ON TRANSCENDENTAL POINTS IN PROPER
' SPACES OF DISCRETE
SEMI-ORDERED LINEAR SPACES

By
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A cardinal number § is said to be singular, if
1) ¥ > the countable density X,
' 2) §>°c implies { >2°,
3) for any system of cardinal numbers c¢; < (1€ 4) with a density
< { we havean<f ' . ' .

The existence of smgular cardinal numbers is not known yet. It
will be extraodmarlly great, if exists.

A cardinal number ¢ is said to be regular, if there is no singular
cardinal number = ¢. The countable density X, is naturally regular.
If a cardinal nnmber c is regular, then 2° also is regular. For a system
of regular cardinal numbers c, (A€ 4), if the density of_ 4 is regular,

then 3 ¢, also is regular. -
Ac A

Let S be a set and R the totahty of real functions on S. R is
then obviously a discrete semi-ordered linear space.” The purpose of
this paper is to prove: If the density of S is regular, then for any positive
limear functional @ on R, we can find o finite number of elements s, €S and
positive numbers a, (v=1,2,---, &) such that

@ (¢) = 5‘: a,¢(s,) for every ¢€R.
V=1 o

Let R be now an arbitrary linear space. We have defined a strongest
convex linear topology™ on R, of which the totality of convex vicinities
in B is a basis. By virtue of the fact stated just above, we see easily
that if the density of R is regular, then R is regular® (reﬂexive) by
the strongest convex linear topology. .

(1) 1. Harperix and H. Nakawo : Discrete semi-ordered linear'spaces, Canadian Jour.
Math., 3 (1951), 293-298. ‘
- (2) H. Naravo: Topology and topological spaces, Tokyo Math. Book Series 111, (1951); §70.
@) e f. 2. , . o
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§ 1. Transcendental ideals of sets.:

Let R be a set. A collection p of subsets from R is said to be an
ideal, if *

1) O€p,

2) XDOYep implies X€D,

3) X,Ye€p implies XYe€p. ,
An ideal p is said to be maximal, if there is no other ideal including
p. For a maximal ideal ), we see easily that for any set X&p we
can find Y€ such that XY =0.

Theorem 1.1. Let 9 be a maxrimal ideal, and A a set with a density c.
If X,€(A€A) implies IIXAED then for a sét I" with the density 2° we

also have that X, Ep(TEF) tmplies II X, €p.

Proof. The collection of systems (8a)aca for €,=0, 1 has by de-
finition the density 2c Let Ateme , for all (e2)aes be a partition of
R, that is, - ’ '

R= 2 Aciienr

- ) Erea \
Aepies A res = 0O - for (e)aca>x(02)aca -
For every finite number of elements i,€4 (v=1,2,---, k), putting
Yallsslzn'";alft :‘elutzalu(y-],g,..._’c)A(sl)ke/]

for 6,,=0,1(»=L,2,---, k), we have obviously
R= 2 Y.

G2 e, for every 4, Ay, 4, €4,
a P 9 L] 2

g
and
Y., ¢ = 0,

Ca1.fag,Ba, T fa,%,,50,

if e 2, ¢ €3, for some v. Thus for each finite number of elements

A,€4 (v=1,2,---, &) we can find uniquely §,,=0,1(»=1,2,---, £) such that
Yaa“a“,...,aa € D ‘

As Yea,,.sag,-n,ea,;DYEA‘,,SM,--'-,%,; ei,.,2 We see ea.s11y further that there

exists uniquely (9a1)ies Such that ’

Yaa, Ba, - aMED ‘ for every 2,, 4,--+, A, € A‘,V

Then, as the totality of systems Ary Azye+y A, €4 also has fhe density c,
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we have by assumption

A = ]1 Y, €En.
B orea oy 3a,,82,,,32, b

Therefore, for a set I" with the density 2°, if > A, =R, A,4,.=0 for

rer
73:7’, then there exists uniquely 7€I” such that A,€p. If %PB, =R
7€
then we can find by the transfinite induction subsets A,C B, (renln)
such that

SA, =R, A,A, =0 ’ for T2c77,

rer
and hence there exists r€I" such that B,ep. If X,€p(rer), then
we have obviously , _
R =3 (R— X )+ HXY , R—X,€p for every 7r€r,
rer

and consequently IT X, € p,-as proved just above.
rer

Theorem 1. 2. Let 9 be a maximal ideal and I" a set for which X, €N
(r€I’) implies IIX €D. For a system of sets A, (r€I’) if X, € (R€4,)

zmplzesII Xaepfor every rel’, thenX, €Y) (A€ Z A )'z,mpl?,es I X,Lep

. 6 2

Proof. We have obviously by assumption that X, € p(ze Z A,)implies
II X, € for every 7 € I’, and hence

aeA,
n X, = H( II X)) €ED.
e B Ay TED AEAy

A maximal ideal - P is said to be transcendental, if X, €p(v=1,2,..)
implies II X, €en. Wlth this deﬁmtlon, we conclude immediately by
Theorems 1 Jd and 1.2. ' ‘

Theorem 1 3. If the density of R is regular, then for every tmnscendental
mazximal ideal ), ue have II Xen, and hence IT X is composed only of a single

XCp
element.

§2. Transcendental points of discrete semi-
ordered linear spaces

Let R be a discrete semi-ordered linear space(“’ and aaeR(AEA)

a bas1s of R, i.e, a;,a,=0 for 1 p -and for each posmve element
r€R we can find uniquely a system of real numbers &, >0 (1 € 4) such that

@ e f. 1.
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T = Uflal.

For a positive element x= (J &0, puttlng
rAcA

A, = {1:8,%0},
we see easily: ‘
oz = U ’Saam for every positive element x = | §,0, ;
rcAa
4,C 4y ~if and only if [a] <[b]
A a~y — A + [1b, Aa/-\b e Aa[‘b .

Thus every pro;;ector [a] may be represehted by the set 4,. Therefore
every point of the proper space of R may be considered as a maximal
ideal of subsets from 4. Furthermore, for a maximal ideal p of sub-
sets from 4, if p>4, for a positive element aER then P is a point of

the proper space of R and €U
. A point P of the proper space of R is sald to be transcendental5>

if pEU[ay](u~1 2 ) 1mp11es e U, C II Umj for some bER. With this

definition, it is ev1dent that a point p 1s transcendental if and only if
pis a transcendental maximal ideal.

’ For a positive element a€R, the density of 4, is called the di-
mension of a. : '

- Theorem 2.1. If the dimension of every positive element o f R is regular,
then the proper space of R has no transcendental point up to isolated points.
 Proof. For a transcendental point { of the proper space of R, we
can find obviously a positive element a € R such that p€U,,,. Then we
can consider P as a transcendental maximal ideal of subsets from 4,.
Therefore we can find by Theorem 1.8 1€4 such that U, is composed
\only of the single point ), and hence § is an isolated point.
‘From this Theorem 2.1 we conclude immediately
Theorem 2.2. If the density of R is regular, then the po*oper' space of
R has no transcendental point up to isolated points.

§3. Universally complete dlscrete semi-
ordered linear spaces

Let a discrete semi-ordered linear space R be universally complete®,

(5) H. Nakaxo: Ueber ein lineares Funktional auf dem teilweise geordneten Modul,
Proc. Tokyo Aead., 18 (1942), 543-552. ' ’

(6) H. Naxavo: Modern spectral theory, Tokyo Math. B. S.;, IT (1950), § 34.



On transcendental points in proper spaces of discrete semi-ordered linear spaces 109

i.e., for every orthogonal system of positive elements z,€R (7 €l) there

exists z,. R is then obviously totally unbounded™, i.e., for an or-
rer.

thogonal sequence of positive elements z,€R (v=1, 2,---), if Y=z, exists,
, ©y=1 .

then we can find a sequence of positive numbers a, [$.;+ oo for which

U a,x, exists. Therefore every positive linear functional on R is

V=1
continuous.”®

- Theorem 3.1. - If a discrete semi-ordered linear space R is universally
complete and the density of R is regular, then for every positive linear
Junctional @ on R we can find a finite number of discrete positive elements
a,€R(v=1,2,---,k) such that '

& (x) = 2 2 (la,]x) Sfor every x€R.

Proof. Let €, be the characteristic set® of @. If €, contains
infinite points, then we can find a sequence of positive elements a,¢R
(v=1,2,---) such that [a,][a,]=0 for vy and U, 3 €40 for every v=
1,2,--.. Then we have ¢ (a,)>0 for every v=1,2,--, and hence, putting

oo

Y

a = - _—a
ULil ¢ (au)

we have

¢(a)__¢'((p( ) ) v for every .=1,2,---,

contradicting ¢(ay < +co. Thus €, is composed only of a finite number
of points. Furthermore every point of €, is transcendental. Because,
if a point Pe€€, is not transcendental, then we can find by definition
a sequence of projectors [p,]|3.,0, such that U,,, ap, but U,,, does
not contains any other point of €, for every »=1,2,---. As ne€,, we
can find a positive lement a €R such that ¢ ([p]la)>0 for Umep Then
we have

¢ ((p,]a) = ¢ (Bla)—2 ([p]—[p,]) 0) = ¢(p]a),

because Up,,—(,,,€5 = O. As € is continuous, we have hence
¢ ([p]a) = l-gm ¢(p,Ja) =0,

contradicting ¢ ([p,]Ja)>0. Therefore €, is composed only of a finite
number of transcendental points. As the density of R is regular by
(7) H. Nakavo: Modulared semi-ordered linear spaces, Tokyo Math. B. S., T (1950), §17

Q) e f. D Theorem 19.8.
9 ec £ 7) §20.
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assumption, we see by Theorem 2.2 that €, is composed only of a finite
number of isolated points. Thus we can find a finite number of dlscrete
positive elements a,€R (v=1, 2,---, k) such that

@ (x)= NZ‘,(D([a,,]x) for every zeR.
v=1

Recalling a theorem in an earlier paper,”” we obtain immediately
by this Theorem 3.1

Theorem 3.2. Let R be a umversally complete, discrete semi-ordered
linear space with a fregular density. For a positive linear func‘twnall ¢ on

R, if

Min {¢(z), ¢()} =0  for © y=0,
then there ex’'sts a positive discrete element a ¢ R such tha,t‘
@ (x) = @ ([a]x) for every xzcR. o

(10) ec. f. 5) Satz 8. ‘

(11) The same problem was considered by E.-Hewirt, but he could not succeed to prove.
E. Hewrrr: Linear functionals on spaces of continuous functions, Fund. Math. 37 (1950,
161-189. 4



