CONTRIBUTIONS TO THE THEORY OF
MEROMORPHIC FUNCTIONS IN
THE UNIT-CIRCLE

By

Kiyoshi NOSHIRO

This paper is divided into two parts. In part 1, a class of
meromorphic functions in the unit-circle is considered and some
results analogous to K. YosIDA’s® are obtained. Next, in part 2, a
definition is given to a locally univalent function, regular in the
unit-circle, which is distinet from that of P. MONTEL® and some
theorems concerning such a function are enunciated.

PART 1. ON A CLASS OF MEROMORPHIC
FUNCTIONS IN THE UNIT-CIRCLE

Suppose that y = f(x) is meromorphic in the unit-circle and
consider the family {f,(z)} formed by all the functions

(1) - Ja(?) =

where a varies throughout inside the unit-circle |z|< 1. Then, let
us say, after K. YOSIDA®, that the function y = f(x) belongs to class
(4), if {f.() is a normal family for |z| <1 in MONTEL’s sense.

The object of this part is to study some properties of class (A).
For this purpose, use is made of the pseudo-distance

ai—dasz

(2) D(a;, az) = |=
a1a2—1

() K.YosipA: On a class of meromorphic functions, Proc. Phys.-Math. Soc.
Japan, 3. ser., 16 (1934), pp. 227-235.

(2) P. MoNTEL: Sur les fonctions localement univalentes ou multivalentes,
Ann. Ec. Norm., (3), 54 (1937).

(3) Let y = 9(x) be a meromorphic function in |z | < oo such that the family
¢a(2) = 9(2+a), |a]| < o, is normal for |z| <. Then, y = ¢(x) is called a func-
tion of class (A) (of the parabolic case). K. YoSIDA has obtained some interesting
theorems on this class. Cf. K. Yosipa: loc. cit.
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of two points of a1 and a. lying inside the circle [z| <1 and the
locus

De,a)=p (0<p<1, la]<1)

which shall be called a pseudo-circle C,(a) with pseudo-centi'e a of
pseudo-radius p, the interior of C,(a) being denoted by I[C.(a)]. Of
course, the pseudo-distance and the pseudo-circle are invariant under
any transformation of the form

2—a

3 =¢f 2,
(\) v=e az—1

First the following will be proved.

Theorem 1. In order that y = f(x) may belong to class (A), it
is necessary and sufficient that there should exist a positive number
K such that

SHEE

Suppose that the inequality (4) holds. It is easily shown that,
nside the unit-circle,

A—1zP1L@] _ A=sDIF@] g1 <1):
(8) 1+|fa@ |? 1+ f@) |2 (lal<D.

as a consequence of the invariant form -

|de| _ |dz]
1—|z2 1—|z]?

for any transformation (3). By MARTY’s criterion® the family (fa(é)}
is normal in |z|< 1 and y =Ff(x) belongs to class (A). If, on the
contrary,
A—lz®|fl@]| _
t : = 4+ o0,
1+ |f) |?

upper limi
lel<1

(1) MARTY has proved the following theorem: in order that a family {f(2)},
formed of meromorphic functions in a domain D, should be normal in D, it is
necessary and sufficient that there should exist a positive number K(D,) such that,

/
inside D,, —1% < K(D,) for any function f(2) of the family, where D,
denotes any closed domain, lying entirely within the domain D. See F. MARTY:
Recherches sur la répartition des valeurs d’une fonction meromorphe, Ann. Fac.

Univ. Toulouse, (3), 23 (1931).
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then, there exists a sequence of points a, inside |z | <1 such that

. (A—lan i) If' e | _
R PRI e

Associate a funection

San() = f (2%

anz—1
with each a,, then we have

[fan @ _ i Q=] @n[?) | f @) ]

=+
v 1t | fanO [ moe 1+ |f@w[® *

Consequently the sequence {fa.(2)} is not normal for |z| <p, p being
any positive number less than unity.

Remark. The above theorem -corresponds to theorem 1% in
YOsSIDA’s paper.

It is well known that the characteristic funetion, T'(r), of y = f(x)
is given by the formula

Tr)=S»+0Q),

where

_ (TA@®) ~ (™ If/@|? i
S(r)_jo-Tdt and A(r)—-so so mrdrde, (x = re).

Thus, from the above theorem, we obtain

Theorem 2. Suppose that y = f(x) is a meromorphic function of
class (A). Then
'r) )

In particular if y =f(x) s regular in |x]| <1, then

1
1—r

T(r) = O(log

log M(r) = O( 1~1—r og

M(r) denoting the quantity max | f@ ] .

Remark. This theorem corresponds to corollary 2@ in YOSIDA s
paper.

(1) XK. Yosipa: loc. cit.
@) - K. Yosipa: loe. cit.
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Now let us consider the asymptotic values of a function y = f(x)
of class (A). Let L: ¢=¢@t) (0<t<1) be a continuous curve-
lying inside the unit-circle such that ¢(0) =0 and hm [CB | = 1.

We call « an asymptotic value of y = f(x) along L, prov1ded that
hm fIE®] = a. Suppose that y = f(x), a function of class (A), has

an asymptotic value « along the curve L. We consider any in-
creasing sequence %, such that 0<¢,<1 and ¢,—1 and put
{n=1¢(() (n=1,2,8,...). Since y = f(x) belongs to class (A), we
may select from the sequence {v.(2)} of functions

Y (2) = fin(2) ——f( 2—Cn )

a subsequence {\[rm(z)) which converges uniformly to the limiting
function f5(2) in the interior of |z| <<1®., Clearly the image, in the

x-plane, of the circle [z| =p (p fixed, 0<p<1) formed by the
transformatlon

x—Cn, _ :
m ) (Cnv = C(t'ny))
is a pseudo-circle C, (Cm) with pseudo-centre ¢(¢,,) of pseudo-radius
p. Denoting by ¢(7;,,) the furthest point from the origin of the
points of intersection of L with C,(&,,) and putting

z/ — C(t;l.v )—C'ny
" Gy €)1

we have

lim yrn, (2,) = lim f[ ¢(,) ] = «.

Consequently the limiting function f,(2) has at least one a-point on
|z] = p, since all z,, lie on [z|=p. Remembering that p can be
taken arbitrarily, it can be asserted that fo(z) is identical with a
constant «a. Hence, it foMows without difficulty that the original
sequence {f:,(2)} converges to the constant limit «. Thus, it is
concluded that for any positive number ¢, we may find a positive
number 8 = 8(¢) such that |[fipy® —a] <e in [2|Zp <1, p being

(1) “To converge uniformly in the interior of D’’ means ‘“to converge uni-
formly in any closed domain inside D”’.
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arbitrarily fixed, provided that ¢ =1—8. In other words, we can
enunciate

Theorem 3. Suppose that 'y = f(x) is a meromorphic function
of class (A). Let L: ¢=¢@{), 0t <1 be a continuous curve inside
the unit-circle such that £(0) =0 and 1t11‘111 [ct)] =1 and denote by 4

the domain consisting of all points interior to any pseudo-circle C,(a)
(p being fixed, 0 <p < 1) where the pseudo-centre a describes the
curve L. Then, if y= f(x) has an asymptotic value o« along L, it
may be asserted that y = f(x) converges uniformly to a inside the
domain 4, as the modulus of the variable point x tends to unity, and
moreover that the normal family {f.(2)} generated by y = f(x) admsits
at least one constant limit. ,

Remark. Compare this theorem with those of E. ULLRICH and
others.® '

The following theorem was enunciated by F. IVERSEN® : any
meromorphic function f(x) with no asymptotic value takes every value
infinitely often. However this theorem also holds good when f(x) is
meromorphic in the unit-circle. An elementary proof for it will be
given-here. Suppose that y = f(x) is a function, meromorphic in
the unit-circle, with no asymptotic value. First, it must be shown
‘that for any point o(|w]| = 1), the cluster set S. of y = f(x) con-
tains all complex numbers. By definition, S. is the set of all limiting
values B8 such that f(z,) —R8 as Z.—w. If a does not belong to®
S., then we may find two positive numbers p and e such that
| f@)—a]|=¢ for |r—ew]| < p inside the unit-circle. Let us denote
by 4’ the domain bounded by two circles |z—w|=p and |[x|= 1.
Mapping the domain 4’, by x = #(z), conformally on |z|< 1 and
considering the function (z) = e¢-[f(®®)) — «]* bounded in |z | <1,
we can apply a well-known theorem due to FATou. Thus it is seen
without difficulty, that there must exist a continuous curve L, lying
inside 4’ except the end-point on |z | =1, along which y = f(x) has
an asymptotic value. It contradicts the above assumption. Next,

(1) Analogous results to theorem 3 have been obtained by some authors. See
E. ULLRICH: Uber eine Anwendung des Verzerrungssatzes auf meromorphe Funk-
tionen, Journ. f. Math., 166 (1932), Satz 8, p. 232 and also T. SHIMIZU: On the paths
of determination and indetermination of integral functions, Proc. Phys.-Math. Soc.
of Japan, (3), 12 (1930), p. 127.
(2) Cf. R. NEVANLINNA: Eindeutige analytische Funktionen, Berlin, 1936,
p. 274. ’ :

(8) For brevity, let us suppose « to be finite. In the other case, we have only_
slightly to modify our argument.
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suppose a to be an exceptional value™ in PICARD’s sense and let all
the a-points be denoted by =; (1=1, 2, ..., m). If a sufficiently
small circle: |y—a| =8 Dbe described on the y-plane, there are m
JORDAN closed domains J;, incluaed entirely inside || <1 and each
containing a point x;, such that y = f(x) takes in each 4; every
value of |y—a| < & exactly the same number of times. Clearly it
may be assumed that any two of the domains 4; have no point in
common. On the other hand, outside all 4;, we can find such a
point x, that y, = f(x,) lies within |y—a] <8, by the just proved
fact. Denoting by ey, the inverse element obtained from the expan-
siqn of y = f(x) at * = 2, and continuing e,, along the segment %,
we see that there exists a path L, starting from « = x, and ap-
proaching indefinitely the circumference |« | = 1, along which y = f(x)
has certain asymptotic value. This also contradicts the assumption.
Thus is proved the following

Theorem 4. Let y = f(x) be a meromorphic function in the unit-
circle. If y=f(x) has no asymptotic value, f(x) takes every value
“infinitely often.

After K. YosIDA, all the function of class (A) can be divided
into two categories: if the normal family {f,(z)} generated by
y = f(x) admits no constant limit, y = f(x) is a member of the first
category and all the functions, not belonging to the first category,
form the second. By combining theorem 4 with theorem 3, we ob-
tain at once \

- Theorem 5. Let y = f(x) be a function of class (A). If y = f(x)
belongs to the first category, f(x) has no asymptotic value and so takes
every value infinitely often. '
- To answer under what condition it can be asserted that y = f(x),
a function of class (A), belongs to the first category, we denote by
A[C,(@)] the area of the RIEMANNian image of the interior I[C,(a)]
of C.(a), mapped by y = f(x) on the RIEMANN’s sphere of radius
—%, touching the y-plane: in other words, by A[C,(a)] is denoted
the quantity

j S | f/(x) |2
1icptan (14 | f@) |2

(dw = the area element on the z-plane).

(1) It is the same as the foot-note (3) in page 153.
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It is known that if a sequence {fu.(2)) converges uniformly
to the limiting function fo(z) in the interior of [z|<{1, then

! , .
% converges uniformly to O or % for |z|<<p<1,

p being fixed, according as fo(z) is constant or not. Consequently

. . | f4 (2) |2 X
lim A[C, (a,)] = lim L rdrdé z = re®
0 , if fo(z) is constant,
- lfo @ I? rdrdé, if z) 18 n;)t constant
le|<p’(1,+lﬁ><z) |2)2 L fle) '

Hence the following .
Theorem 6. In order that y = f(x) of class (A) should belong to
the first category, it is mecessary and sufficient that
| lower limit A[Co(@]>0,

Jor al a, lai<1

for any fixed positive number p less than 1.

From the equality (5), it is easily seen that if y = f(x) belongs
to class (A), for any number a (|a|< 1) the function f,(z) has the
same property. From the fact that the pseudo-distance of two
points is invariant under any transformation (3) and by applying
the just proved theorem, it is shown that y = f(z) and f.(z) must
belong to the same category of class (A) and moreover any limiting
function fo(2) of a sequence {fz.(2)}, each member being a function
of the first category, belongs also to the same category of class (A).
From these remarks, we get '

Theorem 7. Let y=f(x) be a function of the first category of
class (A). Then such a positive number p (< 1) can be found that
y = f(x) takes every value at least once in the interior of the pseudo-
circle C,(a), a denoting any point in the unit-circle.

Suppose that the assertion is false. Then we may find a sequence
of points {a,) (|a.|< 1) and that of positive numbers {p.} (P, <1,
pn—1) such that for any natural number =n, y = f(x) admits an
exceptional value, say «,, in the interior of the pseudo-circle Cen(ax).
Hence the function fa.(z), obtained from y = f(x) by formula (1), does
not take a, for |z|<p.. Without loss of generality, it may be
supposed that {f«.(2)} converges uniformly to the limiting function
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fo(2) in the interior of |z| <{1 and @, tends to «®™. By the above
remark, f,(2) belongs to the first category of class (A). Let z, be
an e-point inside |[z|<(1. Then, from HURWITZ’s theorem, it follows
that for sufficiently large n, fu.(2) has an ay,-point in any neighbour-
hood of 2. Hence, there is a contradiction, for «, is exceptional
for fa,(z) inside |z| < p, and p, tends to 1.

) Remark 1. This theorem corresponds to theorern 6 in YOSIDA S

paper.

Remark 2. It can be easily shown that SCHWARZ’s triangle func-
tions' belong to the first category of class (A), provided that the
closure of one of its fundamental domains lies completely within the
unit-circle. This fact corresponds to the fact that the doubly peri-
odic functions belong to the first category of class (A) considered
by K. Yosipa®,

PART 2. ON LOCALLY UNIVALENT FUNCTIONS.

P. MoNTEL® called f(x) a locally univalent function of modulus
p, if there is a positive number p such that f(z), regular in a finite
domain D, is univalent (schlicht) in any circular domain of the form :
|x—a | <p included within D. Locally univalent functions are not
necessarily univalent in the ordinary sense, for example ¢* is a
locally univalent function of modulus =. P. MONTEL investigated
- locally univalent (and further multivalent) functions and obtained
some interesting results.

In this part, let y = f(x) be supposed regular in the unit-circle
and y = f(x) be called a locally univalent function of pseudo-modulus
p, provided that y = f(x) is univalent in the interior of any pseudo-
circle C,(a), a varying throughout in |2| <1 and p being a fixed
positive number < 1. By an elementary calculation, it is seen that

_ PA~—lal?:
the EucLipean radius of C.(a) is given by R -W , R
attaining its maximum value p at a = 0. Hence, a locally univalent
function in |2 | <1 of modulus p is necessarily a locally univalent
function of pseudo-modulus p, while its converse is not necessarily
true. Our definition gives directly

(1) For brevity, we consider only the case in which « is finite.
(2) K. Yosma: loe. cit.
(8) P. MONTEL: loc. cit.
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Theorem 8. Suppose that y = f(x) is regular in the unit-circle.
Then, in order that y = f(x) should be a locally univalent function of
pseudo-modulus p, it is necessary and suﬁicient that all the functions

f.(2) of form (), that is: fo(2) —'f< should be unmivalent in

[z]<p.

Consequently we can apply a classical method® due to R. NEVAN-
LINNA on 'the univalent functions in the unit-circle. As f,(z) is ex-
panded into TAYLOR’s series for [z]| <1:

fold) = fl—0~la®) foz+ 1@ a—-lap+
+2a(1—|a [?) f'@ ]2+ -,
by putting z = p{, the function '

— fa(PC)'—f(a) — P f (a) , ~ . -
p(l—|a B f'(a) ¢ [ Fa )(1 lal)+2a,]c+

is univalent in the unit-circle. Consequently, BIEBERBACH'S inequality
gives :

4
= p(l—lal® ’

f'a) , 2a
S(a) + 1—|al?

whence follows as usual

Theorem 9. If y = f(x) is a locally univalent function of pseudo-
modulus p in the unit-circle, then it follows, putting |x|=r,

(1_7‘)29—1 _
A+r)Z T

Fa S (st

lafrg;g"); S 2 log iir (Drehungssatz).

From this follows immediately

Theorem 10. If {f.(x)} i3 a sequence of locally univalent regular
Sunctions of modulus p inside |x| <1 and if {f.(x)} converges uni-
Jormly to a mon-constant limit fo(x) in the interior of |x| <1, then

fo(x) s also locally univalent, its modulus being p. Moreover, the
Jamily {f@), each f(x) being a locally univalent regular function of

(1) For example, see P. MONTEL: Legons sur les fonctions univalentes ou
multivalentes, Paris, 1933, p. 51. :
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modulus p tnside |z ] <1, such that f(0) = 0 and f'(0) =1, is normal
in |z <1 and any limiting function belongs to the family.

Suggested by E. LANDAU’s proof for A. BLOCH’S theorem, the
following will be added here.

Theorem 11. Suppose that y = f(x) is regular and non-constant
Jor |x| < 1. Then, there is a numerical constant R (0 << R <1) such
that f(x) is univalent in the interior of a pseudo-circle Cr(a), provided
that tts pseudo-centre is suitably chosen.

After E. LANDAUY, we consider a function
Px)=A—|z[3)]|f'@],

such that @&(x) is continuous, non-negative in || <1 and vanishes
on [z|=1. Denote by -N the maximum value of @(x) for |z| <1
and let the maximum be attained at a. It is clear that

N=da)=0A—[a®|f@)]|>0 and 0=]a|<1.
Let f.(z) be the function defined by formula (1), then we have

A—]zP |l =0—|z?) | f@]| = ok),

where _
_ Z—a
= az—1
Hence it holds that
FACIES 1—! B for |z]<1 and

20 ] =[f'@]|1—]al®)=N
If we pu‘t ‘Pa(Z)E%%z—) , then we have
[9,(0)|=1 and |¢>;(z)l$_% for |z|<_;_.

Here we can applj a known fact® : Let F(z) = ap+aiz+---, ja1| =1,
be regular for |z|<R and |F/'®|< M for |2]<R. Then F(z)

(1) E. Lanpau: Uber die BLocHsche Konstante und zwei verwandte Welt-
konstanten, Math. Zeit., vol. 30 (1929), p. 618. :
- (2) K. NosHIRO: Proc. Imp. Acad. vol. 8 (1932), p. 275.
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R

is univalent for |z | <J—w—. By putting R = %— , M= %, we see
that @.(2) is univalent for |z | <C % Thus, for the present theorem
it is sufficient to make R equal to % .

Remark. The theorem just obtained above may also be stated
as follows: Suppose that y = f(x) is regular in the closed circle
|[2] =1 and non-constant. Then there is a numerical constant R*
such that if the circle |x| <1 is regarded as a non-EUCLIDean plane,
there exists a mon-EUCLIDean circle, with non-EUCLIDean radius R*,
in the interior of which y = f(x) is univalent. This is deduced from
the fact that between the non-EucLIDean distance D*(a;, az) and the
pseudo-distance D(a;, az) of two points a1, az in |2 | <1, there holds
a well-known equality ‘ ‘

* =_1~__] 1+D(a'l’ a2).
D*(a:, az) 5 log 5= Diay a2)

It seems very difficult to find the greatest value R and, in conse-
quence, R*. * : '

January 1939.
Mathematical Institute
Hokkaido Imperial University.



