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This paper is divided into two parts. In part 1, a class of
meromorphic functions in the unit-circle is considered and some
results analogous to K. YOSIDA $S^{(1)}$ are obtained. Next, in part 2, a
definition is given to a locally univalent function, regular in the
unit-circle, which is distinct from that of P. $MONTEL(2)$ and some
theorems concerning such a function are enunciated.

PART 1. ON A CLASS OF MEROMORPHIC
FUNCTIONS IN THE UNIT-CIRCLE

Suppose that $y=f(x)$ is meromorphic in the unit-circle and
consider the family $\{f_{a}(z)\}$ formed by all the functions

(1) $f_{a}(z)\equiv f(\frac{z-a}{\overline{a}z-1})$ ,

where $a$ varies throughout inside the unit-circle $|z|<1$ . Then, let
us say, after K. $YOSIDA(3)$ , that the function $y=f(x)$ belongs to class
$(A)$ , if $\{f_{a}(z)\}$ is a normal family for $|z|<1$ in MONTEL’S sense.
The object of this part is to study $\cdot$ some properties of class (A).
For this Purpose, use is made of the pseudo-distance

(2) $D(a_{1}, a_{2})=|\frac{a_{1}-a_{2}}{\overline{a}_{1}a_{2}-1}|$

(1) K. YoSIDA: On a class of meromorphic functions, Proc. Phys.-Math. Soc.
Japan, 3. ser., 16 (1934), pp. 227-235

(2) P. MoNTEL: Sur les fonctions localement univalentes ou multivalentes,
Ann. Ec. Norm., (3), 54 (1937).

(3) Let $y=\varphi(x)$ be a meromorphic function in $|x|<\infty$ such that the family
$\varphi_{a}(z)\equiv\varphi(z+a),$ $|a|<\infty$ , is normal for $|z|<\infty$ . Then, $y=\varphi(x)$ is called a func-
tion of class (A) (of the parabolIc case). K. YoSIDA has obtained some interesting
theorems on this class. Cf. K. YoSIDA: loc. cit.
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of two points of $a_{1}$ and $a_{2}$ lying inside the circle $|z|<1$ and the
locus

$ D(z,ta)=\rho$ $(0<\rho<1, |a|<1)$

which shall be called a pseudo-circle $C_{P}(a)$ with pseudo-centre $a$ of
pseudo-radius $\rho$ , the interior of $C_{P}(a)$ being denoted by $I$ [ $C_{P}$ ta)]. Of
course, the pseudo-distance and the pseudo-circle are invariant under
any transformation of the form

(3) $x=e^{i\theta}\frac{z-a}{\overline{a}z-1}$ .

First the following will be proved.

Theorem 1. In order that $y=f(x)$ may belong to class $(A)$ , it
is necessary and sufficient that there should exis $t$ a positive number
$K$ such that

(4) $\frac{(1-|x|^{2})|f^{\prime}(x)|}{1+|f(x)|^{2}}<K$ for $|x|<1$ .

Suppose that the inequality (4) holds. It is easily shown that,

nside the unit-circle,

(5) $\frac{(1-|z|^{2})|f_{a}^{\prime}tz)|}{1+|f_{a}(z)|^{2}}=\frac{(1-|x|^{2})|f^{\prime}(x)|}{1+|f(x)|^{2}}$ $(|a_{1}^{1}<1)$ ,

as a consequence of the invariant form

$\frac{|dx|}{1-|x|^{2}}=\frac{|dz|}{1-|z|^{2}}$

for any transformation (3). By MARTY’S criterion(1) the family { $ f_{a}(z)\rangle$

is normal in $|z|<1$ and $y=f(x)$ belongs to class (A). If, on the
contrary,

$uppero\lim_{e1<1}$it $\frac{(1-|x|^{2})|f^{\prime}(x)|}{1+|f(x)|^{2}}=+\infty$ ,

(1) MARTY has proved the following theorem: in order that a family $\{f(z)\}$ ,
formed of meromorphic functions in a domain $D$, should be normal in $D$, it is
necessary and sufficient that there should exist a positive number $K(D_{1})$ such that,

inside $D_{1},$ $\frac{|f^{J}(z)|}{1+|f(z)|^{2}}<K(O_{1})$ for any function $f(z)$ of the family, where $D_{1}$

denotes any closed domain, lying entirely within the domain $D$ . See F. MARTY:
Recherches sur la r\’epartition des valeurs d’une fonction meromorphe, Ann. Fac.
Univ. Toulouse, (3), 23 (1931).
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then, there exists a sequence of points $a_{n}$ inside $|x|<1$ such that

$\lim_{n\cdot\infty}\frac{(1-|a_{n}|^{2})|f^{\prime}(a_{n})|}{1+|f(a_{n})|^{2}}=+\infty$ .

Associate a function
$fa_{n}(z)=f(\frac{z-a_{n}}{\overline{a}_{n}z-1})$

with each $a_{n}$ , then we have

$\lim_{n\rightarrow\infty}\frac{|f_{a_{n}}^{\prime}(0)|}{1+|f_{a_{n}}(0)|^{2}}=1iin\frac{(1-|a_{n}|^{2})|f^{\prime}(a_{n})|}{1+|f(a_{n})|^{2}}=n\rightarrow\infty+\infty$ .

Consequently the sequence $\{f_{a_{n}}(z)\}$ is not normal for $|z|<\rho,$ $\rho$ being
any positive number less than unity.

Remark. The above theorem corresponds to theorem $1^{(1)}$ in
YOSIDA’S paper.

It is well known that the characteristic function, $T(r)$ , of $y.=f(x)$

is given by the formula
$T(r)=S(r)+O(1)$ ,

where
$S(r)=\int_{0}^{r}\frac{A(t)}{t}dt$ and $A(r)=\int_{0}^{r}\int_{0}^{2n}\frac{|f^{\prime}(x)|^{2}}{(1+|f(x)|^{2})^{2}}$ rdr $d\theta,$ $(x=re^{\mathfrak{i}9})$ .

Thus, from the above theorem, we obtain
Theorem 2. Suppose that $y=f(x)$ is a meromorphic function of

class $(A)$ . Then

$T(r)=o(\log\frac{1}{1-r})$ .

In particular if $y=f(x)$ is regular in $|x|<1$ , then

log $M(r)=o(\frac{1}{1-r}$ log $\frac{1}{1-r})$

$M(r)$ denoting the quantity $\max_{|x|=r}|f(x)|$ .
Remark. This theorem corresponds to corollary $2^{(2)}$ in YOSIDA’S

paper.

(1) K. YOSIDA: loc. cit.
(2) K. YOSIDA: loc. cit.
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Now let us consider the asymptotic values of a function $y=f(x)$
of class (A). Let $L$ : $\zeta=\zeta(t)(0\leq t<1)$ be a continuous curve
lying inside the unit-circle such that $\zeta(0)=0$ and $\lim_{t+1}|\zeta(t)|=1$ .
We call $a$ an asymptotic value of $y=f(x)$ along $L$ , provided that
$\lim_{t\rightarrow 1}f[\zeta(t)]=a$ . Suppose that $y=f(x)$ , a function of class (A), has
an asymptotic value $a$ along the curve $L$ . We consider any in-
creasing sequence $t_{n}$ such that $0<t_{n}<1$ and $t_{n}\rightarrow 1$ and put
$\zeta_{n}=\zeta(t_{n})(n=1,2,3, \ldots)$ . Since $y=f(x)$ belongs to class (A), we
may select from the sequence \langle $\psi_{n}(z)$ } of functions

$\psi_{n}(z)\equiv f_{\zeta_{n}}(z)\equiv f(\frac{z-\zeta_{n}}{\overline{\zeta}_{n}z-1})$

a subsequence \langle $\psi_{n_{\nu}}(z)$ } which converges uniformly to the limiting
function $f_{0}(z)$ in the interior of $|z|<1^{(1)}$ . Clearly the image, in the
x-plane, of the circle $|z|=p$ ( $\rho$ fixed, $0<p<1$) formed by the
transformation

$z=\frac{x-C_{n_{\nu}}}{\overline{\zeta}_{n\nu}x-1}$ , $(\zeta_{n_{\nu}}=\zeta(t_{n\nu}))$

is a pseudo-circle $C_{P}(C_{n\nu})$ with pseudo-centre $\zeta(t_{n_{V}})$ of pseudo-radius
$\rho$ . Denoting by $\zeta(t_{n\nu}^{\prime})$ the furthest point from the origin of the
points of intersection of $L$ with $C_{P}(\zeta_{n\nu})$ and putting

$z_{n_{\mathcal{V}}}^{\prime}=_{\overline{\overline{\zeta}_{n\nu}\zeta(t_{n\nu}^{\prime})-1}}^{\zeta(.t_{n\nu}^{\prime})-\zeta_{n_{\nu}}}$ ,

we have
$\lim_{v\rightarrow\infty}\psi_{n_{\nu}}(z_{n\nu}^{\prime})=\lim_{\nu\rightarrow\infty}f[\zeta(t_{n\nu}^{\prime})]=a$ .

Consequently the limiting function $f_{0}(z)$ has at least one a-point on
$|z|=\rho$ , since all $z_{n\nu}^{\prime}$ lie on $|z|=\rho$ . Remembering that $\rho$ can be
taken arbitrarily, it can be asserted that $f_{0}(z)$ is identical with a
constant $a$ . Hence, it follows without difficulty that the original
sequence $\langle f\zeta_{n}(z)\rangle$ converges to the constant limit $a$ . Thus, it is
concluded that for any positive number $e$ , we may find a positive
number $\delta=\delta(e)$ such that $|f_{\zeta\langle t)}(z)-a|<\epsilon$ in $|z|\leqq\rho<1,$ $\rho$ being

(1) ” To converge uniformly in the interior of $D$ ’ means ” to converge uni-
formly in any closed domain inside $D’$ .
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arbitrarily fixed, provided that $ t\geqq 1-\delta$ . In other words, we can
enunciate

Theorem 3. SupPose that $y=f(x)$ is a meromorphic function
of class $(A)$ . Let $L:\zeta=\zeta(t),$ $0\leqq t<1$ be a continuous curve inside
the unit-circle such that $\zeta(0)=0$ and $\lim_{t’ 1}|\zeta^{(}\backslash t$

) $|=1$ and denote by $\Delta$

the domain consisting of all points interior to any pseudo-circle $C_{P}(a)$

( $\rho$ being fixed, $0<\rho<1$ ) where the pseudo-centre $a$ describes the
curve L. Then, ,if $y=f(x)$ has an asymptotic value $a$ along $L$ , it
may be asserted that $y=f(x)$ converges unrformly to $a$ inside the
domain $\Delta$ , as the modulus of the variable point $x$ tends to unity, and
moreover that the norm $al$ family $\{f_{a}(z)\}$ generated by $y=f(x)$ admits
at least one constant limit.

Remark. Compare this theorem with those of E. ULLRICH and
others.(1)

The following theorem was enunciated by F. $IvERSEN^{(2)}$ : any
meromorphic function $f(x)$ with no asymptotic value takes every value
infinitely often. However this theorem also holds good when $f(x)$ is
meromorphic in the unit-circle. An elementary proof for it will be
given . here. Suppose that $y=f(x)$ is a function, meromorphic in
the unit-circle, with no asymptotic value. First, it must be shown
that for any point $\omega(|\omega|=1)$ , the cluster set $S_{\omega}$ of $y=f(x)$ con-
tains all complex numbers. By definition, $S_{\omega}$ is the set of all limiting
values $\beta$ such that $ f(x_{n})\rightarrow\beta$ as $ x_{n}\rightarrow\omega$ . If $a$ does not belong to
$S_{\omega}$ , then we may find two positive numbers $\rho$ and $\epsilon$ such that
$|f(x)-a|\geqq\epsilon$ for $|x-\omega|<\rho$ inside the unit-circle. Let us denote
by $\Delta^{\prime}$ the domain bounded by two circles $|x-\omega|=p$ and $|x|\dagger=1$ .
Mapping the domain $\Delta^{\prime}$ , by $x=\varphi(z)$ , conformally on $|z|<1$ and
considering the function $\psi(z)=\epsilon\cdot\lceil f(\varphi(z))-a]^{-1}$ bounded in $|z|<1$ ,
we can apply a well-known theorem due to FATOU. Thus it is seen
without difficulty, that there must exist a continuous curve $L$ , lying
inside $\lrcorner^{\prime}$ except the end-point on $|x|=1$ , along which $y\cdot=f(x)$ has
an asymptotic value. It contradicts the above assumption. Next,

(1) Analogous results to theorem 3 have been obtained by some authors. See
E. ULLRICH: \"Uber eine Anwendung des Verzerrungssatzes auf meromorphe Funk-
tionen, Journ. $f$ . Math., 166 (1932), Satz 8, p. 232 and also T. SHIMIZU: On the paths
of determination and indetermination of integral functions, Proc. Phys.-Math. Soc.
of Japan, (3), 12 (1930), p. 127.

(2) Cf. R. NEVANLINNA: Eindeutige analytische Funktionen, Berlin, 1936,
p. 274.

(3) For brevity, let us suppose $\alpha$ to be finite. In the other case, we have only
slightly to modify our argument.
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suppose $a$ to be an exceptional $value^{\langle 1)}$ in PICARD’S sense and let all
the a-points be denoted by $x_{i}(i=1,2, \ldots, m)$ . If a sufficiently
small circle: $|y-a|=\delta$ be described on the y-plane, there are $m$

JORDAN closed domains $\Delta_{i}$ , incluaed entirely inside $|x|<1$ and each
containing a point $x_{i}$ , such that $y=f(x)$ takes in each $\Delta_{i}$ every
value of $|y-a|\leqq\delta$ exactly the same number of times. Clearly it
may be assumed that any two. of the domains $\Delta_{i}$ have no point in
common. On the other hand, outside all $\Delta_{i}$ , we can find such a
point $x_{0}$ that $y_{0}=f(x_{0})$ lies within $|y-a|<\delta$ , by the just proved
fact. Denoting by $e_{X_{0}}$ the inverse element obtained from the expan-
sion of $y=f(x)$ at $x=x_{0}$ and continuing $e_{x_{0}}$ along the segment $\overline{y\mu}$ ,
we see that there exists a path $L$ , starting from $x=x_{0}$ and ap-
proaching indefinitely the circumference $|x|=1$ , along which $y=f(x)$

has certain asymptotic value. This also contradicts the assumption.
Thus is proved the following

Theorem 4. Let $y=f(x)$ be a meromorphic function in the unit-
circle. If $y=f(x)$ has no asymptotic value, $f(x)$ takes every value
infinitely often.

After K. YOSIDA, all the function of class (A) can be divided
into two categories: if the normal family $\{f_{a}(z)\}$ generated by
$y=f(x)$ admits no constant limit, $y=f(x)$ is a member of the first
category and all the functions, not belonging to the first category,
form the second. By combining theorem 4 with theorem 3, we ob-
tain at once

Theorem 5. Let $y=f(x)$ be a function of class $(A)$ . If $y=f(x)$

belongs to the first category, $f(x)$ has no asymptotic value and so takes
$eve\gamma y$ value infinitely often.

To answer under what condition it can be asserted that $y=f(x)$ ,
a function of class (A), belongs to the first category, we denote by
$A[C_{P}(a)]$ the area of the RIEMANNian image of the interior $I[C_{f},.(a)]$

of $C_{P}(a)$ , mapped by $y=f(x)$ on the RIEMANN’S sphere of radius
$\frac{1}{2}$ touching the y-plane: in other words, by $A[C_{P}(a)]$ is denoted
the quantity

$\int\int_{I[C_{P}(a)]}\frac{|f^{\prime}(x)|^{2}}{(1+|f(x)|^{2})^{2}}d_{\omega}$

($d_{\omega}=the$ area element on the x-plane).

(1) It is the same as the foot-note (3) in page 153.
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It is known that if a sequence $\{f_{a_{n}}(z)\}$ converges uniformly
to the limiting function $f_{0}(z)$ in the interior of $|z|<1$ , then
$\underline{|f_{a_{n}}^{\prime}tz)|}$

converges uniformly to $0$ or $\underline{|f_{0}^{\prime}(z)|}$ for $|z|<\rho<1$ ,
$1+|fa_{n}(Z)|^{2}$ $1+|f_{0}(z)|^{2}$

$p$ being fixed, according as $f_{0}(z)$ is constant or not. Consequently

$\lim_{n\rightarrow\infty}A[C_{P}(a_{n})]=\lim_{n\rightarrow\infty}\int\int_{|z|<p}\frac{|f_{a_{n}}^{\prime}(z)|^{2}}{(1+|f_{a_{n}}(z)|^{2})^{2}}$ rdr $ d\theta$ $(z=re^{i9})$

$=\left\{\begin{array}{ll}0 & , if f_{0}(z) is constant,\\\int\int_{|z|<P}\frac{|f_{0}^{\prime}(z)|^{2}}{(1+|f_{0}(z)|^{2})^{2}} rdr d\theta & , if f_{0}(z) is not constant.\end{array}\right.$

Hence the following

Theorem 6. In order that $y=f(x)$ of class $(A)$ should belong to
the first category, it is necessary and sufficient that

lower limit $A[C_{P}(a)]>0$ ,
for au $a$. $|^{1}a|<1$

for any fixed positive number $\rho$ less than 1.
From the equality (5), it is easily seen that if $y=f(x)$ belongs

to class (A), for any number $a(|a|<1)$ the function $f_{a}(z)$ has the
same property. From the fact that the pseudo-distance of two
points is invariant under any transformation (3) and by applying
the just proved theorem, it is shown that $y=f(x)$ and $f_{a}(z)$ must
belong to the same category of class (A) and moreover any limiting
function $f_{0}(z)$ of a sequence \langle $fa_{n}(z)$ }, each member being a function
of the first category, belongs also to the same category of class (A).

From these remarks, we get

Theorem 7. Let $y=f(x)$ be a function of the first category of
class $(A)$ . Then such a $posit\dot{w}e$ number $\rho(<1)$ can be found that
$y=\acute{f}(x)$ takes every value at least once in the interior of the pseudo-
circle $C_{P}(a)$ , a denoting any point in the unit-circle.

Suppose that the assertion is false. Then we may find a sequence
of points $\{a_{n}\}(|a_{n}|<1)$ and that of positive numbers $\{\rho_{n}\}(\rho_{n}<1$ ,
$\rho_{n}\rightarrow 1)$ such that for any natural number $n,$ $y=f(x)$ admits an
exceptional value, say $a_{n}$ , in the interior of the pseudo-circle $C_{Pn}(a_{n})$ .
Hence the function $f_{a_{n}}(z)$ , obtained from $y=f(x)$ by formula (1), does
not take $a_{n}$ for $|z|<\rho_{n}$ . Without loss of generality, it may be
supposed that $\langle f\alpha_{n}tz)\rangle$ converges uniformly to the limiting function



156 K. Noshiro

$f_{0}(z)$ in the interior of $|z|<1$ and $a_{n}$ tends to $a^{(1)}$ . By the above
remark, $f_{0}(z)$ belongs to the first category of class (A). Let $z_{0}$ be
an a-point inside $|z|<1$ . Then, from HURWITZ’S theorem, it follows
that for sufficiently large $n,$ $f_{a_{n}}(z)$ has an $a_{n}$-point in any neighbour-
hood of $z_{0}$ . Hence, there is a contradiction, for $a_{n}$ is exceptional
for $f_{a_{n}}(z)$ inside $|z|<\rho_{n}$ and $p_{n}$ tends to 1.

Remark 1. This theorem corresponds to theorem 6 in YOSIDA’S
paper.

Remark 2. It can be easily shown that SCHWARZ’S triangle func-
tions $\cdot$ belong to the first category of class (A), provided that the
closure of one of its fundamental domains lies completely within the
unit-circle. This fact corresponds to the fact that the doubly peri-
odic functions belong to the first category of class (A) considered
by K. $YosIDA(2)$ .

PART 2. ON LOCALLY UNIVALENT FUNCTIONS.

P. MONTEL(3) called $f(x)$ a locally univalent funqtion of modulus
$\rho$ , if there is a positive number $\rho$ such that $f(x)$ , regular in a finite
domain $D$ , is univalent (schlicht) in any circular domain of the form:
$|x-a|<\rho$ included within $D$ . Locally univalent functions are not
necessarily univalent in the ordinary sense, for example $e^{x}$ is a
locally univalent function of modulus $\pi$ . P. MONTEL investigated
locally univalent (and further multivalent) functions and obtained
some interesting results.

In this part, let $y=f\cdot(x)$ be supposed regular in the unit-circle
and $y=f(x)$ be called a locally univalent function of pseudo-modu$fus$

$p$ , provided that $y=f(x)$ is univalent in the interior of any pseudo-
circle $C_{P}(a),$ $a$ varying throughout in $|x|<1$ and $p$ being a fixed
positive number $<1$ . By an elementary calculation, it is seen that
the $EucLIDean$ radius of $C_{P}(a)$ is given by $R=\frac{p(1-|a|^{2})}{1-|a|^{2}\rho^{2}}$ $R$

attaining its maximum value $p$ at $a=0$ . Hence, a locally unlvalent
function in $|x|<1$ of modulus $\rho$ is necessarily’ a locally univalent
function of pseudo-modulus $\rho$ , while its converse is not necessarily
true. Our definition gives directly

(1) For brevity, we consider only the case in which $\alpha$ is finite.
(2) K. YOSIDA: loc. cit.
(3) P. MONTEL: loc. cit.



$Contributi\dot{w}ns$ to the Theory of Meromorphic Functions in the $Unit- Ci\gamma cle$ 157

Theorem 8. Suppose that $y=f(x)$ is regular in the unit$\cdot$circle.
Then, in order that $y=f(x)$ should be a locally univalent function of
pseudo-modulus $\rho$ , it is necessary and sufficient that all the functions
$f_{a}(z)$ of form (1), that is: $f_{a}(z)\equiv f(\frac{z-a}{\overline{a}z-1})$ should be univalent in
$|z|<\rho$ .

Consequently we can apply a classical method(1) due to R. NEVAN-
LINNA on the univalent functions in the unit-circle. As $f_{a}(z)$ is ex-
panded into TAYLOR’S series for $|z|<1$ :

$f_{a}(z)=f(a)-(1-|a|^{2})f^{\prime}(a)z+\frac{1}{2}[f^{\prime\prime}(a)(1-|a|^{2})+$

$+2\overline{a}(1-|a|^{2})f^{\prime}(a)]z^{2}+\cdots$ ,

by putting $ z=p\zeta$ , the function

$-\frac{f_{a}(\rho\zeta)-f(a)}{\rho(1-|a|^{2})f(a)}=\zeta-\frac{\rho}{2}[\frac{f^{\prime\prime}(a)}{f^{\prime}(a)}(1-|a|^{2})+2\varpi]\zeta^{2}+\cdots$

is univalent in the unit-circle. Consequently, $BiEBERBACHS$ inequality
gives

$|\frac{f^{\prime\prime}(a)}{f^{\prime}(a)}+\frac{2\overline{a}}{1-|a|^{2}}|\leqq\frac{4}{\rho(1-|a|^{2})}$ ,

whence follows as usual
Theorem 9. If $y=f(x)$ is a locally univalent function of pseudo-

modulus $\rho$ in the unit-circle, then it follows, putting $|x|=r$ ,

$\frac{(1-r)^{2\rho^{-1}-1}}{(1+r)^{2\rho^{-1}+1}}\leqq|\frac{f^{\prime}(x)}{f(0)}|\leqq\frac{(1+r)^{2_{P^{-1}}-1}}{(1-r)^{2\rho^{-1}+1}}$ (Verzerrungssatz),

$|arg\frac{f^{\prime}(x)}{f(0)}|\leqq\frac{2}{\rho}$ log $\frac{1+r}{1+r}$ (Drehungssatz)‘.

From this follows immediately
Theorem 10. If $\{f_{n}(x)\}$ is a sequence of locally univalent regular

functions of modulus $\rho$ inside $|x|<1$ and if $\{f_{n}(x)\}$ converges uni-
formly to a non-constant limit $f_{0}(x)$ in the interior of $|x|<1$ , then
$f_{0}(x)$ is also locally univalent, its modulus being $\rho$ . Moreover, the
family $\{f(x)\}$ , each $f(x)$ being a locally univalent regular function of

(1) For example, see P. MONTEL: Leqons sur les fonctions univalentes ou
multivalentes, Paris, 1933, p. 51.
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modulus $\rho$ inside $|x|<1$ , such that $f(O)=0$ and $f^{\prime}(O)=1$ , is normal
in $|x|<1$ and any limiting function belongs to the family.

Suggested by E. LANDAU’S proof for A. BLOCH’S theorem, the
following will be added here.

Theorem 11. Suppose that $y=f(x)$ is regular and non-constant
for $|x|\leqq 1$ . Then, there is a numerical constant $R(0<R<1)$ such
that $f(x)$ is univalent in the interior of a pseudo-circle $C_{R}(a)$ , proviaed
that its pseudo-centre is suitably chosen.

After E. $LANDAU^{\langle 1)}$ , we consider a function

$\Phi(x)=(1-|x|^{2})|f^{\prime}(x)|$ ,

such that $\Phi(x)$ is continuous, non-negative in $|x|\leqq 1$ and vanishes
on $|x|=1$ . Denote by $\cdot N$ the maximum value of $\Phi(x)$ for $|x|\leqq 1$

and let the maximum be attained at $a$ . It is clear that

$N=\Phi(a)=(1-|a|^{2})|f^{\prime}(a)|>0$ and $0\leqq|a|<1$ .
Let $f_{a}(z)$ be the function defined by formula (1), then we have

$(1-|z|^{2})|f_{a}^{\prime}(z)|=(1-|x|^{2})|f^{\prime}(x)|=\Phi(\dot{x})$ ,

where
$x=\frac{z-a}{\overline{a}z-1}$ .

Hence it holds that

$|f_{a}^{\prime}(z)|\leqq\frac{N}{1-|z|^{2}}$ for $|z|<1$ and

$|f_{a}^{\prime}(0)|=|f^{\prime}(a)|(1-|a|^{2})=N$ .
If we put $\varphi_{a}(z)\equiv\frac{f_{a}(z)}{N}$ , then we have

$|\varphi_{a}^{\prime}(0)|=1$ and $|\varphi_{a}^{\prime}(z)|\leqq\frac{4}{3}$ for $|z|<\frac{1}{2}$ .

Here we can apply a known $fact^{\langle 2)}$ : Let $ F(z)=a_{0}+a_{1}z+\cdots$ , $|a_{1}|=1$ ,
be regular for $|z|<R$ and $|F^{\prime}(z)|\leqq M$ for $|z|<R$ . Then $F(z)$

(1) E. LANDAU: Vber die BLOCHsche Konstante und zwei verwandte Welt-
konstanten, Math. Zeit., vol. 30 (1929), $\cdot$ p. 618.

(2) K. NOSHIRO: Proc. Imp. Acad. vol. 8 (1932), p. 275.
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is univalent for $|z|<\frac{R}{M}$ . By putting $R=\frac{1}{2}$ $M=\frac{4}{3}$ , we see
that $\varphi_{a}(z)$ is univalent for $|z|<\frac{3}{8}$ . Thus, for the present theorem

it is sufficient to make $R$ equal to $\frac{3}{8}$

Repnark. The theorem just obtained above may also be stated
as follows: Suppose that $y=f(x)$ is regular in the closed circle
$|x|\leqq 1$ and non-constant. Then there is a numerical constant $R^{*}$

such that if the circle 1 $x|<1$ is regarded as a non-EucLIDean plane,
there exists a non-EucLIDean circle, with non-EucLIDean radius $R^{*}$ ,
in the interior of which $y=f(x)$ is univalent. This is deduced from
the fact that between the non-EucLIDean distance $D^{*}(a_{1}, a_{2})$ and the
pseudo-distance $D(a_{1}, a_{2})$ of two points $a_{1},$ $a_{2}$ in $|x|<1$ , there holds
a well-known equality 1

$D^{*}(a_{1}, a_{2})=\frac{1}{2}\log\frac{1+D(a_{1},a_{2})}{1-D(a_{1},a_{2})}$ .

It seems very difficult to Pnd the greatest value $R$ and, in conse-
quence, $R^{*}$ .

January 1939.
Mathematical Institute

Hokkaido Imperial University.


