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Introduction. It is well known that the space in which a measure
of a hypersurface: =@, %, --,u*""), 1=1,2,---,n is given by the
(n—1)-ple integral: f ek (&% 92 fou) du' --- dur~ is called a CArTAN
space. As it is shown by CarraN, this space is to be regarded as a
manifold of hyperplane-elements (x?, 9x?/94*). The geometry of CARTAN
space were discussed by E. Cartax [1]" and L. Berwarp [6][7] at large.
Thereafter, T. Oukuvpo [9] and the present author [10][11] extended this
theory to the (# —1)-ple integral of higher order of special forms. Re-
cently, the present author {12] have established a geometry of an (n—
1)-ple integral of the second order in general form, but the space in
which the theories are discussed was regarded as a manifold of hyper-
surface-elements of the third order. On the other hand the theory of
K-spreads in an n-dimensional manifold which are concerned with a
system of partial differential equations of the second order was studied
at first by J. Douceras, and the theory was treated in the manifold of
all K-dimensional surface-elements of order 1. Thereafter A. Kawa-
cucar and H. Housu [5] studied the theory of K-spreads of the m-th
order (m =2), and the manifold of all K-dimensional surface-elements
of the (m—1)-th order was based in this case. In this paper we aim
to establish the foundation of differential geometries in the manifold
of K-dimensional surface-elements of higher order under the trans-
formation group of the surface-elements which is deduced from the
groups of arbitrary transformations of coordinates and parameters, and
treat of the geometry of multiple integral of higher order in detail.

The present author wishes to express his heartfelt thanks to Prof.
A. Kawagucar for his kind guidance during the present researches.

§ 1. The manifold F“» and notations. In an.n-dimensional space
X, with point coordinates «', 2%, ---, z* a K~dimensional surface is defined
analytically by the parametric equations

(1) Numbers in brackets refer to the references at the end of the paper.
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=2z w), a=1,2, -, K,
where u® are K essential parameters for the K-dimensional surface.
At every point on this K-dimensional surface a K—dlmensmnal
surface element of the m—th order can be determined by

ozt ozt
gua ’ pa(ﬂ) pa,a,'—" Ou"lau“ﬂ’

ot = 2'(U*), Doy = Pa, =

o™t
U IU* - JUsm

¢ =— m?
--------------- ’ pd(m) = p"-;aa"'“m -

Now, adjoining arbitrary system of values %, PLusy, -, Dhcmy tO €Very
point in X, we have the n (K "I"{m) —~dimensional manifold F*™®. We shall

name the quantity which is transformed according to the tensor law
under the transformation groups of coordinates and parameters:

(1.1) gt = ¥ (2, 2%, - @),
(1.2) u* = u* (i, ud, - uk)

the intrinsic quantity according to E. BorTtotroTtI.

We can speak of z-transformations or u-transformations alone, and
of z-tensors or u-tensors accordingly. Tensor will mean, unless other-
wise mentioned, a geometrical object which has the proper law of
transformation for both sorts of indices.

Throughout this paper we shall use the notations

- Xt = oz : L

_¢'_—T: z — 913‘ ’ ¢ — W! ’

a _ U ar _ U e ru* ereiaas

“ T ow’ T T owr Y T authouts’ )
and

‘ . 5 RARNA

ja — OF:‘ ’ F;q;:’a_lg“, F;a§3)=~—————_9t F:l“l"‘ lt' J F
U ox Pa €©)} 8 ! gpa &)
when the indices a,, o -+ , a, consist of I, %, - , I, blocks of the same
indices.
Moreover we shall often use the notations for indices in the form
I(G,ﬂg ...... a, Jar'i'l ...... ay = I(a(r)Ja(t—r))'

§ 2. Transformation laws of the various quantities. Under the
transformation (1.1) the surface-elements in F'“% has the laws of trans-
formation as the forms: '
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at = 2f (&¥), pL = Xipe,
pfx(z') = 'pa(f') + -Xj DY pa y
..................................... ,
pft(m) = i

...... s Doty »
t
so that dp’,, = % ;;7 ;ﬁ“’ dp% ., , putting dp’, =dz*.
8 B

It is well known that

(2. 1) . 51)5,,(,) — t' (S —’r) !
D% o stt—m)!

" Amnt
5.8 IPat~r>
(la(r) — = ,51

Pcs- )

_( )3\«1, 382 gpaun g _( )38(0

(a(8) HACEE D)) [5]

t=s=r),

putting 833 = 681022

On the other hand, by the transformations (1.2) the partial deri-
- — f  (p=1.2, ......
vatives [,y = LI T (r=1,2,

,m) are transformed in the
manners

f;a’ = Ug’f;a ] f;a'(e) = Ug}, Uglggf;a(z) + U«f' a’ f B s
and in general

2.2)

----------

8
f;a'(s) = 2 -:('g)f;a(t) ’

so that, we have

(2- 3) pfz'(a) = Zd; Aas&pa(o (S =0,1
and consequently

38
T ¢
Adpl o, = ?.‘7) A dpt

putting A% =1, A2) = A2 = --.--- =0.

It is easily seen that the quantities A%%), are polynomials of the
derivatives U%, , U%. .. , - y UG, a,

mat, 4, » aNd determined from the
recurring formulae

Lr:(zg) —_ U(a, Ua.’, v

2.4) A0 = ACIRUL + A%y, s>t>1,
x 5

a'la'2 ...... a'a
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Now, we shalll prove the formula
r aty (S alt) Aa(r—1)
(2.5) (t AT = uzgt (u Al Ay -
Let ¢ and ¢ be any two functions of the parameters u*’s, then it
follows that
(B Para = Z‘o( Z ) (@; carcurtls arca-uy) [6]

which is known as the generalized Leienxiz formula. Therefore, by the
transformation (1.2) we have

26 Diar 450 = S (1) (ZE trecotis A DALE- )

v=017

or
s (T ; A
2_' 2-‘ t ¢;(a(t)9";a(r—t)> a’(s)

— (l)
- ( >¢ ad; Bcz)A(a (u) a’tis—u)) «

u=v'u 0l=
Comparing the coefficients of ¢, ¢;ac-ry On both sides, we have the
formula (2.5).
Let us consider an operator P*® applied to any quantity of the
manifold F“, that is

e @) = § (1) Bt 5
then we have

Thecrem 1. Under the transformation group (1.1)and (1.2) the operator
P*® has the law of transformation :

(2. 6) Pe® (L) — 2 Aa(l) Pa (u)(L)
Proof. If we effect the x—transformations alone, it follows that

P (L) 2( ) ,r§s> 920r<s) de(t 5
8=t

Iese-n

T\ & s!(t— l)l 5P,
= Ly&H22\ - 520 =0 nyt
E l 32=t T =D ! 0 Bphe Dace-2

N L r(s) a2y 91’)1- 5—1)

= l 2 0 r D> = de(t D
s=1 IPs-»
m

— 231( )L a(l)'f‘(s l)dp'r(s—-l) — Pa(l) (L)
=
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By effecting the u-transformations we have

P (L) = g(’é)z L 7 D% rcor (O, /% A,

920a<z)3(t F3)

m m DBG—1
= t , ( ) L, AR (t *dphc-s
8=f t=
S < . D ABL-D %
—_ [:3 -
=3 ?JZL T Z ( ) A0 T’\~s‘u))dp3(t-l)
s=1
72\ ‘s:f 8—: S TC B a(d
— ‘(8
- 2—2 ZO , ( ) L; z’ )A T Zs u)de (y-)A'r’xu)
S=0 r=0 %=
ZS S T7(s) B(r Aep
— S r
=23 (2L S AXR bt AD,
$=2 U=] =0

& )L*@dpf.(s-m) AD,
Z

= 3 PT (L) AXR, .
Q=

I
st

Theorem 2. If T4 be an intrinsic quantity of F' whose transforma-
tion law wunder the transformations (1.1) and (1.2) is T4 = Y4T4’, then
PeD (T4 obeys the transformation law

2.7) P (T4) = 33 ASRIAP (T4) .

Theorem 3. If w*® be any vector of FF* and L be a scalar of F™,
the quantity

(2. 8) Dj(L)'w’ = Z L, Bm'wj//sfr) (5]

is tnvariant under the transformations (1.1) cmd (1.2), where /B denotes the
total differentiation with respect to u®, that is
w i8 — w HY] + ?‘ wj,az(‘g\pa(sm
8==O

Proof. If we effect the z-transformations alone, it follows that

B(rYope _ ( 9p<
ZI,o%/Bm—ZZL“s) —e w50

r=0 r=0 S=7 B("')
m
= 2 g: L, az(f”( )&5”3( ) W50y
re0s=p 4 ng fa(s~=r))

$ S Lo Cil g
= BA w .
32n9(7) (), .. =
m Z’ m
- ¢ Ox . = Iy
2 L’ az’S) (W wj)la(s) o 2 L; “¢€3>w fae

8=0 =0
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By effecting the u-transformations we have

ap%,
Z L a(a)wila(&) — 2 2 L B(s) B [€D) wjla(s)

8=0 =0 r=8 o Qpa(s)
J— B*(C C '
2 2 L3P AG W e
8m(Q =g
_ E ZL B> 4 & O g0yt — SV [, 8o
D R W tatsy — 20 500 Wairy o
7)) S r=

Theorem 4. Let T4 be an intrimsic quantity of F'7° whose trans-
formations law under the transformations (1.1) and (1.2) s T4 = 4T+,
and v* be any vector of F“, then the quantities

C A A —_
Daju) (T ) 'Uj u( ) T4 a(u)B(r © v 18— u)
Py

(u =1,2, - , m)
are transformed by the transformations (1.1) and (1.2) in the manners

2.9) DT = 0 3 ASRDYOT4)".

Proof. When we put L = T4 and w’ = ¢v’ into (2.8), ¢ being any
scalar of F“», one obtains the intrinsic quantity

D, (T4 ¢v? = E T4 57 (v7) 8
= ;_JOTA;B(? EO( u) b/8cr? 18- w
=22 (;)TA; 8078wy )¢I\B(u) ’

U=0 \r=%

so that we ca.nv conclude (2.9) by virtue of (2.2).

§ 3. Intrinsic operators and intrinsic PFAFFian form. Let f (a°,

ey~ , Phons) be any scalar of F'¢, then it is seen from theorem 2
and the above mensioned theorem that the quantities
(8.1a) Ef/a(z)Padm(TA) ’
(3. 1b) 2 fraw D% (T4)?
Im

are tensors of the same kind with 7'4. _

Suppose now that we have the quantity G3, whose transformation
law under the transformations (1.1) and (1.2) is the same as that of
coefficient of the affine connection of u-tensor, that is



On Intrinsic Theories in the Manifold of Surface-Elements of Higher Order 49

(8.2) ir =G5 U — Gy U UYL,

then we can derive from f,.ay s Sfracys oo » f /e, the intrinsic quantities
Sfeen(8=1,2,----.. , t) in the following way.

First of all we see that f;,, = f,.,05' is an intrinsic quantity.
Assume that there are the quantities ‘K32, (1=1,2, ... ,8—1) such

8~1
that fee-n = 2 flawy’ K8, is intrinsic, namely
i=1

3.3) 2 f/a(z) Ksm 1y = (2 Sraray Ks:(.?-n ) Uiy .

Differentiating the above equation with respect to u?s and symmetrizing
with respect to the indices g, 8, :-:---, 3, one gets

8~-1
(3.4) 2 Fracxs, K5, + lzlf/_a(z)'K?e(a—l)/ao
= (2 SFrarcaxar] K5 + Z Frar) K& 8 -180 ,)) Uiy

+ (s—1) (2 f/a’(l) Ka'(a 1)) U(s,‘ """ Ug'::; UB’;:,B,) .

Eliminating U§"-:; from the above equation and (3.2) putting a’/=pg/,_,,
B = Bs-1» T = B,, we have under the consideration of (3.3)

8-1 8-1
1 acl 4 152
?:;fla.(l)(B.g K@iy + lzl Fra K& nis,)
&« ’ &) T
X a

—_ (S—“l) l_zlf/a(l) K(B(a-—2)l7‘| GBJ-IBI)

s-1 ’ a’(l) gt ’ a’(D

— ?: fla’(l)(B ) KB'(a—l)) + 2 fla.'(l) K(B'(a-—l)IB’D

(3 1) 2 fla’(l) K(B’(a—")l“f’lGB’, 1 879 Ue<a .
Therefore, if we put
(8.5) L H K3z, + 'K G na,y — (8—1) ' K&is-miri GE,_.8p = 'K§3,

the quantity fsw = X Fla K38 is also an intrinsic quantity. Thus we
i =1

8
can see that there exist the intrinsic quantities [z, = zzlf,a(z)’K 283

=12, , m) whose coefficients are determined from the recurring
formula (3.5) putting 'K§3; = 63 .
It is easily seen from (8.5) that

‘ (8) —
(3.6) 'K§5& = 0533 -
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Moreover we can find the quantities K43 (1 =<s=<t=<m) such that the
relations
3.7 SUKIG KR = 88 1s1<t<m)
hold. Specially, we have from (3.5), (3.6) and the above relations
(3. 8) KIh =658, KID =—TKI4D = (hnear form of GIp).

Therefore, from (3.1a) and (38.1b) we have the following theorems:
Theorem. 5. T'he operators R defined by

;ng(s) — % KﬁE‘BP’"‘“ (3 =1,2,----- s m)
=8 .

are intrinsic operators, that s

(3.9) PEW (L) = UERRE (L),
and if T4 be an intrinsic ‘qua'nt,ity of FF whose’ transformation law s

= 94T, then LR D) (s=1,2,------,m) are also intrinsic quantitis
whose transformation laws are

(8.10) (T4 = WATELBO (T).

Theorem 6. Let T4 be an intrinsic quantity of F'@ cmd vt be any
vector, then

DED (T'4) vt = KﬁéﬁgDa;n(TA)m 1=1,2, .- ,m)

are also intrinsic qucmtities.
Moreover we have

Theorem 7. If the PFAFFian form 3 P?*{dpi.. defined in the

=0

mantfold F7 has the tensor character with respect to the index J, and v* be
any vector of Fp,

Psz.gm)d,vi + g: PJBgr); a.}m/?vjdp%(r)
r=0
has also the tensor character with respect to the index J and ac.. [5].

Suppose now that we have the quantity I', whose transformation
law under the transformations (1.1) and (1.2) is

ts = [hg XUXJUY — X4 X{pEUY
then we have

Theorem 8. If wi(d) = L P}, *dp.t,, be an intrinsic PFAFFian
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Sform, then

»
‘UB(8+1) (d) - (B(a) lkl dpl“(f)i&u;) + 2 (P(B(a) lklIB;+ 1)

ts also an intrinsic PFAFFian form.

Proof. It has been proved in the work [5] of A. KawacucHr and
H. Homsu that this theorem is true under the z-transformations alone.
‘We shall now prove it under the u-transformations (z fixed). Since

P _ ’ 1 O ’
¢ o )a;cr) UB (a 2 Pt j(:) YUY s

Opa (€D}

we have

8 .

z (" % 8? ’
2 Phoo® S dphcos, ., = UL 3 % P T aps
P2

r=0tmr pa(r)

alr B’ 174 ) (4 ’ &
3 Py ,B,+,dpa<,>—2 > (Ut Py oo dgt,
s$41

7m0 t=yp Qpa(r)

’ 7p ()
= UB(&) {Bgsr Z 2 Ps'() ® = ( dpa(r)
= .

a (€D

Anad
UBs e PO 8" Py %
Uss EHE P 3 1B’ggq U e '—dpa(r)

MWacry

AnJ
s ar ) (_9Par@> 2
USy B3 Phow (2w dpte,
8+

k
r=0z=r IDs&

8
—_ B’(8) ’'A a’(), 7
= UgcS18,44, ;})Pme) Fdpl .,

B8°C 8’ [ C 3
+ U Ug s Zu Pl D844 ) A

a+1
UB:e P, o do*
B(a) E 2 - =T pa(r) ’
r=0¢=p Iacry /1Bs+a
Z J @Gy Tk TTBYTTA
FJ‘BH,PB(s) i dpa(r) = UB(s'; U ,I:I j;s',“Pj '(.s)a k dpa’(r)

and

s, S
EUSG(BIBAPBa ...... Bai_l)rafkr)dpa(r)

= 8(G§,5 ,UTUS. JUR+UE  ULNUS - U U

Bsia
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> szp«; a’($) 51"&/(:) do*
X Z B qrerees B%«1V' 3 < i pa('r')

L :
. L ’ 1 ’
= SUg(gfi))tzoGngBlQP%ra ...... B's41¥

0D,
B T e 3 .
B3'(sY ’
+ Ut @rspen> 2 Phocor” 59008 o> -
On the other hand we have

e 92, 507\
g(gg) 2 2 Pi ‘(8)§j<t)( épa @ dpa r)B,n+< kpa @ ),3 dpa(r))
s$41°

k
r=0z=r pa(r) e
. B'(S) ¢ a’) a( ) T"(l)
= U§ EMEP 87 4 (A G a(r)B;ndp{"(l)
7= - .

D
+ AR IBT 44 ZIAIcr) dp} " )

+2
B2 ] ¢ (D) r'(z 1 'l
Ugs Z EP W) )(Ag ATEPUE dp'r’(l)

r=mQt=r’

a(r r"cn AT,
+ Ag 'G) Aa(r)//s,hdpr'a)‘*'A 'u)zB,“ 2 a(r) dpr'm

-.s+1 ]

— 3 (¢ ™ AT’(2~1
- (s) 2 2 Z-v P ’(S)a.i( )A“r&)Aa(f«) )UB”,dpf U¢))

=1 t-r r=f-1

s’<> ¢ Y ATID () e .
Ui >- 2 EPB'@) O (ALSAATEY 8sy T AT 840, ALY o)

l=slt=r r=i

s+1‘.s

— B’ " () ATIC=1

= (S)E“;I EI Pa (s)uj( ASS 8) & )UB,“dpr’(l)
S50

_—FTBC8) ) Z al(Har’(I-1 75 3 ;

= UB(;s) 121 ;IP ls) 3 0at )U A ,dpr'u)

— Usoys ¢ T
= UB(s) ’“EP ey )dp-r'(ms'”, e

Bs41

consequently, we have the intri»nsic*‘ Prarrian form

“’B(sﬂ) (d) - ZPB(8+1) dpa(r) ’

putting

A SN a(3)
Ploeny*$0 = Py 8503y,

;41

i atry -1 @
(8.11)  Pin®i” = Pl 17057, 5 + P87 1844 0> -

3 ( a( )
+Ij(35+1P3(8)) k _—SG(B; +183P33—1 wees 3 )T kr

§ 4. K-ple integral of the m-th order. We ‘shall now ‘proceed to
discuss the: geometry of the K-ple integral of the m~th order:
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(4.1) S\(K)F‘(xi’ Phcyy oo s Dlacmy) At -+ du® (m > 1)
by using of the results obtained in the preceding paragraphs, where
the function F' (2%, ply, -+ » Dhny) 18 differentiable to sufficient order

with respect to its arguments.

If the integral (4.1) be regarded as defining a measure of K-di-
mensional surface in an n-dimensional manifold, it is adequate to sup-
pose that the integral (4.1) is invariant under any parameter trans-
formations. In order this it is necessary and sufficient that the function
F is transformed under the parameter transformations (1.2) in the
manner

(4° 2) F (xir pfx Ay ’ pa'(m)) AF(QC p ar it ’ Pﬁ(m)) ’ 4 :I Ug' ]% ‘
From this one has the well known relations [5] ‘

(4. 3a) %3?7?3(::-1)5';“5(8—1) = oz,
. (4.8b) ( )mms_,)p 860 — () (m=t>1).
When ¢ = m, (4.3b) becomes |
F2gmpt =0 ' r=1,2 ... , K)
Differentiating with respect to p}.., we have ,
F;a%m);lgm)pé‘ =0 (r= iv 2; """ 'K> ’
so that ’ '
4.4) F("‘[g’l’"f“””Ff(’nw’#j(?) ...... Fro, V:T;" = 0
(r = i, 2, e , K),
| (4 5) ‘ F(‘E(:n),(l(m)F,BZL),p.(ﬁ?) ,,,,,, F. 'r;z(m;?] ;n(mz)‘)l qurl- =0

On the other hand it is evident that
(4. 6) Eiliﬂ ...... i'n—Ifin—K*l ...... iﬂp'ini-—l\‘@l. cte 'p[("p? - 0
(y = 1 2 ...... -K) .
where &, .., =nl3} 07, .

We can see from (4.4), (4.5) and (4.6) that there is one system of

the quantities P2 (adz2 gych that .
(a(W)(Mm) ,,,,,,, a(mn)) vim)) __ : s
F ) * H Cj F, z,an] jnm_z‘] - egl ------ z?l 8.71 ...... j?l

X p° nsE¥1 L. plgnpjmi—ls-n ...... plg'np“"x """ aN?(llf"---KN)’
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where (a, 0y ------ ay) and (A; Ay -+ ‘Ax) represent (@, a,Bi Bu-Ti " Tm)
and (A -+ Aupts - fm * Vi -+~ Vn) Tespectively, and consequently N = m(n—K).

It is easily seen from the definition that under the transformations
(1.1) and (1.2) the quantity P21 = ptaram hyim obeys the trans-
formation law

pe IRINY — A(m-l(“)—‘.! DQP“(NM(N)ng%)U%E%)

or

TCADR! —_ —-F)-2 )2 ' AN CADITTRC
P MR — [fn-X) Da(mzuN)pa(N), @ U;(%\)f) UMZGV))

where 3 denotes the summation for the all different combinations
a (N, AN

of N indices a;, o, «---- ,ay and the all different combinations of N in-
N! e

AR Oy, Oloy -

L1, - 1,1 «{, when a4, a,

..., 0ty consist of I, L, ----- , I, blocks of the same indices.

Consequently, the (K +%_1) —rowed determinant £ = |e*MAM| |g

dices A, Ay -+ Ay, and 'U%GY denotes

transformed by the transformations (1.1) and (1.2) as follows:
¢ = £DVUEIP, |
where z = <K+]JVY_1> (n—K-—-2), y=2 (K+J<IV“1) and |'U2D| repre-
sents the (K +1\1>7 _1) ~rowed determinant.
In the same manner it shoud be obtained that
p = 4D |'USR| ¢,

so that |'U2P|*|'U*®,|? = 1. Hence we can conclude that j'Ui5D| is
a power of 4 multiplying a suitable constant, since |'U;&Y| is a homo-
geneous function of U%’s. Under some consideration we see that

e = A7

and consequently we have

o' = 4D,
putting r = <K+1£7\7—1) (n—K—2)—2 (K'ngl_l

When we put -
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o N =2
Pa(N)l(_N) — Ip"-’j‘—’ p*z}‘pu(N)l(N)
and denote by P, y,i» the inverse of P*@A  that is P*™iMP_ o

= Blw), assuming that the (K + N 1) -rowed determinant P = | P*{2|

does not vanish, these are transformed by the transformations (I.1) and
(1.2) in the manners

’ N
PCl AWy — Pa(MR(N) Uaé\]’g)U%év)) ,

Pianaary = Paanaan USTH UL,
§ 5. Determination of the quantities G§. and I'{,. We shall now

attempt to determine the quantity G%, as mentioned in § 8 in use of
P2 and Piayewy - If we put

Qicmy = PY**M (Pysacaniv) »
under the transformation (1.1) and (1.2) it follows that
ﬁ:&‘y’3 o = PV (P g, Uﬁf-f}’»‘)U“wm Dz

_— AN AN (N A (NHYa ' (N) a(N)
sy UV R UL UL + P * (U“ v PucanaanlU 258

(N
+ U% 0 Pucsacw U}L'&N)) .

Putting 2 = 7 Ay = Uy oee y Ay = -1y Ax =4, /J;V = p, and contracting
over the indices i, ps,------ » n—3 We have
Qp. = Q;},UU%'UﬁrUZ: 4 NP b1 0 (g’ y A7
X Py 1 atymary o UL Ulsys
+ UG U s - Ui'aUL> (UL, - Uin-2UL),,
or

51) QY. = QiUVULUY + KS3U2Us,
+ pUt'U%.,. + qs%2,. log 4,

where we put QL = QLEIRAE .,
g:gf = NP(”UI """ BIN-107) (@ a’N—])AIP(U-' BN B (@ et 01
p= E+2(E+N) g . AN-1)(E+2)- (K+N D (Nx2),
N! N
1

' q=——2ﬁ (N=2).

Moreover from (5.1) we have
(5.2)  Qu = QUL+ KZBULUS 0 + (p+q) 2, log 4,
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putting Q.. = Q% ;..
By eliminating 2,,log 4 from (5.1) and (5.2) we get

(5.3) (p+9) QL. —qdt'Q,. =[(p+q) QL,—qsiQ,JULYULUY,
+ [(p+q) 8K LS + p(p+q) 88:85:67: — ol K. ]U" e
Now we put " '
(p+q) K258, + p(p+q)85°60:67: — @K 5130 = Ny 5™
and assume that the K*-rowed determinant |N%.,.,%,%'| is different from
zero, then we can obtain the quantities n4%.*’,5.”" such that
N5 m §le = 8316507, .
Since KJ'A has the tensor character with respect to its indices under

the transformations (1.1) and (1.2), the quantities N 2,059 and nilv g
are tensors. Hence, if we put

n5Y e (P+Q) Qu ryr —@8lQys) = G s

it is easily seen from (5.3) that the quantity G%... obeys the law of
transformation :

a’ a a’TTR\TTT a’fTa
B’f’ — BTUG- BI —rl+ Ua Bl-rl-

Thus obtained G%',  will play an important réle in our theories.
Let us next consider the Eurer vector which is concerned with the
first variation of the integral (4.1):

(5.4) B = E (-1 Fr e

It is seen from the first variation of (4.1) that the Eurkr vector
E, is transformed by the parameter transformations as follows:
(5. 5) E,(F") = 4E, (F). |
If in (5.4) F' be substituted by F* = F'$, ¢ being any funetion of
u’s, we have | o '
E,(F'¢) = ?;OE“;”;AM@;

where E{ =01, ,m) are vectors of the form

E: = % (_' 1)8(’?’)(F;a(r) g(s_r))lﬂ(s—ﬂ (7' =0,1,----- ’ m) ’

and called the Sy~xee vectors. If we effect the parameter transform-
ations, it follows that : :
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E, (F '¢') = Z B9 00 = 2 3 BiOASS u

8§=07=0

=32 3FE “"”Aﬁ(cs>¢/acr>

r=08=yr
On the other hand by (5.5) we have
B (F'¢) = 4B, (F$) = 42 B Ve -

Hence, the Sy~NGE vectors are transformed by the parameter trans-
formations in the manners

E;® = 473 By 0AS, (r=10,1,,m),
so that we can derive from the SyNeE vectors a system of the intrin-
sic vectors G =0,1,------ ,m) as similar manner as theorem 5, that
GED — 711; 5 EeORSD l=1,2 - ,m).
r=

By the definitions of E¢™ and K£J it is seen that G4 is a quantity
of FF¢"- gnd the relations

; . (‘;‘510? = 5?‘ ’ @,‘-S(l)p?r = ( (l =2,8, - , m) [5] ,
(5.6) @ — LG Pk =0, (35— L6 ."".1) Er = L
(0= p.6) Ot —ph 6F) = (3f - pL G2

hold.

We shall now go on to derive the quantity I'}, which obeys the
transformation law as mentioned in §3. When we put 74 = F,"{™ and
l=m—1 in theorem 6, one gets the intrinsic quantity

1 (ng.EZ-RF T(m) a(m—l)sz + Kﬁéﬁ_BF ’r(m) a(m—l) ’Uz
+ Kgg;:)—I)F;T.gm);agm)vi) ,
or by virtue of (8.8) we have

m 7 n — 1 m m -
R A e SRS AR

MmM—1) iy 0w (8o
4+ ‘(2 )F;'rcjm;w,wg(a;_ Bm_zG‘ﬁ:,,,&;)),vi,

where v’ is a vector of FF>. The n (K +sz_1) -rowed matrix (F,7§,8{)
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has the rank (K +n{’f—“1) (n—K) at most because of F,"j % p’. =0
=12, .- ,K). Suppose that the matrix (F,7,*¢) is of rank
<K+7ZZ_1) (n—K), then by virtue of (5.6) it is seen that we can find
the quantities G% (. %y such that

(5.8) GE sl s Ty T5,85 = F(6F — pi82) 0203 .

We see that thus obtained G%q. %, obey the transformation law of the
form '

(5.9) G nrliimy = GE s Fr ey X XU LGRU LG + Rl
We may write all system of the solutions of (5.8) in the forms
(5- 10) Gﬁ(m)fr(m) = gﬁ(m)i.(m, + fpﬁcm*)!rgm)@? s + sﬁ'&(m??(m)pi ’

where g% .t and ¢4y are quantities of F' and ¢fcny7m, are any
quntities. Accordingly, it is known that the quantity Gho#wm 17
is intrinsic and is the same for all system of the solutions of (5.8), when 7'}
is an intrinsic quantity satisfying the relations p}T4=0 (7 =1, 2., K),
that is to say, the intrinsic quantity G%..5wm,I'4 is uniquely determined
by the equations (5.8).

If (56.7) be multiplied by G% .4y and summed for 7,7, ----- » Im
and j, we have the intrinsic quantity

k k(S B(m~1. ¢ 1 % -1
m (81._ pa@g’) 3(1((::) )Bv {8 + p— Ga(m)'"fr(m) (F;T'(;n);B(? K

Fr
. m(m—1 S Dy, (B e ‘
+ (2 )—F;‘§ );w,wg(g, ; B"‘”ng"a‘;;)) ot
Putting 8 = a;, B = @z, - sy Bn_, =0o,_, and contracting over these

indices, we get

WG AT K+ 1)m—(—11{)+' m—1) Viap + —l%:,‘ GE (usdriomy (BTG, 2070

ML) i 010G ) 0
2 ’ H 1 /',l

Accordingly, if we put

. 1\ 1
Ak, = (m—1)! GE o tsuims (LTS, @ Gm=D)
T (K+D) - (B+m—1) F 570 rom (B3T3
+ m(m——l) F;T'gm);‘”lwz(";n ...... am_ng)T&;?) (m>2),

2
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A = Ki—l %’— E e BT 4 (B2 P3Gy,
+ 2B TE O — 26 F, ) (m=2),
we have the intrinsic quantity
(5.11) 4,0* = (05—piGE) vt + Af 0
which is the same for all systems of the solutions of‘(5_.8). If w, be
any covariant vector of F“ such that wp’, =00 =1,2,------ , K), one

obtains from (5.11) the intrinsic derivative of w,:
Aawt : wi/a - Afawk

by means of 4, (v'w,) = (v'w,),, . Accordingly, it is easily seen that the
quantity v

. (5. 12) AuF;agm) — (F a(m '—AmF a(m)+mG(a, F““ ...... LI

Gham

is intrinsic. Moreover, we see from (5.10) and the definition of 4%, that
A5 F;*¢™ does not depend on &7, so that (5.12) can be writen in the form

(5.13) A(aF;av(:m)) = Ha%m)'z“”;“)p{s mary + P, (o, ph ay - e ’ ij(m)) .
When m >2, we have from (4.3b) an identity

-DT D
2 m— ) Daris- m+l)F Blm=Df@-m+D = (.

S=m—1 )
Differentiating this with respect to .., one obtains |
F.agm)‘ﬁ(":-j)pa — __mF.agm).B(”;_])TpiT R
and consequently it follows that
pirAaF;agm) = p’% (F;“§m3a "‘AfaF;a/%M))

! 1 '
— _Femopt (m—1)! G5 imtya by B TS B(m-l)F a(m),
PP T R D) (Rm—1) F O pe
! 1
= —F.amnt 4 m. = GE e ra mF‘r(m)B(m—l)Bp Fu(m)
P B+ 1) (Ktm—1) F Pemeiom
= —F,"™ph .+ s (05— Ps E3)Of Rl F o

(K+1---(K+m—1)
= —F,2ph, . + Fomoph . = 0.
When. m = 2, it follows that
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p?A“F‘;a%Q) = pir '(F;agig)Ia—A:aF;aScz))
1 1
K+1 F

— aglF;'f;;'g) F;al%ﬂ) .
On the other hand, differentiating the identity
‘ F.5pt + 2F % fph, = 6L F
with respect to p}.,, we have
F.7$9 Bapt 4 2F .8 cr,ar,)_l_zpr(’) psr_sﬂ,prm__o

—_— Nt o
= — F P — Gk, ar(~)(F 2.8 ’pr+23 AV ALY

and consequently

pirAaF;“ff) — ——F’;“f)pia-r + K?I-]. —;,—“ Glé.ajrcz) F;rgz);,si,ep%rF;a%z)
= P PPt o o (I—DhEE) O800PFL
=0.
Hence, we have from (5.13) the relations
(5 14) p”rP“(’”’ =0 r=1,2, .- , K).

Suppose now that the rank of the = (%;17?) -rowed matrix

(Hz™BmDY ig (n—K) (ﬁ‘:_”{’ , then we can find the quantities
"H? st ey such that ,
(5.15) "He oy Fm sy H § B0 = (85 —pi €F) 02cm33
We may write all systems of the solutions of (5.15) in the form
(56.16)  "Hiow'vomsn = h:(mff(mﬂ)‘*‘¢3<m)i¥(m+1>@3}p’i+¢’«écm)3f<m+npfs,

where A2tk .o and @2 . dms are quantities of F, and ¢&om e
are any quantities.

If (5.18) be multiplied by 'HZ .y £m+1» and contracted over the indices
Ty Oy Qyy=rer , &, , it is obtained the intrinsic quantity '

(5.17) ‘ (87 —pi :3)pr(m+1)+ "H oy’ o emany Pa ™

and by (5.14) it is seen that the quantity 'H:.., 1,(mmP 2>, i the same
for all solutions of (5.15).

If (5.17) be multiplied by (5;—».E%) and summed for %, we have,
in-consequence of (5.6) and (5.16), - '
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05— PG} ) [Phins 1y + Heimary (0, Doy s Pocmd)]
or , '
(5- 18) T’i‘(m+1) - p{r(m+1)+H'lr(m+l)_pzlx;[‘(m+1) ’

putting Hi..n=h% " fonenyPs™;, xicmm:@} Dk ensry+ H ¢masy) - It should
be observed that H%.., is a quantity of F.

Let us now observe the following facts. " If @Q* be any quantity of
F» which is transformed by arbitrary transformations of parameters
in the manner :

Q4 (xi, pi'(l)’ ...... , p'fz,(m)) = R4 (QA’U:’O) y e ,'U:,(s)) ,
R* being a rational function of its arguments, then the relations
QL *pl. = 0 r=1,2,-----,, K)

hold when s<m. On the other hand, since AXY, (t<s) are polynomials
of Uiy, Uligyy »+++- » Usrs-241y» the equation of transformation of the
quantity

F a(r) B(J-TIB(S‘—’I“‘I) | (1 § r<s é m)

appearing in the course of formation of the SYNGE vector contains the
derivatives of u*’s not more than the (m-—7r)-th order. And the quantity
K{3(1=s=t=<m—1) determined from (3.5) and (3 .7) has the trans-

formation law:
Ki® = Urg s AES’{?) &3
in which UZ,_,.,,’s are contained as the highest derivatives of wT.
Let us now define the differential operator D, applied to the
quantity @4 as follows:

m -1 .
DTQA - QA, T + 2 ;aSzIS)pa(s)T - a(m) (Ha(m)‘r‘ piaxg(m)ﬁ

8=0

or

rQA QA o E QA a(S)pa(s)f_QAGCM)Ha(m)T ’

S0

then it is also a quantity of F and its transformation law under
(1.1) and (1.2) is the same as that of Q4. . Consequently, if the quanti-
ties K43 and G¢> in which the operator D, is applied instead of the
operator /7 are denoted by K2} and ¢ respectively, these are quanti-
ties of F7?, and the transformation laws of K% and G are the
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same as that of K&% and ¢ respectively. Moreover the same re-
"lations as (5.6) hold in this case.

' We can now find one and only one system of the quantities Ga(m),-(m)
satisfying the equatmns 4

G B TSOE 0 = F (35 —pi @) 85633

Ga(m)ﬂm)@j =0 (a@ = i, 9, ... )’
gince we have supposed that the rank of the matrix (F’ T¢m B i
(n—K) (K +m— 1) And it is easily seen that thus obtained G%.,%m

is intrinsic and symmetric with respect to the rows (k ) and T(m) , so that

(5.19) , G’;(mmm(gg =0 (@ =1,2, - VK.
If we put
/ifa _ (m 1) 1 = F.'rg”‘).a(}""‘)

- CTa(m—l) a'i(‘(m) (
(K+1)---(K+m—1) F '

+ ‘“m('n;__l) F;T(jm);w'wz(ia’ """ am"GefS’]"J;’,)) (m = 2),

then
(8% — P G2) 0¥, + AL

is an intrinsic quantity as it is seen from (5.11).
When we put »* = pto¥, by virtue of (5.6) it follows that &Jv'=v",
and consequently we have ‘

(6. 20) (0F — pE@S) v*)o + AL0* = vFo— D (08, 4+ GE0T)
+ (PG 6T+ ph&f . + AL) v
from which we see that '
(6.21) 4,0% = V5, + T30
defines an intrinsic derivative of the vector 1}", where we put
ri =4t +v58f. + GLri 67 .
From (5.5), (56.19) and (5.20) we have
| G @a +ITEav) = 0%1a + Glg0™
Consequently, if one defines the intrinsic derivative along the K-
dimensional surface 2* = «* (u*) by (5.21), putting
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P2 3 rid

9% (s=0,1,-----,m), then
QUT. - DU%s

< —_
pa(s) -

4,08 = EL4av* = v8, + GE v

may be regarded as the intrinsic derivative induced on the K-dimen-
sional surface. - Therefore, the covariant differential of the vector v*
along a K-dimensional surface is given by

oV* = dv* + I'; vidu™
and the induced covariant differential is given by
. Osv® = duf + G v*du”,
gsx't

when we put pie,= —"—""— (s=0,1, - ,m) .
gu 1. QUTe

In order to determine the base connections and the connections in
F we put

f'gr = jgr"‘p%l)r@g +é3rpi3(§j§‘ [14] [153,

then it is a quantity of F7¥ and has the same transformation law as
that of 7I'"j,. under the transformations (1.1) and (1.2), that is,

(5.22) 'Y = I't WXL XU — X X9ph UL =
as it is seen from the tensor character of (5.21).

§ 6. Base connections in ' and covariant differentials. In order
to define the base connections in F*°, we shall introduce the intrinsic
Prarrian forms by means of theorem 8.

Since dx* may be regarded as an intrinsic Prarrian form,

(4 - A 1 k k
0 (@) = Phy*dps 1y + P 1520

is an intrinsic Prarrian form, where the coefficients P%,%” and P
are determined from the recurring formulae (38.11) as follows:

sy’ =805, Phaw =TI, »
so that
0o d) =dphay+ 1'%, ,dxk

is an intrinsic Prarrian form of F“>. In general, we obtain the in-
trinsic Prarrian forms '

(6' 1) (t)% (€)) (d) = go PiB (s)a%ﬂdpﬁ (€D (S — 0’ 1' """ ’ m):
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where the coefficients P%,,*{are determined from the recurring formulae
P}, = PG i85+ Dig Pho-ry i
+ F?(B,P{%(a-l))a;cr)“(s'—l) G(gsﬁ,;, %,_2 ------ B1> Ta(/:-)
O=r=s=m),
putting: P%,,%” = d%.
It is evident from the above recurring formulae that the coefficients

of the differential dp%.,, in the Prarrian form « (d), say P%*, is
of the form 6.05{3, so that (6.1) becomes

8-1
(6.2) whe(d) = dphr + ;‘:vOP b dpee,  (8=0,1, - ,m).
Hence, we can define the base connetcions in F” by the equations
(U%(s)(d) =0 (s — 0, 1’ ...... , m) .

We shall next introduce a covariant differential of vector of F°

by means of theorem 5. ,
We have seen in theorem 5 that the transformation law of the
quantity B¢ (L) defined by

pe (L) = 3 Koo, 32 () Lrose-rdpia s

8=
is |
| LE(L) = ULPRE (L),
when L is a quantity of . If we put L =I'%; into 3° (L) and con-
tract over the indix j3, it follows from (5.22) that the quantity R (I™%;)
is transformed by the transformations (1.1) and (1.2) in the manner

PBE (1) =P (I's ) XX — KX} o X5 da®
so that the Prarrian form

(6. 3) re=

L (1'55)

obeys the transformation law
s =XuX30r% — Xt . X3'da® .
Consequently, if v* be a vector of F%,
(6.4) vt =dv® + I'v?
:

defines a covariant differential of the vector ?°.
We may write (6.4) in the form



On Interinsic Theories in the Manifold of Surface-Elements of Higher Order 65

. m—1
(6.5) oVt = dvt + E} C? 82v7dpt o »
when we put _
O = L8 (P40 Kty 14pr 2@ (5=0,1, 0, m—1).
On the other hand, we may also introduce another intrinsic dif-

- ferential of vector by means of theorem 7.
From (6.2) we have the intrinsic Prarrian form

Whmy(d) = dp,s oyt ZP %oy 5 A0 oy
Applying theorem 7 one obtains the intrinsic quantity
8] 88Smdv® + ZP’ O,V

from which we obtain the intrinsic differential of the vector v°:

|
150 = dy? + m - Z P T 80Dt s
KE+1) - (K+m—1) i= #™ > re
§ 7. Covariant derivatives, torsion tensors and curvature tensors.
When we put

o0t = B (PEO) Wb @),

' it is obtained from (6.2) and (6.5) the recurring formulae for the co-
variant derivatives V&' (s=0,1, ------ ,m), that is

P Byt — vi;Bgcm) ,
(7. 1) (2942 Va4 < % (7 B(8Ny2
Vet :vi;a§Z)+Cfca§t‘vk— > Piw %' Ve

s=¢t+1
We shall next determine the torsion tensors and the curvature
tensors of F7.
If 5, and o, denote the intrinsic differential operators corresponding
to the increments d, and d., respectively, we can find the torsion tensors
AL EPTD and A% by means of the equations

010% ¢y (dz) "Ua<r>(d ) = 2 2 Aa(r B> r(q')“’ts @ (d )‘Urcq) (d )

p=0g=0

+ 2 Z A? r)Bfimr(q)[wB(p)(d )wf(q) (dl)]* (’)" = 0’ 1’ """ ’ m) *

Pp=0qg=r+1

Indeed, we have

*The symbol [0}, (d2) 0% ((d1)] means w} ,,(d2)a gy (dr) — 0h (py(dr) 0%y (da) .
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m -1
§ BGTW — (MHTWSBGY __ (HBGISTW@) : B i T
Aa(r) i 2D = (/j P0airs — Ci 702 > ; Aa(r) f) z(s)Pw(s) Pk
S=g+

(r=m, m—1, ---,0;g=m—1---,0), .

2 BT — Pi B(p)’r'\) z 'r()B(
Aa(r) {prie _P Ty P @ jp)

J
+ Ci ’f'(CDPl 3(27) Cé B(p)Pl T(Q)
r—1
Z T z Z W Z T
) Ep_” Aa(r)s ; ) éq)Pa( B(p) 24’ A B(p) (G)P (q)
= . - 8=q .

r—1
Hw 3 . I4 T(
-3 2 Al 8 )z(”Pa(gff’)Pw(a) a>

t—p+l 8=q+1

2 z L (
—_— Al‘f ;cq)Pa (r)B (jp) Z Aiw ”Pa r)B p)Pg) (a)'rl(cq)

8m=qg41
(/r:m) 1' p:r—l -y 0 q:m—l, ceey O),
where we put Pfu.:a)fiq’ =0 (s<gq) and AI'® = A%, 8OT@,
Next, ‘by means of the equation

[0.0,—8:.6]v = Ria(ms(m) L% cmy (d1) @G iy (d2) ] ¥*

m—-1m=1
+ ZO ;Z:) R8P0 (oo (d)wl o (do) V7,
o W

we have the recurring formulae for the curvature tensors:

Rda(m—DB(M) —_ Cia(m-l) B(m)

m—1
LY —_— 7 A
R*P8™ = Cz“%";“é"“’ — X RFPE™PY P
S=z+1
(t=m—1, m—2,------ »1,0),
RiB(t)a(s) — CiB(t) a(s) Cia(s) B(t)__l_Cia(s)CjB(t)

ZB8 (Y 2 a (DT % (
— Ctht)(/{o}(s) + Rlaf(S) k(m)P’{_(m)Bht)

m =1

BT k a(s) - x Y PE B()ypg a(s

— REOTPPE ) + 8 RIS Phao 0P
- F

m~1

Z i
— 2 RPEPFPE Gy PSR

r=t+1

m—1 m -1
2B (2D C ke ¢ [ i (€]
+ X RIEPIPPL O — 2 RUPTYOP LAY

r=g+l r=t+1

2 Z Rz £(p>3 (r)Pk % )a( )P'r(p)B g:)

r=s+1p=t+1

§ 8., Method of A. KAWAGUCHI. In the case of one parameter



On Intrinsic Theories in the Manifold of Surface-Elements of Higher Order 67

Prof. A. KawacucHi [3] has introduced a base connection in the manifold
of line-elements of higher order. We shall generalize this method to
the manifold of surface-elements of higher order.

By theorem 5 the quantities

1 &gz < t OHRE-1 7
1;,7 lz: KE%‘B;:[ l F;a.gm’); 8 )y:i( )dp}&(t—l)
=g =

BT (F) =

are intrinsic, Putting t—1l=1r, we have the intrinsic quantities

-8—1

(8. 1) (m)Fa(m) T(8)]~L(m S‘dpu(m-s>+ 1 ”‘2 Ma(m)r(s)u-(r)dpj .

7 =0

where
RS 2, l+r
L — s n) BCOHRGD
Magm)'r(s.)j.l (r) — 2 KB%;;( 1 )F;azm; (j) @y

Hence, we can derive from (8.1) the intrinsic Prarrian forms

m=—-8—1

(8- 2) ap/?‘(m—s) = (Bi pa@’j )dp(‘(m~s) + 2 N'r(m—s) J dpﬁ(r)

where

& Gy m—l—K 1 ‘a(myy(s)B
NEn-s§ = ( Gr(m-s)/(s)umM agIVEB@

Moreover we have the intrinsic quantity

% BF;agm) — % (dF;agm) — Ing;agm))

from which one gets the intrinsic Prarrian form

(8.3) i 620,;%) = (85— D5 G5 )dPtiny + ZN t ot PdPh ey
where
b 85 = Gy, (B0, — CPF, )
We may difine tﬁe base connections in F > by the equations
oPrw, = 0 t=0,1, - ,m) .

Using of (6.5), (8.2) and (8.3) we can determine the covariant derivatives
7*®v* under the conditions P*¢wipi =0 (1 =1,2,-- - , K), that is,
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IV agm)vi : v't;a(jm) ,

’Va.(ft)’l)i — vt;a(jt) + C;a‘(it?vlc___s‘;l Pl{;(a) aj(t)VB;cs)vt
§ 9. Method of D. D. KOsAMBIL. D. D. Kosamsr has introduced
a system of covariant derivatives in his work [2] on the path space of
higher order by using of the special method. We shall now generalize
this method in our metric space.

x .
If v be a vector of F“», the quantity F*{™v? = ¢’,*{ is an in-

trinsic derivative.
Now we see that when m >1,

K
V“(";"’)’U" — m (Va.(m J)GA v — s Va.(m l)avj)
K+ m—1
m :
_— T Va(m—l)alvj v?
K+ m—1 v fa)

x
is an intrinsic quantity, because PV*™-P°[}, is a tensor. Moreover

K
we see that V*™ "y’ may be written in the form

X X
9.1 peim-Dyd = gd am-D 4 Slelm-0p 8myl (m>1),
where
- m v -
9. 2) SiBm=1> — y rE— (I'%s,.05m 83— G, 050100
— (m—1) GG75) _ 05200 »

putting G, =G} . .
We shall prove that in general the representations

X m K
Vagr)vj = 'vl;az(r)_l,_ 2+lsggg?7§(8)vj (rr — 1’ 2’ ...... , m_l)
S=r
and
' \ 1 £ '
Vzvj =v’, + ZISiB(s VB(B v! + —I{*“strwvl
=

is true when we put

K+r

) |
— (=) AL (PR) Y (r=0,1, - m 1),

parnt =T (V"’g')BAB — ABVaér)B) Y
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First of all we have
X K
Pe (Deo?) — D, (Fv)

x
= v/ {nmDegmd — HY nye; WV B 07

or by (9.1)
‘ ’ x x
9. 3) Ve (Dev?) — D (P 5?)
s K
= §emPam=10ys | Ug(m,“gml?f(m’vf ,
where
(9. 4) ’ Us(m)rao;m) = Sf“is‘% 1)30"")—113( mye; 8 s

H% ., being that of §5.

Let us now assume that the representations of two kinds:

(9. 5) Va(r)vj_vj a('r)+ 2& Ska(r)VB(s),vj (,r m, m— 1 ,t)
3=r+1
and
(9_6) ga(rH)D v:)_'D Va(r-l-l),vj

=52 r+1V'1(r))vj + 2 UB(” a(rn\VB(a),vj

=19+

are true, then, after some calculation we see that the equalities

Va(r—l)v.f = 97,2GD 4 2 Sias=p Byl r>1),
=
X o Q& (8% 8
V,ﬂ)j — 'vj;z + ZIS’ZB(S)VB/C&' (V F B) 'v
8=

and

X K m pie
Va?‘)Drvj —_ D_rVag:r)vj o 3\’?_1-7“(;"'1))”.7 + 2 U%(s)‘ra’(/‘)pﬁgs)vj

hold good, where the coefficients S, Sk, and Ui, *” are de-
termined from (9.2), (9.4) and the recurring formulae

tagr—py _ T+1 JaCr=DT ws
S’ = ——— Kir (12“ SiaS T Ul amyes”
-~

. DfSl“(’“"W Hll;(m)f;a(ri—-l)'r‘) | (,r <m) ,

la(r—1y ___ r+1 Siatr—nr a(r—1)
SiaasP =—r— Kir (SiEsPr+ ', 336——1)
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- (r—-2ra2 (r~1 4
—(r—1) G475 _ 05280 —Gp, 0552130%)

et Tr+1 1a(r—DT 1a(r—1 (r—1 z (
o= = (SEGTPF—DLSEGTT + 2 SIaTT Ul e ™s)
K+T t=r+1
(s:r+1,r+2, ------ ,m—1)
and

m

z a — YLACDY BEA w(t) (alr=~1)qar)

BCmyT (ir)—tZH&wc:) Smye 3 — S G 0%
-

: z C z
- H,s(m)r;a 'IJT)_DT‘S'ZgEZ;B-J) ’

z alr) — I salr)__ a(—lal ta(ry _ Qila(r—-1sa,d
Uy = L0553 —rG 87 05000+ 8583 SIS,
L]
alr) — FACOY BR w() Walr-1)3a,)
Lor Y = 2 Sl U%"F —SIGe o
t=r+1
Z za( _
+ Siaae —DSHE (s=r+1,---- ,m—1).

Consequently, we have the intrinsic Prarrian forms of the second kind
K s—_-_:
BiB(s) =dph — ;Osgg((g))dplﬁ @ (s=0,1,------ ,m) .
§ 10. Metric tensors and metric connection. If we put

G z - -1
Ga(m—])ajB(m-—l)B (ggt(m 1)(&13]_(771- D= GaB

it is easily seen from (5.6), (5.9) and (5.10) that when m>2, G., is
an intrinsic quantity of F“ and is the same for all the solutions
G —1sadm-1s Of the equations (5.8). When m=2, we put

1 Py (-‘7 (O
B Gily " OF P = f

and derive the intrinsic vectors I?I;" from the secalar f as if we derive
the intrinsic vectors E’;‘ from the secalar F'. If we put
(01—, 62) (—pL6y) G2 o s HY HE = Guy

this is an intrinsic quantity of F“® and is the same for all the solutions
Gz(‘l)jB @) -

2 __I!_ .
Moreover, if we put FX¥G % G,; = ¢g.p assuming that G=[G.; |20,
then the measure of K-dimensional surface is given by

Hence, it is adequate to take g.; as the metric tensor on the K-dim-
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ensional surface, when we put 2%, = 9°z*/ou®:---ou*s (8=0, ---,m).
Now we put

1 ' o o
Fr o ¢ B —
A 9a.8,9e,8, """ 9a,.8,, 2B L0, .88 EF = 945

and assume that the determinant |g,;|] does not vanish, then g,; is a
tensor of F'“ and the relation

gz‘ﬂ’ip{; = Gag

holds good, so that we may take g,, as the metric tensor of F. If
9*® and ¢" be the inverses of g,, and g,;, respectively, it is easily seen
that

099..65 = p4, gYG:E&5 =gt

By the method of Prof. A. Kawacucur [4] we obtain the metric con-
nection: ‘

dv’ + % (I75-=g** gy + g%dg ) v’ = 0 .
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