belonging to $\{x, y\}^{\perp}$. Furthermore we may choose z as $\rho(z) = 1 - \xi$, since ρ satisfies (4.3) and R has no atom. It follows that both x + z and y + zbelong to V, hence $\alpha(x+z) + \beta(y+z)$ does also. Consequently, we obtain $\rho(\alpha x + \beta y) + \rho(z) \leq 1$ by Lemma 9, hence $\alpha x + \beta y \in B_{\xi}$. Therefore B_{ξ} is convex.

Next, suppose that $\rho(\xi x) \leq 1$ and $\rho(\eta x) \leq 1$ for some $x \in R$ and $\xi > \eta \geq 0$. Since ρ is finite, orthogonally additive and semi-continuous, we can find $p \in R$ for which $\rho(\xi[p]x) = \rho(\xi(1-[p])x)$ holds. If $\rho(\eta[p]x) < \rho(\eta(1-[p])x)$ stands for such [p], there can be constructed a system of projectors $\{[p_{\alpha}]\}_{(0 \leq \alpha \leq 1)}$ and $\{[p'_{\alpha}]\}_{(0 \leq \alpha \leq 1)}$ such that $[p_{\alpha}]\downarrow([p'_{\alpha}]\uparrow)$ as $\alpha\downarrow 0$, $[p_{\alpha}]\leq [p]$, $[p'_{\alpha}]\leq (1-[p])$ with $[p_{1}]$ =[p], $[p'_0] = (1 - [p])$, and $\rho(\xi[p_\alpha]x) = \rho(\xi(1 - [p])(1 - [p'_\alpha])x) = \alpha \rho(\xi[p]x)$ holds for each $0 \leq \alpha \leq 1$. Putting $[q_{\alpha}] = [p_{\alpha}] + (1 - [p])[p'_{\alpha}]$, we obtain $[q_{\alpha}] \leq [x]$ and $\rho(\xi[q_{\alpha}]x) = \rho(\xi(1-[q_{\alpha}])x)$ for every α . Furthermore we see easily that both $\rho(\eta[q_1]x) < \rho(\eta(1-[q_1])x) \text{ and } \rho(\eta[q_0]x) > \rho(\eta(1-[q_0])x) \text{ hold.}$ From this it follows that $\rho(\eta[q_{\alpha}]x) = \rho(\eta(1-[q_{\alpha}])x)$ stands for some α . In consequence, we have shown that there exists $p \in R$ such that $\rho(\xi[p]x) = \frac{1}{2} \rho(\xi x)$ and $\rho(\eta[p]x)$ $= \frac{1}{2} \rho(\eta x) \text{ hold simultaneously.} \text{ Because } \rho(\xi[p]x + \eta(1 - [p])x) = \rho(\eta[p]x + \eta(1 - [p])x)$ $\xi(1-[p])x) = \frac{1}{2} \{ \rho(\xi x) + \rho(\eta x) \} \leq 1, \text{ we have}$ $\rho\left(\frac{1}{2}(\xi x + \eta y)\right) \leq \frac{1}{2} \left\{\rho\left(\xi x\right) + \rho\left(\eta y\right)\right\}$ (4.6)

by the fact shown just above.

 $\mathbf{148}$

Finally, since each x can be decomposed orthogonally into $x = \bigoplus_{i=1}^{n} x_i$ with $\rho(x_i) \leq 1$ $(1 \leq i \leq n)$, we see that (4.6) holds for any $x \in R$, i.e. $\rho(\xi x)$ is a convex function of ξ $(\xi \geq 0)$ for each $x \in R$. Q. E. D.

Here we are in position to prove the theorems stated in 2.

Proof of Theorem 1. Sufficiency. The functional ρ constructed in 3 is a modular satisfying (4.5), as is shown above. Hence we have $||x|| = \inf \left\{ \frac{1}{|\xi|}; \ \rho(\xi x) \leq 1 \right\}$ i.e., $||\cdot||$ is the modular norm by the modular ρ .

Necessity. Let $\|\cdot\|$ be the modular norm by a modular m on R. m is necessarily finite since $\|\cdot\|$ is continuous. In the same manner as in the proof of Theorem 2 in [8], we can construct a similar transformation T_0 on R satisfying

$$m(T_{\circ}x) = \frac{1}{2} m(x)$$
 for every $x \in R$.

It is now clear that T_0 satisfies the condition (T.C.). Q.E.D.

Proof of Theorem 2. Sufficiency. In view of Theorem 1 we find a finite modular ρ on a complete semi-normal manifold R_c of R, for which $\|\cdot\|$ is the modular norm on R_c . We extend now ρ on the whole space Ras follows:

(4.7)
$$\rho_{\mathfrak{o}}(x) = \sup_{0 \le y \le |x|, y \in R_{\mathfrak{o}}} \rho(y) \qquad (x \in R).$$

 ρ_{\circ} thus defined is an almost finite modular on R, as is easily seen, and $\rho_{\circ}(x) = \rho(x)$ if $x \in R_{c}$. Because of the semi-continuity of $\|\cdot\|$ and ρ , $\|x\| = \inf \left\{\frac{1}{|\xi|}; \rho_{\circ}(\xi x) \leq 1\right\}$ holds for each $x \in R$, that is, $\|\cdot\|$ is the modular norm by ρ_{\circ} . The nessecity is derived similarly as the proof of Theorem 1. Q. E. D.

5. Here let $(R, \|\cdot\|)$ be the same as in 3 and ρ be the modular defined, in the manner described above, from $\|\cdot\|$ and a similar transformation T on R satisfying the condition (T.C.). From the construction of ρ one derives easily

$$\rho(Tx) = \frac{1}{2}\rho(x) \qquad (x \in R) .$$

Also this enables us obviously to restate properties of the modular ρ in terms of similar transformations $T^{(12)}$. We describe below a few examples of such

¹²⁾ Of course, we can state properties of ρ by means of $\|\cdot\|$, since there are found closed relations between modulars and their norms [1, 6, and 7].

restatements in terms of T. Being trivial, their proofs are omitted.

5.1. ρ is simple (i.e. $\rho(x)=0$ implies x=0), if and only if $\bigcap_{m\geq 1} T^m x=0$ for each $x\in R$.

5.2. ρ is uniformly simple (i.e. $\inf_{\|x\| \ge \delta} \rho(x) > 0$ for each $\delta > 0$), if and only if for each $\varepsilon > 0$ there exists $m \ge 0$ with $\sup_{x \in S} ||T^m x|| < \varepsilon$.

5.3. ρ is uniformly finite (i.e. $\sup_{\|x\| \leq \delta} \rho(x) < +\infty$ for each $\delta > 0$), if and only if for each $\delta > 0$ there exists $m \geq 0$ with $\inf_{x \in I} ||T^{-m}x|| > \delta$.

5.4. ρ is upper bounded (i. e. $\rho(\alpha x) \leq \gamma \rho(x)$ holds for every $x \in R$, where $1 < \alpha$, γ are fixed constants), if and only if $T \leq \left(\frac{1}{2}\right)^{\frac{1}{p}} I^{(3)}$ for some $p \geq 1$.

Finally let (E, Ω, μ) be a σ -finite non-atomic measure space with a countably additive non-negative measure μ on a σ -field Ω of E. A modulared space (X, m)consisting of measurable functions on E is a semi-normal manifold of modulared function space $\mathbf{L}_{\mathcal{M}(\xi,t)}$ defined by a modular function $\mathcal{M}(\xi, t)^{14}$ on $[0, \infty) \times E$, that is, \mathbf{X} is contained in the totality of all measurable functions f such that $\int_{\mathcal{X}} \mathcal{M}(\alpha |f(t)|, t) d\mu(t) < +\infty$ for some $\alpha > 0$, and

(5.1)
$$m(f) = \int_{E} M(|f(t)|, t) d\mu(t)$$

holds for each $f \in X$. Conversely, it is known [6] that each modulated semiordered linear space R can be considered as a modulated function space $L_{\mathcal{M}(\xi,t)}$ on a measure space (E, Ω, μ) suitably chosen, and m is represented by (5.1).

For any finite modulated function space¹⁵⁾ $(\mathbf{L}_{\mathcal{M}(\xi,t)}(E), \|\cdot\|)$ we can obtain a similar transformation T with the condition (T.C.) directly as follows: We define for $(\xi, t) \in [0, \infty) \times E$

(5.2)
$$h(\xi, t) = \begin{cases} M_t^{-1} \left(\frac{1}{2} M(\xi, t) \right), & \text{if } M(\xi, t) > 0; \\ \xi, & \text{if } M(\xi, t) = 0, \end{cases}$$

where $M_t^{-1}(\xi)$ is the inverse of the function $M_t(\xi) = M(\xi, t)$ for each $t \in E$. Then $h(\xi, t)$ on $[0, \infty) \times E$ is a Carathéodory's function, and the transformation \mathfrak{h} defined by

¹³⁾ I is the identity operator on R and 5.4 follows from Theorem 3.3 of [9].

¹⁴⁾ For the definition of modular functions see [3 or 6]. Roughly speaking, $M(\xi, t)$ is a N'-function of ξ for each $t \in E$. In $L_{M(\xi,t)}$ we consider $\int_E M(|f(t)|, t) d\mu(t)$ as a modular m always.

¹⁵⁾ m on $L_{\mathcal{M}(\xi,t)}$ is finite, if and only if $M(2\xi,t) \leq \tau M(\xi,t) + a(t)$ for all $(\xi,t) \in [0,\infty) \times E$, where $\tau > 0$ and $a(t) \in L_1(E)[3]$. m is almost finite if and only if $M(\xi,t) < +\infty$ a.e. in $[0,\infty) \times E$.

A Characterization of Modular Norms in Terms of Similar Transformations 151

(5.3)
$$\mathfrak{h}(f(t)) = h(f(t), t) \qquad (f \in \mathbf{L}_{M(\xi, t)})$$

forms a similar transformation satisfying the condition (T.C.) for the modular norm on $L_{M(\xi,t)}$. Conversely, in view of Theorem 1 we have

Theorem 3. If $(\mathbf{X}, \|\cdot\|)$ is a normed function space¹⁶⁾ with a continuous norm $\|\cdot\|$, and if a similar transformation b from \mathbf{X} onto \mathbf{X} , defined by a Carathéodory's function $h(\xi, t_i^{17})$ on $[0, \infty) \times E$, satisfies the condition (T. C.), then there can be found a modular function $M(\xi, t)$ on $[0, \infty) \times E$ such that \mathbf{X} is a semi-normal manifold of $\mathbf{L}_{M(\xi,t)}$, $M(\xi, t)$ satisfies (5.2),¹⁸⁾ and $\|\cdot\|$ coincides with the modular norm of the space $\mathbf{L}_{M(\xi,t)}$.

Remark 1. In this theorem if moreover, $(\mathbf{X}, \|\cdot\|)$ is monotone complete (i. e. $0 \leq f_{\nu}\uparrow$, $\sup_{\nu \geq 1} \|f_{\nu}\| < +\infty$ implies $\bigcup_{\nu=1}^{\infty} f_{\nu} \in \mathbf{X}$), then $\mathbf{X} = \mathbf{L}_{M(\xi,t)}$ holds.

Remark 2. In Theorem 3, if $h(\xi, t) = h(\xi)$ for all $(\xi, t) \in [0, \infty) \times E$, then $L_{\mathcal{M}(\xi,t)}$ can be replaced by an Orlicz space $L_{\mathcal{M}}$.

When $\|\cdot\|$ is almost continuous, we have a similar theorem as above on the basis of Theorem 2. In this case, \mathfrak{h} acts from $\mathcal{L}_{\mathcal{M}(\xi,t)}^{(f)}$, the finite manifold of $\mathcal{L}_{\mathcal{M}(\xi,t)}$ (the totality of all $f \in \mathcal{L}_{\mathcal{M}(\xi,t)}$ with $m(\xi f) < +\infty$ for every $\xi \geq 0$), onto itself and satisfies (5.2), if $0 < M(\xi, t) < +\infty$.

On the basis of Theorems 1 and 2, a theorem characterizing the modular norms in terms of norms only can be obtained, and it shall be shown in a separate paper.

References

- [1] T. ANDÔ: Convexity and evenness in modulared semi-ordered linear spaces, Jour. Fac. Sci. Hokkaido Univ., 14, No. 1, 2 (1957), 59-95.
- [2] F. BOHNENBLUST: An axiomatic characterization of L_p-spaces, Duke Math. J., 6 (1940), 627-640.
- [3] J. ISHII: On the finiteness of modulared spaces, Jour. Fac. Sci. Hokkaiko Univ., 15, No. 1, 2 (1960), 13-28.
- [4] M. A. KRASNOSELSKIĬ, J. B. RUTICKIĬ: Convex functions and Orilicz spaces (in Russian), Moskow, 1958.
- [5] H. NAKANO: Stetige lineare Funktionale auf dem teilweise geordneten Modul, Jour. Fac. Sci. Imp. Univ. Tokyo, 4 (1942), 201-382.
- [6] _____: Modulared semi-ordered linear spaces, Tokyo 1950.
- [7] T. SHIMOGAKI: On the norms by uniformly finite modulars, Proc. Japan Acad., No. 6 (1957), 304-309.
- [8] _____: A generalization of Vainberg's theorem II, Proc. Japan Acad., 34,

- 17) For $h(\xi, t)$ we assume $h(0, t) \equiv 0$ for all $t \in E$.
- 18) Strictly speaking, $h(\xi, t) = M_t^{-1}(\frac{1}{2}M(\xi, t))$ holds a.e. for (ξ, t) satisfying $M(\xi, t) > 0$. In general, $h(\xi, t) = \xi$ does not hold for (ξ, t) with $M(\xi, t) = 0$.

¹⁶⁾ We assume that X is semi-normal.

T. Shimogaki

No. 10 (1958), 676–680.

 [9] S. YAMAMURO: Exponents of modulared semi-ordered linear spaces, Jour. Fac. Sci. Hokkaido Univ., 12, No. 4 (1953), 211-253.

> Department of Mathematics, Hokkaido University

(Received September 28, 1964)