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1. Introduction. A modulared semi-ordered linear space is a univer-
sally continuous semi-ordered linear $space^{1)}R$ with a non-negative functional
$m$ called a modular which satisfies the following conditions:

M. 1) $|x|\leqq|y|$ , $x,$ $y\in R$ implies $m(x)\leqq m(y)$ ;
M. 2) $m(\xi x)=0$ for each $\xi>0$ implies $x=0$ ;
M. 3) $\lim_{\text{\’{e}}*0}m(\xi x)=0$ for each $x\in R$ ;

M. 4) $m(\xi x)$ is a convex function of $\xi>0$ for each $x\in R$ ;

M. 5) $x\perp y^{2)}$ implies $m(x+y)=m(x)+m(y)$ ;

M. 6) $0\leqq x_{\lambda}\uparrow_{\lambda\in\Lambda}x$ implies $\sup_{\lambda\epsilon}m(x_{\lambda})=m(x)$ .

On a modulared space (R. $m$ ) a semi-continuous norm3) $\Vert\cdot\Vert_{m}$ can be defined by

(1. 1) $\Vert x\Vert_{m}=\inf\{\frac{1}{|\xi|}$ ; $m(\xi x)\leqq 1\}^{4)}$ $(x\in R)$ ,

that is, $R$ is a normed semi-ordered linear space with the norm $\Vert\cdot\Vert_{m}$ at the
same time. The converse of this, Every normed semi-ordered linear space
$(R, \Vert\cdot\Vert)$ has an equivalent norm $\Vert\cdot\Vert_{m}$ defined by an appropriate modular $m$ ,
is not true in general. Counter examples were constructed by the present
author [7] and T. And\^o [1].

$L_{p}$-spaces $(p\geqq 1)$ and Orlicz spaces $L_{\Phi}^{5)}$ on a $\sigma- finite$ measure space $(E, \Omega, \mu)$ ,
with a countably additive non-negative measure $\mu$ defined on a $\sigma- field\Omega$ of $E$,

1) A semi-ordered linear space $R$ is called universally continuous, if $0\leq x_{\lambda}(\lambda\in\Lambda)$ implies
$\bigcap_{\lambda\epsilon\Lambda}X\lambda\in R,$

$i.e$ . a conditionally complete vector lattice in Birkhoff’s sense.
2) $x\perp y$ means that $x$ and $y$ are mutually orthogonal, $i.e$ . $|x|\cap|y|=0$.
3) A norm $\Vert\cdot\Vert$ is called semi-continuous, if $|x_{\lambda}|\uparrow\lambda 6\Lambda|x|$ implies $\Vert x\Vert=\sup_{ir-\Lambda}\Vert x_{\lambda}\Vert$ .
4) $\Vert\cdot\Vert_{m}$ is termed the modular norm by $m$ .
5) For the definition of an Orlicz space see [4].
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are considered as modulared spaces with modulars $m_{p}(x)=\dagger_{E}|x(t)|^{p}d\mu(t)$ and
$m_{\Phi}(x)=!\ovalbox{\tt\small REJECT}(|x(t)|)d\mu(t)$ respectively, where $x\leqq y$ means $x(t)\leqq y(t)a.e.$ .

A modular $m$ on $R$ is called finite if $ m(x)<+\infty$ for each $x\in R$ , and is
called almost finite if $m$ is finite on a complete semi-normal manifold6) $M$ of
$R$ . It is evident that the modulars of $L_{p}$-type $(1 \leqq p<+\infty)$ are finite and the
modulars $m_{p}$ of Orlicz spaces are almost finite. $m_{p}$ is finite if and only if $\Phi$

satisfies the so-called $\Delta_{2}$-condition.
An excellent axiomatic characterization of $L_{p}$-spaces in terms of norms

on semi-ordered linear spaces was established by F. Bohnenblust in [2]. Later
on, H. Nakano characterized norms of $L_{p}$-spaces as norms of unique indicatrix
[5]. Since these chracterizations are based on the particular structure of $L_{p^{-}}$

norms, it seems to be difficult to obtain similarly simple characterizations of
general modular norms, even of modular norms of Orlicz spaces, as $L_{p}$-norms.

In this paper we shall present a necessary and sufficient condition in order
that a norm $\Vert\cdot\Vert$ on $R$ be the modular norm by a finite (almost finite) modular,

in terms of the existence of a similar transformation $T$ acting from $R$ onto
itself with the following property: for any $x,$ $y\in R$ with $\Vert x\Vert=1$ and $x\perp y$ ,
$\Vert T(x+y)\Vert=1$ holds if and only $\iota f\Vert y\Vert=1$ does (Theorems 1, 2). According
to the representation theory, this gives also an axiomatic characterization of
modulared function spaces $L_{1I(\xi,t)}^{7)}$ In 5 we shall state some supplementary
remarks with concrete explanations of these results in Banach function spaces.

2. Notations and the theorems. In what follows, let $(R, \Vert\cdot\Vert)$ be a non-
atomic8) universally continuous semi-ordered linear space with a semi-continuous
norm $\Vert\cdot\Vert$ . A norm $\Vert\cdot\Vert$ is called continuous if $x_{\nu}\downarrow_{\nu=1}^{\infty}0$ implies $\Vert x_{\nu}\Vert\downarrow_{\nu\rightarrow 1}^{\infty}0$ always.
If there exists a complete semi-normal manifold $M$ such that $\Vert\cdot\Vert$ is continuous
on $M,$ $\Vert\cdot\Vert$ is called almost continuous. The modular norm $\Vert\cdot\Vert_{m}$ is continuous
if and only if $m$ is finite. We denote by $V$ the unit ball and by $S$ its surface
respectively, $i.e$ . $V=\{x:\Vert x\Vert\leqq 1\}$ and $S=\{x:\Vert x\Vert=1\}$ . We write $z=x\oplus y$ ,

if $z=x+y$ with $x\perp y$ holds.
A one to one transformation $T$ from $R$ onto $R$ is called similar, if it satisfies

(2. 1) $T([p]x)=[p](Tx)$ for each $x\in R$ and projector $[p]$ ;

(2. 2) $Tx\leqq Ty$ $\iota f$ and only $\iota fx\leqq y$ ;

(2. 3) $T(-x)=-Tx$ for each $x\in R$ .

6) A linear lattice manifold $M$ is called semi-normal if $|y|\leqq|x|,$ $x\in M$ implies $y\in M$.
A semi-normal manifold $M$ is complete, if $M^{1}=\{0\}$ .

7) For the definition of $L_{M(\xi,t)}$ see [3 or 6].

8) $R$ is termed non-atomic, if each $0\neq x\in R$ can be decomposed into $x=y+z$ with $y,$ $z\neq 0$

and $y\perp z$ .
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We see easily from the definition that for a similar transformation $T,$ $T^{-1}$ is
also such a one, and that $T$ is order-continuous, $i.e$ . $x_{\nu}\uparrow_{\nu-1}^{\infty}a(orx_{\nu}i_{\nu=1}^{\infty}b)$ implies
$Tx_{\nu}\uparrow_{\nu=1}^{\infty}Ta(resp. Tx_{\nu}\downarrow_{\nu 1}^{\infty}Tb)$ .

Here we consider the following condition which establishes a relation be-
tween a similar transformation $T$ and the norm on $R$ :

(T. C.) For any $x,$ $y$ with $x\in S$ and $x\perp y,$ $T(x+y)\in S$ holds if and only
if $y\in S$.

Now we can prove
Theorem 2. 1. In order that a given continuous norm $\Vert\cdot\Vert$ on $R$ be the

modular norm $\Vert\cdot\Vert_{m}$ by a modular $m$ , it is necessary and sufficient that there
exists a similar transformation $T$ on $R$ satisfying the condition (T. C.).

If a modular $m$ is almost finite the modular norm is almost continuous.
For an almost continuous norm $\Vert\cdot\Vert$ we denote by $R_{C}$ the continuous manifold
of $R$ with respect to $\Vert\cdot\Vert,$ $i.e.$ , the totality of all continuous elements9) of $R$ .
Evidently $R_{C}$ is a complete semi-normal manifold on which $\Vert\cdot\Vert$ is continuous.
Here we put $V_{C}=V\cap R_{C}$ and $S_{C}=S\cap R_{C}$ . Then, for almost continuous norms
we obtain

Theorem 2. 2. In order that a given almost continuous norm $\Vert\cdot\Vert$ on
$R$ be the modular norm $\Vert\cdot\Vert_{m}$ by a modular $m$ , it is necessary and sufficient
that there exists a similar transformation $T$ on $R_{C}$ onto $R_{C}$ which satisfies
the following condition:

(T. $C^{\prime}.$ ) For any $x,$ $y\in R_{C}$ with $x\in S_{C}$ and $x\perp y,$ $T(x+y)\in S_{C}$ holds if and
only if $y\in S_{C}$.

To the proofs of these theorems the succeeding sections 3 and 4 shall be
devoted.

3. Construction of orthogonal additive functional $\rho$. In this section,
let $\Vert\cdot\Vert$ be continuous on $R$ and $T$ be a similar transformation satisfying the
condition (T. C.) From $(2.1)\sim(2.3)$ it follows that

(3. 1) $T(x\oplus y)=Tx\oplus Ty$ and $|Tx|=T(|x|)$ for $x,$ $y\in R$ .
First we shall prove several auxiliary lemmas easily derived from the

assumption.
Lemma 1. We have $T(V)\subset V-S$.
Proof. Suppose $y\in S$ with $Ty\in S$ . Then we have $T(y+O)=Ty\in S$, which

implies $O\in S$ by (T.C.), a contradiction. On account of (2.2) and the semi-
continuity of $\Vert\cdot\Vert$ , it is now clear that $T(V)\subset V-S$ holds. Q. E. D.

9) If $\Vert x_{\nu}\Vert\downarrow 0$ for each $x_{\nu}\downarrow 0$ with $|x_{\nu}|\leqq|a|(1\leqq\nu),$ $a\in R$ is termed a continuous element
of $R$ with respect to $\Vert\cdot\Vert$ .
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In the sequel, we use the following notations:

(3. 2) $S_{0}=S$ and $S_{n}=TS_{n- 1}$ $(n=1,2, \cdots)$ .

Now we have
Lemma 2. $ S_{i}\cap S_{j}=\phi$ holds for $i\neq j(i,j=1,2, \cdots)$ .
Proof. If $z\in S_{i}\cap S_{j}$ for some $i,j$ with $i<j,$ $i.e.,$ $z=T^{i}x=T^{j}y$ for $\dot{s}$ome

$x,$ $y\in S$ we get $x=T^{j-i}y$ . Putting $c=T^{j-i-1}y$ , we obtain $x=Tc$ and $c\in V$,
which is inconsistent with Lemma 1.

Lemma 3. For each $x\in S_{n}(n=0,1,2, \cdots)x$ can be decomposed into $x=$

$x_{1}\oplus x_{2}$ in such a way that $x_{i}\in S_{n+1}(i=1,2)$ holds.

Proof. $x\in S_{n}$ implies $T^{-n}x\in S$, whence $\Vert T^{-(n+1)}x\Vert>1$ . Now we put
$a=T^{-(n+1)}x$. Since $R$ contains no atomic element and $\Vert$ . I is continuous, we
can find an element $p$ such that $[p]a\in S$ holds. Because of $[p]a,$ $Ta\in S$, it
follows from (T. C.) that $(1-[p])a\in S$ holds. Hence $x=T^{n+}\leftrightarrow a=T^{n+1}[p]a$

$+T^{n+1}((1-[p])a)$ with $T^{n+1}[p]a,$ $T^{n+1}((1-[p])a)\in S_{n+1}$ simultaneously.
It is obvious from Lemma 3 that $x\in S$ if and only if $x$ is represented as,

for any fixed $n$ ,

(3. 3) $x=T^{n}(\bigoplus_{i=1}^{2^{n}}x_{i})$ ,

where $x_{i}\in S(i=1,2, \cdots, 2^{n})$ .
Lemma 4. Let $a,$ $b\in S$ and $a\perp b$ . Then

(3. 4) $\Vert T^{n}a\oplus b\Vert>1$

stands for each $n\geqq 1$ .

Proof. We shall prove this lemma by inducotin. In case of $n=1$ ,
$\Vert Ta\oplus b\Vert=1$ implies $\Vert T(a\oplus T^{-1}b)\Vert=1$ , whence $T^{-1}b\in S$, contradicting Lemma
1. Thus (3. 4) is valid for $n=1$ . Now suppose that (3. 4) holds for each $n\leqq k$

and $\Vert T^{k+1}a\oplus b\Vert=1$ for some $a,$ $b\in S$ with $a\rfloor b$ . Then $\Vert T(T^{k}a\oplus T^{-1}b)\Vert=1$

holds and $T^{-1}b$ can be represented as $T^{-1}b=b_{1}\oplus b_{2},$ $b_{i}\in S(i=1,2)$ . From this
and $\Vert T\{(T^{k}a\oplus b_{1})+b_{2}\}\Vert=1$ , it follows that $\Vert T^{k}a\oplus b_{1}\Vert=1$ holds on account
of (T. C.), but this contradicts the induction hypothesis. Q. E. D.

Lernma 5. If $x=\bigoplus_{l\approx 1}^{n}x_{i}=\bigoplus_{j\Rightarrow 1}^{n*}y_{j}\oplus y_{0}$ with $x_{i}\in S,$ $y_{j}\in S(i=1,2,$ $\cdots,$ $n;j=$

$1,2,\cdots,m)$ and furthermore $x$ is not a complete1) element, then $n\geqq m$ holds.

Proof. Suppose contrarily $n<m$ . Since $R$ is non-atomic, we can find
a set of mutually orthogonal elements $\{z_{i}\}_{i=1}^{\rho}\subset S$ such that $z_{i}\perp x(1\leqq i\leqq\rho)$ and

10) $x\in R$ is called a complete element if $\{x\}\perp=\{0\}$ holds.
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$n+\rho=2^{\mu}$ for some $\mu\geqq 1$ . Then $T^{\mu}(\bigoplus_{i=1}^{\rho}z_{i}\oplus x)=T^{\mu}(z_{1}\oplus\cdots\oplus z_{\rho}\oplus x_{1}\oplus\cdots\oplus x_{n})\in S$.

On the other hand, we get $T^{\mu}(\bigoplus_{i=1}^{\rho}z_{i}\oplus x)=T^{\mu}(z_{1}\oplus\cdots\oplus z_{\rho}\oplus y_{1}\oplus\cdots\oplus y_{m}\oplus y_{0})=$

$T^{\mu}(y_{1}\oplus\cdots\oplus y_{n}\oplus z_{1}\oplus\cdots\oplus z_{\rho})+T^{\mu}(y_{n+1}\oplus\cdots\oplus y_{m})+T^{jt}(y_{0})$ , which implies $1=$

$\Vert T$“ $(x\oplus z)\Vert\geqq\Vert w+T^{l}y_{m}\Vert$ , where $w=T^{\mu}(y_{1}\oplus\cdots\oplus y_{n}\oplus z_{1}\oplus\cdots\oplus z_{\rho})$ belongs to $S$.
However, this is inconsistent with the preceding lemma. Q. E. D.

Lemma 6. If $x$ is not a complete element and $ x=x_{1}\oplus\cdots\oplus x_{k}=y_{1}\oplus\cdots$

$\oplus y_{l}\oplus y_{0}$ , where $x_{\nu}\in S_{m_{v}},$ $y_{\mu}\in S_{n_{\mu}}$ and $y_{0}\in V(1\leqq\nu\leqq k, 1\leqq\mu\leqq l, 0\leqq m_{\nu}, n_{\mu})$ , then
$\sum_{\nu=1}^{k}\frac{1}{2^{m_{\nu}}}\geqq\sum_{\mu-- 1}^{l}\frac{1}{2^{n_{\mu}}}$ holds.

Proof. We put
$N={\rm Max} 1\leqq\mu\leqq l1\leqq\nu\leqq k\{m_{\nu}, n_{\mu}\}$

. Then, for each $\nu(1\leqq v\leqq k)x$ is de-

composed into $x_{\nu}=x_{\nu,1}\oplus x_{\nu,2}\oplus\cdots\oplus x_{\nu,2}^{N-m_{\nu}}$ with $x_{\nu,i}\in S_{N}(1\leqq i\leqq 2^{N-m_{\nu}})$ . Simi-
larly $y_{\mu}=y_{\mu,1}\oplus\cdots\cdot\oplus y_{\mu,2^{N-n_{\mu}}}$ with $y_{\mu,j}\in S_{N}$ holds for each $j(1\leqq j\leqq 2^{N- n_{\mu}})$ . Hence

$kz_{\sim}v-m_{\nu}$ $l2^{Y^{-n_{\mu}}}$

both $x=\bigoplus_{\nu=1}\bigoplus_{i=1}x_{\nu,i}$ and $x=\oplus\oplus y_{\mu,j}\oplus y_{0}$ holds, which implies $T^{-N}x=$
$\mu=1j=1$

$\bigoplus_{\nu}\bigoplus_{i}T^{-N}x_{\nu,i}=\oplus\oplus T^{-N}y_{\mu,j}\oplus 7^{1-N}y_{0}$ with $T^{-N}x_{\nu,i}\in S$ and $T^{-N}y_{/r,j}\in S$ for each
$’\ell j$

$\nu,$ $\mu,$
$i$, and $j$. In view of the preceding lemma we find

$\sum_{\nu=1}^{l}2^{N- m_{\nu}}\geqq\sum_{\mu=1}^{l}2^{N- n_{\mu}}$ .

Thus we obtain $\sum_{\nu\Rightarrow 1}^{k}\frac{1}{2^{m_{\nu}}}\geqq\sum_{\mu=1}^{l}\frac{1}{2^{n_{\mu}}}$ . Q. E. D.

Here we tum to define an orthogonal additive functional $(i.e$ . $\rho(x+y)$

$=\rho(x)+\rho(y)$ for $x\perp y$ ) on $R$ from $\Vert\cdot\Vert$ . Let $R_{0}$ be the set of all non-complete
elements of $R$ and $\mathfrak{U}$ be the totality of elements of $R_{0}$ which can be represented
as $x_{1}\oplus\cdots\oplus x_{n}$ with $x_{i}\in S_{m_{i}}(i=1,2, \cdots, n;n=1,2, \cdots)$ . On $\mathfrak{U}$ we define a fun-
ctional $\rho^{\prime}$ as follows:

(3. 5) $\rho^{\prime}(x)=\sum_{i=1}^{n}\frac{1}{2^{m_{i}}}$ ,

where $x=x_{1}\oplus\cdots\oplus x_{n}$ with $x_{i}\in S_{m_{i}}(1\leqq i\leqq n)$ . According to Lemma 6 we see
that this definition has a sense. It is evident from the definition that $\rho^{\prime}$ is
orthogonally additive on $\mathfrak{U}$ . Next, we put for each $x\in R$

(3. 6) $\rho(x)=\left\{\begin{array}{ll}\sup_{|y|\leqq|x|}\rho^{\prime}, & y),\\0, & if there exists no element y\in \mathfrak{U} with |y|\leqq|x|.\end{array}\right.$

In the succeeding section we shall show that $\rho$ thus defined is in fact
a modular on $R$ and that $\Vert\cdot\Vert$ is nothing but the modular norm by $\rho$ .
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4. Properties of $\rho$ and the proofs of Theorems. In view of con-
struction of $\rho$ and Lemma 6 we see easily that $\rho$ satisfies the modular con-
ditions M. 1) and M. 2). Since $R$ contains no atomic element, we have also

(4. 1) $\rho(x)=\rho^{\prime}(x)$ for each $x\in \mathfrak{U}$ .

In order to prove the remaining conditions M. $3$ ) $,\sim M$ . $6$ ), we need some
lemmas.

Lemma 7. We have

(4. 2) $\rho(x)>\frac{1}{2^{m}}$ and $\rho(x)<\frac{1}{2^{m}}$ imply $\Vert T^{-m}x\Vert>1$ and $\Vert T^{-m}x\Vert$

$\leqq 1$ respectively $(m=0,1,2, \cdots)$ ;

(4. 3) $\rho(x)<+\infty$ , for each $x\in R$ ;

(4. 4) $\rho(x)=\sup_{[p]x\in ll}\rho^{\prime}([p]x)$ , $\iota f$ $\rho(x)>0$ .

Proof. (4. 2) follows immediately from the definition of $\rho$ . Since $\Vert\cdot\Vert$ is

continuous, each element $x\in R$ can be represented as $x=\bigoplus_{i=1}^{n}x_{i}$ with $\Vert x_{i}\Vert\leqq 1$

$(1\leqq i\leqq n)$ for some $n\geqq 1$ . From this we have $\rho(x)\leqq n$ in view of (3.5), (4.2)

and M. 2). Thus (4.3) is valid. Next, we shall show that if $\rho(x)>\frac{k}{2^{m}}x$ is

written as $x=\bigoplus_{i=1}^{k}x_{i}\oplus x_{0}$ with $\Vert T^{-m}x_{i}\Vert>1$ for each $i(1\leqq i\leqq k)$ . By (3.6) there

exists $0\leqq x^{\prime}\in \mathfrak{U}$ such that $|x|\geqq x^{\prime}=\bigoplus_{\emptyset=1}^{k}x_{i}^{\prime}\oplus x_{0}^{\prime}$ with $x_{i}^{\prime}\in S_{m}(1\leqq i\leqq k)$ and $x_{0}\in \mathfrak{U}$ .

Now we decompose $x_{0}^{\prime}$ into $x_{0}^{\prime}=\bigoplus_{i- J}^{k}x_{i}^{\prime\prime}$ with $x_{i}^{\prime\prime}’\in \mathfrak{U}$ for each $i$ . On the ground

of Lemma 4 $\Vert T^{-m}(x_{i}^{\prime}\oplus x_{i}^{\prime\prime})\Vert>1(1\leqq i\leqq k)$ must hold. Putting $x_{i}=[x_{i}^{\prime}\oplus x_{i}^{\prime\prime}]x$

$k$ $k$

and $x_{0}=x-\bigoplus_{i=1}x_{i}$ , we obtain $x=\bigoplus_{i=1}x_{i}\oplus x_{0}$ with $\Vert T^{-m}x_{i}\Vert>1$ for each $i(1\leqq i\leqq k)$ .

From this one derives easily that if $\rho(x)>\frac{k}{2^{m}}$ there exist projectors $\{[p_{\nu}]\}_{\nu=1}^{k}$

such that $[p_{i}]\leqq[x_{i}]$ and $\Vert T^{-m}[p_{i}]x_{i}||=1$ hold $(1\leqq i\leqq k)$ , where $\{x_{i}\}_{i=1}^{k}$ satisfies

the above condition. Since $[p_{i}]x_{i}\in S_{m}$ and $\bigoplus_{i\rightarrow 1}^{t}[p_{i}]x_{i}=(\sum_{i=1}^{k}[p_{i}]’)x,$ $\rho^{\prime}([p]x)\geqq\frac{k}{2^{m}}$

follows and (4.4) is proved, where $[p]=\sum_{i=1}^{k}[p_{i}]$ . Q. E. D.

Lemma 8. $p$ is orthogonally additive, $i.e.$ , it satisfies M. 5).

Proof. From the definition of $\rho$ it follows that

$\rho(x\oplus y)\geqq\rho(x)+p(y)$
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holds. Now suppose $\rho(x\oplus y)>\rho(x)+\rho(y)$ for some $x,$ $y\in R$ with $x+y\in R_{0}$ .
Then we can choose a natural number $m$ such that $P(x\oplus y)>\rho(x)+\rho(y)+\frac{1}{2^{m}}$

By (4.4) there exist projectors $[p],$ $[q]$ for which $\rho(x)-\rho^{\prime}([P]x)<\frac{1}{2^{m+2}},$ $\rho(y)-$

$\rho^{\prime}([q]y)<\frac{1}{2^{m+2}}$ , $[p]x\in \mathfrak{U}$ and $[q]y\in \mathfrak{U}$ hold.11) Since $\rho((1-[P])x)\leqq P(x)-$

$\rho([p]x)<\frac{1}{2^{m+2}}$ and $\rho((1-[q])y)\leqq\rho(y)-\rho([q]y)<\frac{1}{2^{m+2}}$ hold, we can find $\alpha$,

$\beta\geqq 1$ such that both $\alpha(1-[p])x$ and $\beta(1-[q])y$ belong to $S_{m+2}$ according to
(4. 2) and the fact that $T$ is similar. Putting $x^{\prime}=[p]x+\alpha(1-[p])x$ and $y^{\prime}=$

$[q]y+\beta(1-[q])y$ , we obtain $x^{\prime},$ $y^{\prime}\in \mathfrak{U}$ and $\rho^{\prime}(x^{\prime}\oplus y^{\prime})=\rho^{\prime}(x^{\prime})+\rho^{\prime}(y^{\prime})=\rho^{\prime}([p]x)$

$+\rho^{\prime}([q]y)+\frac{1}{2^{m+1}}$ , since $\rho^{\prime}$ is orthogonally additive on $\mathfrak{U}$ . Hence we get

$\rho^{\prime}(x^{\prime}\oplus y^{\prime})\geqq\rho(x\oplus y)>\rho(x)+\rho(y)+\frac{1}{2^{m}}$

$\geqq\rho^{\prime}([p]x)+\rho^{\prime}([q]y)+\frac{1}{2^{m}}=p^{\prime}(x^{\prime}\oplus y^{\prime})+\frac{1}{2^{m+1}}$ ,

which is, however, a contradiction. Thus we see easily that $\rho$ is orthogonally
additive by virtue of Lemma 7. Q. E. D.

Lemma 9. We have

(4. 5) $\rho(x)\leqq 1$ $\iota f$ and only $\iota f\Vert x\Vert\leqq 1$ .

Proof. The fact that $\Vert x\Vert\leqq 1$ implies $\rho(x)\leqq 1$ is ovbious by virtue of
Lemma 4. On the other hand, for any $x$ with $\rho(x)\leqq 1$ we can find a sequence
of projectors $\{[p_{\nu}]\}_{v=1}^{\infty}$ such that $[p_{\nu}]\uparrow_{\nu=1}^{\infty}[x],$ $[p_{\nu}]x\in \mathfrak{U}$ and $\rho([p_{v}]x)\uparrow_{\nu=1}^{\infty}\rho(x)\leqq 1$

on account of (4.4) and the orthogonal additivity of $\rho$ . By (4.1) and the de-
finition of $\rho^{\prime}$ , we now get $\Vert[p_{\nu}]x\Vert\leqq 1$ for each $\nu\geqq 1$ , hence $\Vert x\Vert\leqq 1$ because
of the semi-continuity of $\Vert\cdot\Vert$ . Q. E. D.

Lemma 10. $\rho$ is semi-continuous, $i.e.$ , it satisfies M. 6).

Proof. Let $0\leqq x_{\lambda}\uparrow_{\lambda\in\Lambda}x$ and $\rho(x)>\frac{k}{2^{m}}$ . As is shown in the proof of (4.4),

there exists $p\in R$ such that $[p]x\in \mathfrak{U},$ $[p]x=\bigoplus_{i- 1}^{k}w_{i}$ and $\Vert T^{-m}w_{i}\Vert>1(1\leqq i\leqq k)$ .
Then, since $[w_{i}]x_{\lambda}\uparrow_{\in 4}[w_{i}]x=w_{i}$ holds for each $i$ and $\Vert\cdot\Vert$ is semi-continuous,
we have for a sufficiently large $\lambda_{0}$ that $\Vert T^{-m}[w_{i}]x_{\lambda_{\theta}}\Vert>1$ stands for every
$i(1\leqq i\leqq k)$ . Therefore we have

11) In case of $\rho(x)=0$ (or $\rho(y)=0$), we choose $p=0$ (resp. $q=0$).
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$\rho(x_{\lambda_{0}})\geqq\rho([p]x_{\lambda_{0}})\geqq\frac{k}{2^{m}}$ ,

which shows the semi-continuity of $\rho$ . Q. E. D.

Lemma 11. $p$ satisfies M. 3). $i.e.,$
$\lim_{\xi\rightarrow 0}\rho(\xi x)=0$ .

Proof. If $\rho(\xi x)>\frac{1}{2^{m}}$ holds for each $\xi>0$ , we have $\Vert T^{-m}\xi x\Vert>1$ . Since

$\bigcap_{\xi>0}\xi|x|=0$ stands, $\bigcap_{\epsilon>0}T^{-m}\xi|x|=0$ holds. Hence it follows that $\Vert T^{-m}\xi x\Vert\rightarrow 0$ as
$\xi\rightarrow 0$ , because of the continuity of $\Vert\cdot\Vert$ . This is a contradiction. Q. E. D.

Summing up the above results, we see that $\rho$ satisfies all the conditions of
modular except M.4). Next lemma shall show that $\rho$ fulfils M.4) too.

Lemma 12. $\rho(\xi x)$ is a convex function of $\xi(\xi\geqq 0)$ for each $x\in R$ .

Proof. We shall first show that the set $B_{\xi}=\{x:\rho(x)\leqq\xi\}$ is convex for
every $\xi$ with $0\leqq\xi\leqq 1$ . Let $x,$ $y\in B_{\xi}$ and $\alpha,$ $\beta>0$ with $\alpha+\beta=1$ . By virtue of
semi-continuity of $\rho$ , we may assume without loss of generality that there exists
$0\neq z\in R$ belonging to $\{x, y\}^{\perp}$ . Furthermore we may choose $z$ as $\rho(z)=1-\xi$,

since $\rho$ satisfies (4.3) and $R$ has no atom. It follows that both $x+z$ and $y+z$

belong to $V$, hence $\alpha(x+z)+\beta(y+z)$ does also. Consequently, we obtain
$\rho(\alpha x+\beta y)+\rho(z)\leqq 1$ by Lemma 9, hence $\alpha x+\beta y\in B_{\xi}$ . Therefore $B_{\xi}$ is convex.

Next, suppose that $\rho(\xi x)\leqq 1$ and $\rho(\eta x)\leqq 1$ for some $x\in R$ and $\xi>\eta\geqq 0$ .
Since $\rho$ is finite, orthogonally additive and semi-continuous, we can find $p\in R$

for which $\rho(\xi[p]x)=\rho(\xi(1-[p])x)$ holds. If $\rho(\eta[p]x)<\rho(\eta(1-[p])x)$ stands
for such $[p]$ , there can be constructed a system of projectors $\{[p_{\alpha}]\}_{(0\leqq\alpha\leqq 1)}$ and
$\{[p_{a}^{\prime}]\}_{(0\leqq a\leqq 1)}$ such that $[p_{\alpha}]\downarrow([p_{a}^{\prime}]\uparrow)$ as $\alpha\downarrow 0,$ $[p_{a}]\leqq[p],$ $[p_{a}^{\prime}]\leqq(1-[p])$ with $[p_{1}]$

$=[p],$ $[p_{0}^{\prime}]=(1-[p])$ , and $\rho(\xi[p(l]x)=\rho(\xi(1-[p])(1-[p_{a}^{\prime}])x)=\alpha p(\xi[p]x)$ holds
for each $0\leqq\alpha\leqq 1$ . Putting $[q_{\alpha}]=[p_{a}]+(1-[p])[p_{\alpha}^{\prime}]$ , we obtain $[q_{\alpha}]\leqq[x]$ and
$\rho(\xi[q_{\alpha}]x)=\rho(\xi(1-[q_{a}])x)$ for every $\alpha$ . Furthermore we see easily that both
$\rho(\eta[q_{1}]x_{l}^{\backslash }<\rho(\eta(1-[q_{1}])x)$ and $\rho(\eta[q_{0}]x)>\rho(\eta(1-[q_{0}])x)$ hold. From this it
follows that $\rho(\eta[q_{\alpha}]x)=\rho(\eta(1-[q_{\alpha}])x)$ stands for some $\alpha$ . In consequence, we

have shown that there exists $p\in R$ such that $\rho(\xi[p]x)=\frac{1}{2}\rho(\xi x)$ and $\rho(\eta[p]x)$

$=\frac{1}{2}\rho(\eta x)$ hold simultaneously. Because $\rho(\xi[p]x+\eta(1-[p])x)=\rho(\eta[p]x-\vdash$

$\xi(1-[p])x)=\frac{1}{2}\{\rho(\xi x)+\rho(\eta x)\}\leqq 1$ , we have

(4. 6) $\rho(\frac{1}{2}(\xi x+\eta y))\leqq\frac{1}{2}\{\rho(\xi x)+\rho(\eta y)\}$

by the fact shown just above.
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Finally, since each $x$ can be decomposed orthogonally into $x=\bigoplus_{i=1}^{n}x_{i}$ with
$\rho(x_{i})\leqq 1(1\leqq i\leqq n)$ , we see that (4.6) holds for any $x\in R,$ $i.e$ . $\rho(\xi x)$ is a convex
function of $\xi(\xi\geqq 0)$ for each $x\in R$ . Q. E. D.

Here we are in position to prove the theorems stated in 2.
Proof of Theorem 1. Sufficiency. The functional $p$ constructed in 3

is a modular satisfying (4.5), as is shown above. Hence we have $\Vert x\Vert=$

$inf\{\frac{1}{|\xi|}$ ; $\rho(\xi x)\leqq 1\}i.e.,$ $\Vert\cdot||$ is the modular norm by the modular $p$ .

Necessity. Let $\Vert\cdot\Vert$ be the modular norm by a modular $m$ on R. $m$ is
necessarily finite since $\Vert\cdot||$ is continuous, In the same manner as in the proof
of Theorem 2 in [8], we can construct a similar transformation $T_{0}$ on $R$

satisfying

$m(T_{0}x)=\frac{1}{2}m(x)$ for every $x\in R$ .

It is now clear that $T_{0}$ satisfies the condition (T.C.). Q. E. D.
Proof of Theorem 2. Sufficiency. In view of Theorem 1 we find

a finite modular $\rho$ on a complete semi-normal manifold $R_{C}$ of $R$ , for which
$\Vert\cdot\Vert$ is the modular norm on $R_{C}$ . We extend now $\rho$ on the whole space $R$

as follows:

(4. 7)
$p_{0}(x)=\sup_{0\leqq yx|}p(y)y\in R_{C}$ $(x\in R)$ .

$\rho_{0}$ thus defined is an almost finite modular on $R$ , as is easily seen, and $\rho_{0}(x)=\rho(x)$

if $x\in R_{C}$. Because of the semi-continuity of $\Vert\cdot\Vert$ and $\rho,$
$\Vert x\Vert=\inf\{\frac{1}{|\xi|}$ ; $\rho_{0}(\xi x)\leqq 1\}$

holds for each $x\in R$ , that is, $\Vert\cdot\Vert$ is the modular norm by $\rho_{0}$ . The nessecity
is derived similarly as the proof of Theorem 1. Q. E. D.

5. Here let $(R, \Vert\cdot\Vert)$ be the same as in 3 and $\rho$ be the modular defined,
in the manner described above, from $\Vert\cdot\Vert$ and a similar transformation $T$ on
$R$ satisfying the condition (T. C.). From the construction of $p$ one derives
easily

$\rho(Tx)=\frac{1}{2}\rho(x)$ $(x\in R)$ .

Also this enables us obviously to restate properties of the modular $\rho$ in terms
of similar transformations $T^{12)}$ We describe below a few examples of such

12) Of course, we can state properties of $\rho$ by means of $\Vert\cdot\Vert$ , since there are found closed
relations between modulars and their norms [1, 6, and 7].
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restatements in terms of $T$. Being trivial, their proofs are omitted.
5. 1. $\rho$ is simple ( $i.e$ . $\rho(x)=0$ implies $x=0$ ), if and only $\iota f\bigcap_{m\geqq 1}T^{m}x=0$

for each $x\in R$ .
5. 2. $\rho$ is unzformly simple ( $i.e.\inf_{||x||\geqq\delta}\rho(x)>0$ for each $\delta>0$ ), $\iota f$ and only

$\iota f$ for each $\epsilon>0$ there exists $m\geqq 0$ with $\sup_{\in}\Vert T^{m}x\Vert<\epsilon$ .

5. 3. $\rho$ is umformly finite ( $ i.e.\sup_{||x||\leqq\delta}\rho(x)<+\infty$ for each $\delta>0$), if and

only $\iota f$ for each $\delta>0$ there exists $m\geqq 0$ with $\inf_{\in S}\Vert T^{-m}x\Vert>\delta$ .
5.4. $\rho$ is uPper bounded ($i.e$ . $\rho(\alpha x)\leqq\gamma p(x)$ holds for every $x\in R$ , where

$1<\alpha,$ $\gamma$ are fixed constants), if and only $\iota fT\leqq(\frac{1}{2})^{\frac{1}{p}}I^{13)}$ for some $p\geqq 1$ .

Finally let $(E, \Omega, \mu)$ be a $\sigma- finite$ non-atomic measure space with a countably
additive non-negative measure $\mu$ on a $\sigma- field\Omega$ of $E$ . A modulared space (X, $m$ )

consisting of measurable functions on $E$ is a semi-normal manifold of modulared
function space $L_{-\Psi(\xi,t)}$ defined by a modular function $M(\xi, t)^{14)}$ on $[0, \infty$ ) $xE$,

that is, $X$ is contained in the totality of all measurable functions $f$ such that
$\int_{E}M(\alpha|f(t)|, t)d\mu(t)<+\infty$ for some $\alpha>0$ , and

(5. 1) $m(f)=\int_{E}M(|f(t)|, t)d\mu(t)$

holds for each $f\in X$. Conversely, it is known [6] that each modulared semi-
ordered linear space $R$ can be considered as a modulared function space $L_{M(\xi,t)}$

on a measure space $(E, \Omega, \mu)$ suitably chosen, and $m$ is represented by (5.1).

For any finite modulared function space15) $(L_{V4(\xi,t)}(E), \Vert\cdot\Vert)$ we can obtain
a similar transformation $T$ with the condition (T.C.) directly as follows: We
define for $(\xi, t)\in[0, \infty)\times E$

(5. 2) $h(\xi, t)=\left\{\begin{array}{ll}M_{t}^{-1}(\frac{1}{2}M(\xi, t)), & if M(\xi, t)>0;\\\xi, & if M(\xi, t)=0,\end{array}\right.$

where $M_{t}^{-1}(\xi)$ is the inverse of the function $M_{t}(\xi)=M(\xi, t)$ for each $t\in E$ . Then
$h(\xi, t)$ on $[0, \infty$ ) $\times E$ is a Carath\’eodory’s function, and the transformation $\mathfrak{h}$

defined by

13) I is the identity operator on $R$ and 5. 4 follows from Theorem 3. 3 of [9].
14) For the definition of modular functions see [3 or 6]. Roughly speaking, $M(\xi, t)$ is

a N’-function of $\xi$ for each $t\in E$. In $L_{M(\xi,t)}$ we consider $\int_{E}M(|f(t)|, t)d\mu(t)$ as a modular $m$

always.
15) $m$ on $L_{M(\xi,t)}$ is finite, if and only if $M(2^{\xi}, t)\leqq\gamma M(\xi, t)+a(t)$ for all $(\xi, t)\in[0, \infty)\times E$,

where $\gamma>0$ and $a(t)\in L_{1}(F_{\lrcorner})[3]$ . $m$ is almost finite if and only if $M(\xi, t)<+\infty a$ . $e$ . in $[0$ . $\infty$ ) $\times E$.
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(5. 3) $\mathfrak{h}(f(t))=h(f(t), t)$ $(f\in L_{M(\xi,t)})$

forms a similar transformation satisfying the condition (T. C.) for the modular
norm on $L_{M(\xi,t)}$ . Conversely, in view of Theorem 1 we have

Theorem 3. If (X, $\Vert\cdot\Vert$ ) is a normed function spacei6) with a continuous
norm $\Vert\cdot\Vert$ , and $\iota\beta$ a similar transformation $\mathfrak{h}$ from $X$ onto $X$, defined by
a Carath\’eodory’s function $h$ ( $\xi,$ $t_{/}^{17)}$ on $[0,$ $\infty$ ) $\times E$, satisfies the condition (T. $C.$ ),
then there can be found a modular function $M(\xi, t)$ on $[0, \infty$ ) $\times E$ such that
$X$ is a semi-normal manifold of $L_{M(\xi.t)},$ $M(\xi, t)$ satisfies (5.2),18) and $\Vert\cdot\Vert$

coincides with the modular norm of the space $L_{M(\xi,t)}$ .
Remark 1. In this theorem if moreover, (X, $\Vert\cdot\Vert$ ) is monotone complete

($i.e$ . $0\leqq f_{\nu}\uparrow,$
$\sup_{\geqq}\Vert f_{\nu}\Vert<+\infty$ implies $\bigcup_{\nu-- 1}^{\infty}f_{\nu}\in X$ ), then $X=L_{M(\xi,t)}$ holds.

Remark 2. In Theorem 3, if $h(\xi, t)=h(\xi)$ for all $(\xi, t)\in[0, \infty)\times E$, then
$L_{M(\xi,t)}$ can be replaced by an Orlicz space $L_{M}$.

When $\Vert\cdot\Vert$ is almost continuous, we have a similar theorem as above on
the basis of Theorem 2. In this case, $\mathfrak{h}$ acts from $L_{M(\xi,t)}^{(f)}$ , the finite manifold
of $ L_{V(\xi,t)}\lrcorner$ (the totality of all $f\in L_{na\epsilon,t)}$ with $ m(\xi f)<+\infty$ for every $\xi\geqq 0$), onto
itself and satisfies (5.2), if $ 0<M(\xi, t)<+\infty$ .

On the basis of Theorems 1 and 2, a theorem characterizing the modular
norms in terms of norms only can be obtained, and it shall be shown in a
separate paper.
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