ON TRANSCENDENTAL POINTS IN PROPER SPACES OF DISCRETE SEMI-ORDERED LINEAR SPACES

By

Hidegorô NAKANO

A cardinal number f is said to be singular, if

- 1) f >the countable density \aleph_0 ,
- 2) f > c implies $f > 2^c$,
- 3) for any system of cardinal numbers $c_{\lambda} < f(\lambda \in \Lambda)$ with a density < f we have $\sum_{\lambda \in \Lambda} c_{\lambda} < f$.

The existence of singular cardinal numbers is not known yet. It will be extraodinarily great, if exists.

A cardinal number c is said to be *regular*, if there is no singular cardinal number $\leq c$. The countable density \aleph_0 is naturally regular. If a cardinal number c is regular, then 2^c also is regular. For a system of regular cardinal numbers c_{λ} ($\lambda \in \Lambda$), if the density of Λ is regular, then $\sum_{\lambda \in \Lambda} c_{\lambda}$ also is regular.

Let S be a set and R the totality of real functions on S. R is then obviously a discrete semi-ordered linear space. The purpose of this paper is to prove: If the density of S is regular, then for any positive linear functional Φ on R, we can find a finite number of elements $s_{\nu} \in S$ and positive numbers α_{ν} ($\nu = 1, 2, \dots, \kappa$) such that

$$arPhi\left(arphi
ight) = \sum_{
u=1}^{k} lpha_{
u} arphi\left(s_{
u}
ight) \qquad \qquad ext{for every} \quad arphi \in R \ .$$

Let R be now an arbitrary linear space. We have defined a *strongest* convex linear topology⁽²⁾ on R, of which the totality of convex vicinities in R is a basis. By virtue of the fact stated just above, we see easily that if the density of R is regular, then R is regular⁽³⁾ (reflexive) by the strongest convex linear topology.

⁽¹⁾ I. Halperin and H. Nakano: Discrete semi-ordered linear spaces, Canadian Jour. Math., 3 (1951), 293-298.

⁽²⁾ H. NAKANO: Topology and topological spaces, Tokyo Math. Book Series III, (1951), §70.

⁽³⁾ c. f. 2).

§ 1. Transcendental ideals of sets.

Let R be a set. A collection $\mathfrak p$ of subsets from R is said to be an ideal, if

- 1) $O \in \mathfrak{p}$,
- 2) $X \supset Y \in \mathfrak{p}$ implies $X \in \mathfrak{p}$,
- 3) $X, Y \in \mathfrak{p}$ implies $XY \in \mathfrak{p}$.

An ideal $\mathfrak p$ is said to be *maximal*, if there is no other ideal including $\mathfrak p$. For a maximal ideal $\mathfrak p$, we see easily that for any set $X \in \mathfrak p$ we can find $Y \in \mathfrak p$ such that XY = O.

Theorem 1.1. Let \mathfrak{p} be a maximal ideal, and Λ a set with a density \mathfrak{c} . If $X_{\lambda} \in \mathfrak{p}$ ($\lambda \in \Lambda$) implies $\prod_{\lambda \in \Lambda} X_{\lambda} \in \mathfrak{p}$, then for a set Γ with the density $2^{\mathfrak{c}}$ we also have that $X_{\gamma} \in \mathfrak{p}$ ($\gamma \in \Gamma$) implies $\prod_{\gamma \in \Gamma} X_{\gamma} \in \mathfrak{p}$.

Proof. The collection of systems $(\varepsilon_{\lambda})_{\lambda \in A}$ for $\varepsilon_{\lambda} = 0$, 1 has by definition the density 2^{c} . Let $A_{(\varepsilon_{\lambda})_{\lambda \in A}}$ for all $(\varepsilon_{\lambda})_{\lambda \in A}$ be a partition of R, that is,

$$R = \sum_{(arepsilon_{oldsymbol{\lambda}})_{oldsymbol{\lambda}} \in A} A_{(arepsilon_{oldsymbol{\lambda}})_{oldsymbol{\lambda}} \in A}$$
, $A_{(arepsilon_{oldsymbol{\lambda}})_{oldsymbol{\lambda}} \in A} = O$ for $(arepsilon_{oldsymbol{\lambda}})_{oldsymbol{\lambda} \in A} \div (\delta_{oldsymbol{\lambda}})_{oldsymbol{\lambda} \in A}$.

For every finite number of elements $\lambda_{\nu} \in \Lambda$ ($\nu = 1, 2, \dots, \kappa$), putting

$$Y_{\delta_{\lambda_1,\delta_{\lambda_2},\cdots,\delta_{\lambda_{\kappa}}}} = \sum_{\epsilon_{\lambda_{\nu}-\delta_{\lambda_{\nu}}(\nu-1,2,\cdots,\kappa)}} A_{(\epsilon_{\lambda})_{\lambda\in\Lambda}}$$

for $\delta_{\lambda_{\nu}} = 0$, $1(\nu = 1, 2, \dots, \kappa)$, we have obviously

$$R = \sum_{\varepsilon_{\lambda_{\nu}=0.1}} Y_{\varepsilon_{\lambda_{1},\varepsilon_{\lambda_{2},\dots,\varepsilon_{\lambda_{\kappa}}}}}$$
 for every $\lambda_{1}, \lambda_{2}, \dots, \lambda_{\kappa} \in \Lambda$,

and

$$Y_{\varepsilon_{\lambda_1,\varepsilon_{\lambda_2},\dots,\varepsilon_{\lambda_\kappa}}}Y_{\varepsilon'_{\lambda_1,\varepsilon'_{\lambda_2},\dots,\varepsilon'_{\lambda_\kappa}}}=O,$$

if $\varepsilon_{\lambda_{\nu}} \rightleftharpoons \varepsilon'_{\lambda_{\nu}}$ for some ν . Thus for each finite number of elements $\lambda_{\nu} \in \Lambda$ ($\nu = 1, 2, \dots, \kappa$) we can find uniquely $\delta_{\lambda_{\nu}} = 0, 1$ ($\nu = 1, 2, \dots, \kappa$) such that

$$Y_{\delta_{\lambda_1},\delta_{\lambda_2},\ldots,\delta_{\lambda_k}} \in \mathfrak{p}$$
.

As $Y_{\varepsilon_{\lambda_1,\varepsilon_{\lambda_2},\dots,\varepsilon_{\lambda_k}}} \supset Y_{\varepsilon_{\lambda_1,\varepsilon_{\lambda_2},\dots,\varepsilon_{\lambda_k},\varepsilon_{\lambda_{k+1}}}}$, we see easily further that there exists uniquely $(\delta_{\lambda})_{\lambda \in A}$ such that

$$Y_{\delta_{\lambda_1},\delta_{\lambda_2},\dots,\delta_{\lambda_{\kappa}}} \in \mathfrak{p}$$
 for every $\lambda_1,\lambda_2,\dots,\lambda_{\kappa} \in \Lambda$,

Then, as the totality of systems $\lambda_1, \lambda_2, \dots, \lambda_{\kappa} \in \Lambda$ also has the density c,

we have by assumption

$$A_{(\delta_{\lambda})_{\lambda} \in \Lambda} = \prod_{\lambda_{\nu} \in \Lambda} Y_{\delta_{\lambda_{1}}, \delta_{\lambda_{2}}, \dots, \delta_{\lambda_{\kappa}}} \in \mathfrak{p}$$
.

Therefore, for a set Γ with the density $2^{\rm c}$, if $\sum_{\gamma\in\Gamma}A_{\gamma}=R$, $A_{\gamma}A_{\gamma\prime}=O$ for $\gamma \rightleftharpoons \gamma'$, then there exists uniquely $\gamma \in \Gamma$ such that $A_{\gamma} \in \mathfrak{p}$. If $\sum_{\gamma\in\Gamma}B_{\gamma}=R$, then we can find by the transfinite induction subsets $A_{\gamma} \subset B_{\gamma}$ ($\gamma \in \Gamma$) such that

$$\sum_{r\in \Gamma}A_r=R$$
 , $A_rA_{r'}=O$ for $r
eq r'$,

and hence there exists $r \in \Gamma$ such that $B_r \in \mathfrak{p}$. If $X_r \in \mathfrak{p}(r \in \Gamma)$, then we have obviously

$$R = \sum_{\gamma \in \Gamma} (R - X_{\gamma}) + \prod_{\gamma \in \Gamma} X_{\gamma}$$
 , $R - X_{\gamma} \in \mathfrak{p}$ for every $\gamma \in \Gamma$,

and consequently $\prod_{\gamma \in \Gamma} X_{\gamma} \in \mathfrak{p}$, as proved just above.

Theorem 1.2. Let \mathfrak{p} be a maximal ideal and Γ a set for which $X_r \in \mathfrak{p}$ $(\tau \in \Gamma)$ implies $\prod_{\substack{\gamma \in \Gamma \\ \lambda \in A_r}} X_r \in \mathfrak{p}$. For a system of sets Λ_r $(\tau \in \Gamma)$ if $X_\lambda \in \mathfrak{p}$ $(\lambda \in \Lambda_r)$ implies $\prod_{\substack{\lambda \in \Lambda_r \\ \lambda \in A_r}} X_\lambda \in \mathfrak{p}$ for every $\tau \in \Gamma$, then $X_\lambda \in \mathfrak{p}$ $(\lambda \in \sum_{\tau \in \Gamma} \Lambda_\tau)$ implies $\prod_{\substack{\lambda \in \Gamma \\ \lambda \in \Gamma}} X_\lambda \in \mathfrak{p}$.

Proof. We have obviously by assumption that $X_{\lambda} \in \mathfrak{p}(\lambda \in \sum_{\tau \in \Gamma} A_{\tau})$ implies $\prod_{\lambda \in A_{\tau}} X_{\lambda} \in \mathfrak{p}$ for every $\tau \in \Gamma$, and hence

$$\prod_{\lambda \in \sum_{\Upsilon \in \Gamma} \Lambda_{\Upsilon}} X_{\lambda} = \prod_{\Upsilon \in \Gamma} (\prod_{\lambda \in \Lambda_{\Upsilon}} X_{\lambda}) \in \mathfrak{p}.$$

A maximal ideal \mathfrak{p} is said to be *transcendental*, if $X_{\nu} \in \mathfrak{p}(\nu=1, 2, \cdots)$ implies $\prod_{\nu=1}^{\infty} X_{\nu} \in \mathfrak{p}$. With this definition, we conclude immediately by Theorems 1.1 and 1.2.

Theorem 1.3. If the density of R is regular, then for every transcendental maximal ideal \mathfrak{p} , u e have $\prod_{X \in \mathfrak{p}} X \in \mathfrak{p}$, and hence $\prod_{X \in \mathfrak{p}} X$ is composed only of a single element.

§ 2. Transcendental points of discrete semiordered linear spaces

Let R be a discrete semi-ordered linear space⁽⁴⁾ and $a_{\lambda} \in R$ ($\lambda \in \Lambda$) a basis of R, i.e., $a_{\lambda} \cap a_{\nu} = 0$ for $\lambda \neq \rho$ and for each positive element $x \in R$ we can find uniquely a system of real numbers $\xi_{\lambda} \geq 0$ ($\lambda \in \Lambda$) such that

$$x = \bigcup_{\lambda \in A} \xi_{\lambda} a_{\lambda}$$
.

For a positive element $x = \bigcup_{\lambda \in A} \xi_{\lambda} a_{\lambda}$, putting

$$arLambda_x = \{\lambda: arxappi_\lambda st 0\}$$
 ,

we see easily:

$$[a]x = \bigcup_{\lambda \in \Lambda_a} \xi_{\lambda} a_{\lambda}$$
 for every positive element $x = \bigcup_{\lambda \in \Lambda} \xi_{\lambda} a_{\lambda}$; $\Lambda_a \subset \Lambda_b$ if and only if $[a] \leq [b]$; $\Lambda_a \smile_b = \Lambda_a + \Lambda_b$, $\Lambda_a \smile_b = \Lambda_a A_b$.

Thus every projector [a] may be represented by the set Λ_a . Therefore every point of the proper space of R may be considered as a maximal ideal of subsets from Λ . Furthermore, for a maximal ideal \mathfrak{p} of subsets from Λ , if $\mathfrak{p} \ni \Lambda_a$ for a positive element $a \in R$, then \mathfrak{p} is a point of the proper space of R and $\mathfrak{p} \in U_{[a]}$.

A point \mathfrak{p} of the proper space of R is said to be $transcendental^{.5}$, if $\mathfrak{p} \in U_{[a_{\nu}]}(\nu=1,2,\cdots)$ implies $\mathfrak{p} \in U_{[b]} \subset \prod_{\nu=1}^{\infty} U_{[a_{\nu}]}$ for some $b \in R$. With this definition, it is evident that a point \mathfrak{p} is transcendental if and only if \mathfrak{p} is a transcendental maximal ideal.

For a positive element $a \in R$, the density of A_a is called the *dimension* of a.

Theorem 2.1. If the dimension of every positive element of R is regular, then the proper space of R has no transcendental point up to isolated points.

Proof. For a transcendental point \mathfrak{p} of the proper space of R, we can find obviously a positive element $a \in R$ such that $\mathfrak{p} \in U_{[a]}$. Then we can consider \mathfrak{p} as a transcendental maximal ideal of subsets from Λ_a . Therefore we can find by Theorem 1.3 $\lambda \in \Lambda$ such that $U_{[a_{\lambda}]}$ is composed only of the single point \mathfrak{p} , and hence \mathfrak{p} is an isolated point.

From this Theorem 2.1 we conclude immediately

Theorem 2.2. If the density of R is regular, then the proper space of R has no transcendental point up to isolated points.

§ 3. Universally complete discrete semiordered linear spaces

Let a discrete semi-ordered linear space R be universally complete (6),

⁽⁵⁾ H. Nakano: Ueber ein lineares Funktional auf dem teilweise geordneten Modul, Proc. Tokyo Acad., 18 (1942), 548-552.

⁽⁶⁾ H. Nakano: Modern spectral theory, Tokyo Math. B. S., II (1950), § 34.

i.e., for every orthogonal system of positive elements $x_{\gamma} \in R$ $(r \in \Gamma)$ there exists $\bigcup_{\tau \in \Gamma} x_{\tau}$. R is then obviously totally unbounded^(\tau), i.e., for an orthogonal sequence of positive elements $x_{\nu} \in R$ $(\nu = 1, 2, \cdots)$, if $\bigcup_{\nu=1}^{\infty} x_{\nu}$ exists, then we can find a sequence of positive numbers $\alpha_{\nu} \uparrow_{\nu=1}^{\infty} + \infty$ for which $\bigcup_{\nu=1}^{\infty} \alpha_{\nu} x_{\nu}$ exists. Therefore every positive linear functional on R is continuous.^(s)

Theorem 3.1. If a discrete semi-ordered linear space R is universally complete and the density of R is regular, then for every positive linear functional Φ on R we can find a finite number of discrete positive elements $a_{\nu} \in R(\nu=1,2,\cdots,\kappa)$ such that

$$\Phi(x) = \sum_{\nu=1} \Phi([a_{\nu}]x)$$
 for every $x \in R$.

Proof. Let \mathfrak{C}_{φ} be the characteristic set⁽⁹⁾ of φ . If \mathfrak{C}_{φ} contains infinite points, then we can find a sequence of positive elements $a_{\nu} \in R$ $(\nu=1,2,\cdots)$ such that $[a_{\nu}][a_{\mu}]=0$ for $\nu \not= \mu$ and $U_{[a_{\nu}]} \mathfrak{C}_{\varphi} \not= 0$ for every $\nu=1,2,\cdots$. Then we have $\mathscr{Q}(a_{\nu})>0$ for every $\nu=1,2,\cdots$, and hence, putting

$$a=\bigcup_{
u=1}^{\infty}rac{
u}{arPhi\left(a_{
u}
ight) }a_{
u}$$
 ,

we have

$$arPhi(a) \geqq arPhi\left(rac{
u}{arPhi\left(a_{
u}
ight)} \, a_{
u}
ight) =
u \qquad ext{for every} \quad
u = 1, 2, \cdots,$$

$$\mathscr{Q}\left([p_{\scriptscriptstyle{
u}}]a
ight)=\mathscr{Q}\left([p_{\scriptscriptstyle{
u}}]a
ight)-\mathscr{Q}\left(\left([p_{\scriptscriptstyle{
u}}]-[p_{\scriptscriptstyle{
u}}]
ight)a
ight)=\mathscr{Q}\left([p_{\scriptscriptstyle{
u}}]a
ight)$$
 ,

because $U_{[p, -[p_y]} \mathfrak{S}_{\varphi} = O$. As Φ is continuous, we have hence

$$arPhi\left([p_{\scriptscriptstyle 1}]a
ight)=\lim_{\scriptscriptstyle
u
ightarrow\infty}arPhi\left([p_{\scriptscriptstyle
u}]a
ight)=0$$
 ,

contradicting $\mathcal{O}([p_1]a) > 0$. Therefore \mathfrak{C}_{φ} is composed only of a finite number of transcendental points. As the density of R is regular by

⁽⁷⁾ H. NAKANO: Modulared semi-ordered linear spaces, Tokyo Math. B. S., I (1950), §17.

⁽⁸⁾ c. f. 7) Theorem 19.8.

⁽⁹⁾ c. f. 7) § 20.

110 H. Nakano

assumption, we see by Theorem 2.2 that \mathfrak{S}_{φ} is composed only of a finite number of isolated points. Thus we can find a finite number of discrete positive elements $a_{\nu} \in R(\nu=1,2,\cdots,\kappa)$ such that

Recalling a theorem in an earlier paper, we obtain immediately by this Theorem 3.1

Theorem 3.2. Let R be a universally complete, discrete semi-ordered linear space with a regular density. For a positive linear functional Φ on R, if

$$\min \{ \Phi(x), \Phi(y) \} = 0 \qquad for \quad x_{\bigcirc} y = 0 ,$$

then there exists a positive discrete element $a \in R$ such that

⁽¹⁰⁾ c. f. 5) Satz 8.

⁽¹¹⁾ The same problem was considered by E. Hewitt, but he could not succeed to prove. E. Hewitt: Linear functionals on spaces of continuous functions, Fund. Math. 37 (1950), 161-189.