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Normed semi-order $line\backslash $ar spaces are considered first by L. KAN-
TOROVITCH In this paper we shall consider linear topologies on semi-
ordered linear spaces.

Let $R$ be a linear space. A manifold $V\subset R$ is callqd a vicinity, if
for any $a$ G $R$ we can find $e>0$ such that $\xi a\in V$ for $|\xi|\leqq e$ . A collec-
tion of vicinities $\mathfrak{B}$ is said to be a hnear topology on $R$ , if

1) $U\subset V\in \mathfrak{B}$ implies $U\in \mathfrak{B}$ ,
2) $U,$ $V\in \mathfrak{B}$ implies U $V\in \mathfrak{B}$ ,
3) $V\in \mathfrak{B}$ implies $\xi V\in \mathfrak{B}$ for every real number $\xi$ ,
4) for any $V\in \mathfrak{B}$ we can find $U\in \mathfrak{B}$ such that $\xi U\subset V$ for $|\xi|\leqq l$ ,
5) for any $V\in \mathfrak{B}$ we can find $U\in \mathfrak{B}$ such that $U\times U\subset V$ ,

adopting the notations:
$\xi U=\{\xi x:x\in U\}$ , $U\times V=\{x+y;x\in U, y\in V\}$ .

$i$

A subset $\mathfrak{B}\subset \mathfrak{B}$ is called a basis of a linear topology $\mathfrak{B}$ , if for any
$V\in \mathfrak{B}$ we can find $U\in \mathfrak{B}$ and $e>0$ such that $eU\subset V$ .

Let $R$ be now a $semi\cdot ordered$ linear space and universally con-
tinuous, that is, for any system of positive elements $a_{l}\in R(\lambda\in\Lambda)$ there
exists $\cap a_{\lambda}$ . In this paper we shall consider only such linear topologies

ae $\Lambda$

$\mathfrak{B}$ on $R$ that $\mathfrak{B}$ have a basis composed only of vicinities $V$ subject to
the conditions:

6) $a\in V,$ $|x|\leqq a$ implies $x\in V$ ,
7) $0\leqq a_{\lambda}\in V(\lambda\in\Lambda),$ $ a_{f}\uparrow$ a $e\Lambda a$ implies $a\in V$ .

Here $ a_{l}\uparrow$ ac $\Lambda a$ means that for any two $\lambda_{1},$ $\lambda_{2}\in\Lambda$ we can find $\lambda\in A$ such
that

$a_{\lambda}\geqq a_{\lambda_{1}}\cup a_{\lambda_{\sim}}.$, , and $a=ae\Lambda\cup a_{\lambda}$ .
For such a linear topology, we shall prove as a principal result

that the manifold $\{x:a\leqq x\leqq b\}$ is complete as a uniform space in WEIL’S
(1) L. $KANTOROVI\iota cE$ \ddagger Lineare halbgeordnete Raume, Math. Sbornik, 2 (44), (1937), 121-168.
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sense.(2)

For a vicinity $V$ subject to the conditions 6), 7), putting

$||x||_{V}=\inf_{\xi xC\rightarrow V}\frac{1}{|\xi|}$ ,

we obtain a pseudo-norm on $R$ . A manifold $A\subset R$ is said to be topo-
logically bounded, by a linear topology $\mathfrak{B}$ , if $sup||x||_{V}<+\infty$ for every such

$xeA$

vicinity $V\in \mathfrak{B}$ . A linear topology $\mathfrak{B}$ on $R$ is said to be $m\sigma mtme$ complete,
if for any topologically bounded system $0\leqq a_{h}\in R(\lambda\in\Lambda)$ such that $a_{\lambda}\uparrow_{lC\leftarrow\Lambda}$ ,
we can find $a\in R$ for which $ a_{\lambda}\uparrow$ ae $ 1\sigma$ . With this deflnition, we can
prove that if a linear topology $\mathfrak{B}$ is monotone complete, then $R$ is
complete by $\mathfrak{B}$ in $WEII_{I}S$ sense. This result may be considered as a
generalization of the famous RIESZ-FISCHER $S$ theorem about $L_{p}$-spaces.

A vicinity $V$ is said to be convex, if $V\times V\subset 2V$ . A linear topology
$\mathfrak{B}$ is said to be cmvex, if as has a basis composed only of convex vicinities.
There exists a linear topology $\mathfrak{B}$ on $R$ of which the totality of convex
vicinities subject to the conditions 6), 7) is a basis. This linear tOpology
$\mathfrak{B}$ is called the strong topology of $R$ . A linear topology $\mathfrak{B}$ is said to be
sequential, if $\mathfrak{B}$ has a basis composed of at most countable vicinities. We
shall prove that if a linear topology $\mathfrak{B}$ is sequential, convex, complete,
and $\prod_{rc\sim \mathfrak{B}}V=\{0\}$ , then $\mathfrak{B}$ is the strong topology of $R$ .

Let $R$ be now reflexive and $\overline{R}$ its conjugate space.(3) The so-
called weak linear topology of $R$ by $\overline{R}$ is not a linear.topology in our
sense. Hov&ever there exists the weakest linear topology $\mathfrak{W}$ among
our linear topologies by which every $\overline{\sigma,}\in\overline{R}$ is topologically continuous.
This linear topology $\mathfrak{W}$ is called the absolute weak topology of $R$ , as the
system of vicinities $\{x:\overline{\alpha}(|x])\leqq 1\}$ for all positive $\overline{a}\in\overline{R}$ is a basis of
gi S. We can prove that the absolute weak topology $\mathfrak{W}$ of $R$ is weaker
than the strong topology $\mathfrak{S}$ of $R,$ $i.e.,$ $t\mathfrak{W}\subset \mathfrak{S}$ , but $\mathfrak{W}$ is equivalent to
$\subset c$’ I. $e.$ , a manifold $A\subset R$ is topologically bounded by $\mathfrak{W}$, if and only if
$A$ is so by $\mathfrak{S}$ .

A pseudo-norm $||x||$ on $R$ is said to be reflexive, if for

$\overline{A}=\{\overline{x} \ddagger \sup_{|x||\leqq 1}|_{\overline{X}}(x)|\leqq 1\}$ ,

we have $||x||=\sup_{xeiI}|\overline{x}(x)|$ A linear topology $\mathfrak{B}$ on $R$ is said to be
reflexive, if $\mathfrak{B}$ has a basis $\mathfrak{B}$ such that the pseudo-norm 1 $x||_{V}$ is reflexive

2) A. WFIL: Sur les espaces \‘a structure uniforme, Actual. Sci. et Industr. Paris, (1938).
3) H. N.AKANO; Modulared semi-ordered linear spaces, Tokyo Math. Book Series I (1950),

\S 22. This book will be denoted by MSLS in this paper. :



Linear topologies on semi-ordered linear spaces 89

for every $ V\in$ EII. The absolute weak topology of $R$ is reflexive. We
shall prove that if the strong topology of $R$ is sequential, then it is
reflexive. This result is a generalization of the theorem: if there is
a complete norm on $R$, then there exists a complete reflexive norm on $R$ .

We shall make use of notations in MSLS and the following notations:
$A^{+}=\{x^{+} : x\in A\}$ , $A^{-}=\{x^{-} : x\in A\}$ , $|A|=\{|x| : x\in A\}$ ,
A $g.=\{x y:x\in A, y\in B\},$

$A\leftrightarrow B=\{x_{\wedge}y:x\in A, y\in B\}$ .
$A\times B=\{x+y : x\in A, y\in B\}$

X.

for manifolds $A,$ $B$ of $R$ .
\S 1. Linear topologies

Let $R$ be a universally continuous semi-ordered linear space. A
set of positive elements $V$ is said to be a $posit\dot{w}e$ mcimty, if

1) for any $a\geqq 0$ we aean find $\epsilon>0$ such that $\epsilon a\in V$ ,
2) $0\leqq b\leqq a\in V$ implies $b\in_{i}V$ ,
3) $V\ni a_{h}\uparrow lC\sim\Lambda a$ implies $a\in V$ .
A positive vicinity $V$ is said to be convex, if $x,$ $y\in V,$ $\lambda+\mu=1$ ,

$\lambda,$ $\mu\geqq 0$ implies $\lambda x+\mu y\in V$ .
With this definition, we see easily that if $V$ is a positive vicinity

(convex), then $\xi V$ also is a positive vicinity (convex) for $\xi>0$ , and for
two positive vicinity $U,$ $V$ (convex), both $UV$ and $U\times V$ are Positive
vicinities (convex).

A collection $\mathfrak{B}$ of positive vicinities is called a linear topology, if
1’) $U\subset V\in \mathfrak{B}$ implies $U\in \mathfrak{B}$ ,
2’) $U,$ $V\in \mathfrak{B}$ implies $UV\in \mathfrak{B}$ ,
3’) $V\in \mathfrak{B}$ implies $\xi V\in \mathfrak{B}$ for every $\xi>0$ ,
4’) for any $V\epsilon \mathfrak{B}$ we can find $U\in \mathfrak{B}$ such $that_{\sim}U\times\vee U\subset V$ .
For a linear topology $\mathfrak{B}$ on $R$, a subset $\mathfrak{B}\subset \mathfrak{B}$ is called a basis of

$\mathfrak{B}$ , if for any $V\in \mathfrak{B}$ we can find $U\in \mathfrak{B}$ ane $a>0$ such that $aU\subset V$ . With
this definition, we can prove easily

Thgcrem 1. 1 If a $couecti\sigma n$ of post,$t\dot{w}e$ vicinities $\mathfrak{B}SatisfeS$

1”) for any $U,$ $V\in \mathfrak{B}$ we can find $W\in \mathfrak{B}$ and $\alpha>0$ such that $aW\subset UV$,
$2^{\prime\prime})$ for any V\in $ we can find U\in $ and $a>0$ such that $U\times U\subset aV$,

then there exists uniquely a linear topology $\mathfrak{B}$ of which $\mathfrak{B}$ is a basis.
A linear topology $\mathfrak{B}$ is said to be convex, if $\mathfrak{B}^{\prime}$ has a basis composed
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only of convex positive vicinities. A linear topology $\mathfrak{B}$ is said to be
sequential, if $\mathfrak{B}$ has a basis composed of at most countable positive vi-
cinities. A sequence of positive vicinities $V_{\nu}(\nu=1,2, \cdots)$ is said to be
decreasing, if

$V_{\nu}\supset V_{\nu+1}\times V_{\nu+l}$ for every $\nu=1,2,$ $\cdots$ .
If a linear topology $\mathfrak{B}$ is sequential, then we can find obviously by de-
finition a decreasing sequence $V_{\nu}\in \mathfrak{B}(\nu=1,2, \cdots)$ as a basis of $s_{\Gamma}\mathfrak{B}$ . Such
a basis is called a decreasing bwis of $\mathfrak{B}$ . If $V_{\nu}\in \mathfrak{B}(\nu=1,2\ovalbox{\tt\small REJECT}$ is a de-
creasing basis of $\mathfrak{B}$ , then for any $V\in \mathfrak{B}$ we can find $\nu$ such that $V_{\nu}\subset V$.
Because we can find by definition $\mu$ and $e>0$ such that $eV_{\mu}\subset V$. For

such $\epsilon>0$ , we can find $\nu>/^{ll}$ such that $\frac{1}{2^{\nu-\mu}}<e$ , and then we have

$V_{\nu}\subset\frac{1}{2^{\nu-\mu}}V_{\mu}\subset eV_{\mu}\subset V$ ,

because we have $V_{\nu}\supset 2V_{\nu+I}$ for every $\nu=1,2,$ $\cdots$ .
A decreasing basis $V_{\nu}\in \mathfrak{B}(\nu=1,2, \cdots)$ is said to be convex, if every

$V_{\nu}(\nu=1,2, \cdots)$ is convex. With this definition, we see at once by de-
finition

Theorem 1.2. If a linear topology $\mathfrak{B}$ is sequential and convex, then $\mathfrak{B}$

has a convex decreasing basis.
A linear topology $\mathfrak{B}$ is said to be of single vicinity if $\mathfrak{B}$ has a basis

composed only of a single positive vicinity. With this definition we
have obviously

Theorem 1. 3. If a linear topology $\mathfrak{B}$ is of single $v\dot{w}$imty and convex,
then there is a convex positive vicinity which is a basis of $\mathfrak{B}$ .

\S 2. Pseudo-norms

A functional $||x\{|(x\in R)$ on $R$ is said to be a pseudo-rvorm on $R$ , if
1) $ 0\leqq||x||<+\infty$ for every $x\in R$ ,
2) $|x|\leqq|y|$ implies $||x||\leqq||y||$ ,
3) $||\xi x||=|\xi|||x||$ for every real number $\xi$ ,
4) $0\leqq x_{\lambda}$ Tae $\Lambda x$ implies $||x||=\sup||x_{R}||$ .

$\lambda e\Lambda$

A pseudo-norm $||x||(x\in R)$ is said to be convex, if
$||x+y||\leqq||x||+||y||$ for every $x,$ $y\in R$ .

For a pseudo-norm $||x||(x\in R)$ , putting

$V=\{x : ||x||\leqq 1 , x\geqq 0\}$ ,
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we see easily that $V$ is a positive vicinity. Furthermore, if $||x||(x\in R)$

is convex, then this positive vicinity $V$ is convex. .
Conversely, for a positive vicinity $V$, putting

(1) $||x||_{V}=\inf_{\xi|x|eV}\frac{1}{\xi}$ ,

we obtain a pseudo-norm I $x||_{V}(x\in R)$ , which will be called the pseudo-
norm of $V$. With this definition, we see easily

(2) $V=\{x : ||x||_{V}\leqq 1, x\geqq 0\}$ .
Furthermore we can prove easily

(3) $||x||_{\xi 7}=\frac{1}{\xi}||x||_{V}$ for $\xi>0$ ,

(4) $V\subset U$ implies $||x||_{V}\geqq||x||_{U}$ for every $x\in R$ ,

(5) $V\times V\subset U$ implies $||x+y||_{U}\leqq{\rm Max}\{||x||_{V}, ||y||_{V}\}$ .
By virtue of Theorem $\backslash 1.1$ , we can prove easily

Theorem 2. 1. $F\sigma r$ a $syRem$ of pseudo-nums $||x||$ a $(\lambda\in\Lambda)$ on $R$, if for
any $\lambda\in\Lambda$ we can $ fr?d\sigma\in\Lambda$ such that

$||x+y||_{l}\leqq||x||_{\sigma}+||y||_{\sigma}$ for every $x,$ $y\in R$ ,

then there exists un’iquely a linear topology $\mathfrak{B}$ on $R$ such that the totdity of
$ V_{l_{1},\lambda_{g}},\cdots$ , a $\kappa=\{x : ||x||_{\lambda}\nu\leqq 1(\nu=1,2,\cdots, \kappa), x\geqq 0\}$

far every finite number of elements $\lambda_{\nu}\in\Lambda(\nu=1,2,\cdots, \kappa)$ is a basis of $\mathfrak{B}$ .
A pseudo-norm $||x||(x\in R)$ is said to be proper, if $||x||=0$ implies

$x=0$ . A pseudo-norm is called a norm, if it is convex and proper.
Theorem 2. 2. For a convex pseudo-norm $||x||(x\in R)$ there exists uniquely

a normal manifold $N$ of $R$ such that $||x||(x\in N)$ is proper in $Na\emptyset||x||$

$=0f\sigma r$ every $x\in N^{\perp}$ .
Proof. Putting $N=\{x:||x||=0\}$ , we see easily that $N$ is a normal

manifold of $R$ . For such $N$, it is evidemt that $||x||=0$ for every $x\in N$.
Conversely, if $||x||=0$ , then we have naturally $x\in N$, and hence $[N^{\perp}]$

$x=0$ . Thus $||x||$ is Proper in $N^{\perp}$ . If $||x||$ is proper in a normal manifold
$M$ and $||x||=0$ for every $x\in M^{\perp}$ , then it is evident that $M^{\perp}=N$.

A system of pseudo-norms $||x||_{\lambda}(\lambda\in\Lambda)$ is said to be proper, if $\{|x||_{\lambda}$

$=0$ for all $\lambda\in\swarrow l$ implies $x=0$ . With this definition, we have
Theorem 2. 3. For a system of pseudo-norms $||x||_{\lambda}(\lambda\in\Lambda)$ on $R,$ if for

any $\lambda\in\Lambda$ we can find $\sigma\in\Delta$ such that
$||x+y||_{\lambda}\leqq||x||_{\sigma}+||y||_{\sigma}$ for every $x,$ $y\in R$ ,
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then there exists uniqudy a normal manifold $N$ of $R$ such that the system
$||x||_{\lambda}(\lambda\in\Lambda)$ is proper. in $N$ and $||x||_{\lambda}=0$ for every $\lambda\in\Lambda$ and $x\in N^{\perp}$ .

Proof. Putting $M=$ { $x:||x||_{\lambda}=0$ for all $\lambda$ ei $\Lambda$ }, we see easily that
$M$ is a normal manifold of $R$ and $M^{\perp}$ satisfies our requirement. Furthe-
rmore the uniqueness is obvious.

We shall say that $R$ is separated by a linear topology $\mathfrak{B}$ , or that $\mathfrak{B}$

is $sep\alpha\prime rat\dot{w}e$ if $\prod_{VC\sim \mathfrak{B}}V=\{0\}$ . With this definition, we see at once
Theorem 2.4. A linear topology $\mathfrak{B}\prime is’$)$\circ eparat\dot{w}e$ , if and only if for a

basis $\mathfrak{B}$ of $\mathfrak{B}$ , the system of pseudo-norms $||x||_{V}(V\in \mathfrak{B})$ is proper.

\S 3. Completeness

Let $\mathfrak{B}$ be a linear topology on $R$ . A system of manifolds $A_{f}(\lambda\in\Lambda)$

is said to be a $C\Lambda UCHY$ system by $\mathfrak{B}$ , if $\prod_{\nu=1}^{r_{1}}A_{\lambda}\nu\neq 0$ for every Pnite

number of elements $\lambda_{\nu}\in\Lambda(\nu=1,2,\cdots, r_{v})$ , and for any $V\in \mathfrak{B}$ we can find
$\lambda\in\Lambda$ such that

$|x-y|\in V$ for every $x,$ $y\in A_{\lambda}$ .
A CAUCrIY system $A_{l}(\lambda\in\Lambda)$ is said to be convergent to a limit $a\in R$ ,

if for any $V\in \mathfrak{B}$ we can find $\lambda\in\Lambda$ such that

$|x-a|\in V$ for every $x\in A_{x}$ .
If $\mathfrak{B}$ is $separative^{\wedge}$, then we see easily that the limit of a CAUCHY system
is uniquely determined, if it is convergent.

We see easily by definition that for a basis $\mathfrak{B}$ of $\mathfrak{B}$ , a system of

manifolds $A_{f}(\lambda\in\Lambda)$ is a CAUCHy system by $\mathfrak{B}$ , if and only if $\prod_{\lambda\simeq 1}^{\kappa}A_{\lambda_{y^{\backslash }}^{\pm}}0$

for every finite number of elements $\lambda_{\nu}\in\Lambda(\nu=1,2,\cdots, r_{\vee})$ and for any
$V\in \mathfrak{B}$ and $e>0$ we can find $\lambda\in\Lambda$ such that

$/||x-y||_{V}\leqq e$ for every $x,$ $y\in A_{X}$ .
Furthermore we see that a CAUCHY system $A_{\lambda}(\lambda\in\Lambda)$ is convergent to
a limit $a\in R$, if and only if for any $V\in \mathfrak{B}$ and $e>0$ we can find $\lambda\in\Lambda$

such that
$||x-a||_{V}\leqq e$ fer every $x\in[pA_{\lambda}$ .

By virtue of the formula \S 2 (5), we can prove easily

Theorem 3. 1. For two CAUCHY system $A_{\lambda}$ and $B_{\lambda}(\lambda\in\Lambda)$ , au $A_{l}$ $B_{\lambda}$ ,
$A_{\lambda\cap}B_{h}$ , and $A_{\lambda}.\times B_{\lambda}(\lambda\in\Lambda)$ are CAUCHY systems, furthermore, if $A_{\lambda}$ and
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$B_{\lambda}(\lambda\in\Lambda)$ are convergent $respect\dot{w}$ely to limits $a$ and $b$, then $A_{\lambda}$ $B_{l},$ $A_{f\cap}B_{l}$ ,
and $A_{\lambda}\times B_{\lambda}(\lambda\in\Lambda)$ are convergent to a $b,$ $a_{\cap}b$ , and $a+brespect\dot{w}ely$ .

We see further easily
Theorem 3.2. For a CAUCHY system $A_{l}(\lambda\in\Lambda)$ , all $A_{\lambda}^{+},$ $A_{l}^{-}$ , I $A_{\lambda}|,$ $aA_{l}$ ,

and $[N]A_{l}(\lambda\in\Lambda)$ are CAUCHY systems for every real number $a$ and $\Psi ojecti\sigma n$

operator $[N]$ . If a CAUCHY system $A_{l}(\lambda\in\Lambda)$ is convergent to a limit $a$, then
$A_{l}^{+},$ $A_{\lambda}^{-},$ $|A_{\lambda}|,$ $\alpha A_{\lambda}$ , and $[N]A_{\lambda}(\lambda\in\Lambda)$ are convergent to $a^{+},a^{-},$ $|a|,$ $aa$, and $[N]a$

$respect\dot{w}ely$ .
A manifold $A$ of $R$ is said to be complete by a linear topology $\mathfrak{B}$ ,

if every CAUCHY system $A_{\lambda}\subset A(\lambda\in\Lambda)$ is convergent to a limit $a\in A$ .
With this definition we have

Theorem 3. 3. For every positive efement $a\in R,$ $\{x:|x|\leqq a\}$ is complete
by $\mathfrak{B}$ .

$Pr.\alpha)f$. We shall consider firstly the case where $\mathfrak{B}$ is sequential and
separative. Let $V_{\nu}\in \mathfrak{B}$ $(\nu=1,2,--)$ be a decreasing basis of $\mathfrak{B}$ . We set

$A=\{x : |x|\leqq a\}$

and assume that $A_{R}\subset A(\lambda\in\Lambda)$ is a CAUCHY system by $\mathfrak{B}$ . .Then we can
find $\lambda_{\nu}\in\Lambda(\nu=1,1,\cdots)$ such that

$\dot{\sup}||x-y||_{V}\nu\leqq\frac{1}{\nu}$ $(\nu=1,2, \cdots)$ .
$x,yeA_{\lambda_{\nu}}$

For such $\lambda_{\nu}\in\Lambda(\nu=1,2, \cdots)$ we can find

$a_{\mu}\in\prod_{\nu-1}^{\mu}A_{\pi_{\nu}}$ $(\mu=1,2, -)$ .
As $V_{\nu_{+1}}\times V_{\nu+l}\subset V_{\nu}$ , we conclude by the formula \S 2 (5)

$\Vert(\sum_{\nu\approx\mu}^{\sigma}|a_{\nu+1}-a_{\nu}|)\Vert_{V_{\mu-1}}\leqq\max_{\mu\leqq\nu\leq\sigma}||a_{\nu l}-a_{\nu}||_{V_{y}}\leqq\frac{1}{\mu}$ .
On the other hand we have

$\bigcup_{\nu=\mu}^{o}a_{\nu}-a_{\mu}=\bigcup_{\nu=\mu}^{\sigma}(a_{\nu}-a_{\mu})\leqq\sum_{\nu-\mu}^{\sigma}|a_{\nu+l}-a_{\nu}|$ ,

and hence $\Vert\bigcup_{\nu=\mu}^{o}a_{\nu}-a_{\mu}\Vert_{V_{\mu- 1}}\leqq\frac{1}{\mu}$ . This relation yields by 4) in \S 2

$\Vert\bigcup_{\nu=\mu}^{\infty}a_{\nu}-a_{\mu}\Vert_{V_{\mu- 1}}\leqq\frac{1}{f^{l}}$ $(\mu=2,3, \cdots)$ .
We obtain likewise

$\Vert a_{\mu}-\bigcap_{\nu-\mu}^{\infty}a_{\nu\Vert_{V_{\mu-1}}\leqq\frac{1}{\mu}}$ $(\mu=2,3, \cdots)$ .
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Consequently we have by the formula S2 (5)

$\Vert\bigcup_{\nu=\mu}^{\infty}a_{\nu}-\bigcap_{\nu\Leftrightarrow\mu}^{\infty}a_{\nu}\Vert_{V_{\mu-B}}\leqq\frac{1}{\mu}$ $(\rho=3,4, \cdots)$ .
Thus, putting $l_{\mu}=\bigcup_{\nu=\mu}^{\infty}a_{\nu}-\bigcap_{\nu=\mu}^{\infty}a_{\nu},$ $l=\bigcap_{\mu=1}^{\infty}l_{\mu}$ , we obtain 1 $l||_{V_{\mu-0}}\leqq\frac{1}{\mu}$ for

everv $f^{z}=3,4,$ $\cdots$ . As $||x||_{V_{1}}\leqq||x||_{\nabla_{2}}\leqq\cdots$ by \S 2 (4), we conclude hence
$||l||_{V_{\mu}}=0$ for every $f^{1}=1,2,$ $\cdots$ , and hecce $l=0$ , as $\mathfrak{B}$ is separative by
assumption. Therefore there exists $a\in R$ such that $\lim_{\nu\rightarrow\infty}a_{\nu}=a$ , and

naturally $a\in A$ . Furthermore we have

$||a-a_{\mu}||_{V_{\mu-2}}\leqq\frac{1}{\mu}$ for every $\mu=3,4,$ $\cdots$ ,

because $\bigcup_{\nu=\mu}^{\infty}a_{\nu}\geqq a\geqq\bigcap_{\nu\Rightarrow\mu}^{\infty}a_{\nu}$ . This relation shows that $A_{\lambda}(\lambda\in\Lambda)$ is con-
vergent to $a$ by $\mathfrak{B}$ .

Now we con$g$ider the general case. Let $A_{h}\subset A(\lambda\in\Lambda)$ be an arbitrary
CAUCHY system by $\mathfrak{B}$ and $V_{\nu}\in \mathfrak{B}(\iota=1,2, \cdots)$ an arbitrary decreasing
sequence. By virtue of Theorem 2.3, we can find a normal manifold
$ N_{V_{1},V_{\sim}},.,\cdots$ of $R$ such that the system $||x||_{\gamma_{\nu}}(\nu=1,2,\cdots)$ is proper in $ N_{V_{1},V_{2}},\cdots$

and $||x||_{r_{\nu}}=0$ for every $ x\in N_{V_{1},V_{2}}^{\perp},\ldots$ and $\nu=1,2,$ $\cdots$ . Recalling Theorem
2.1, we can find then a linear topology $\mathfrak{B}_{V_{1},V_{g}},1$ . on $V_{V_{1},r_{\rightarrow}}..,\cdots$ such that
$[N_{V_{1}.V_{2}},\cdots]V_{\nu}(\nu=1,2,\cdots)$ is a basis of $\mathfrak{B}_{\nabla_{1},V_{1}}\wedge\cdots.$ . This linear topology $\mathfrak{B}_{V_{1},V_{2}},\ldots$

is obviously sequential and separative by Theorem 2.4. Furthermore,
as $[N_{V_{1},V_{2}},\cdot..]A_{l}(\lambda\in\Lambda)$ is a CAUCHY system by $\mathfrak{B}_{V_{1},V_{g}},\cdots$ , there exists uniquely
a limit $a\in[N_{V_{1},V_{2}}\ldots.]$ $A$ of $[N_{V_{1},V_{-}}..,\cdots]A_{\lambda}(\dot{\Lambda}\in\Lambda)$ , as proved just above.

Corresponding to every decreasing sequence $V_{\nu}\in \mathfrak{B}(\nu=1,2, \cdots)$ , we
obtain thus uniquely a normal manifold $ N_{V_{1},V_{2}},\cdots$ and a limit $ a_{V_{1},V_{3}},\cdots\in$

$[N_{V_{1}.V_{2}},\cdots]$ $A$ of $[N_{V_{1}.V_{2}},\cdots]A_{\lambda}(\lambda\in\Lambda)$ . We see further by Theorem 3.2 that
for every two decreasing sequences $V_{\nu}$ and $U_{\nu}\in \mathfrak{B}(\nu=1,2,\cdots)$ , we have

$[N_{V_{1},V_{2}},\cdots][N_{U_{1\prime}U_{\underline{\mathfrak{n}}}},\cdots]a_{V_{1_{\wedge}}},V..,\cdots---\overline{[}N_{V_{1},V_{2}},\cdots][N_{U_{1},U_{n}}.,..]a_{U_{1},l7_{\mathfrak{n}}}\wedge\cdots$ . .
Therefore we can find $a\in A$ such that

$\overline{[}N_{V_{1},V}..]a=a_{V_{1},V_{2}}\wedge’\ldots,\cdots$

for every decreasing sequence $\gamma_{\nu}\in \mathfrak{B}$ $(\nu=1,2,\cdots )$ . Such $a\in A$ is a limit
of $A_{\lambda}(\lambda\in\Lambda)$ . Because, for any $V\in \mathfrak{B}$ we can find a decreasing sequence
$V_{\nu}\in \mathfrak{B}(\nu=1,2.\cdots)$ such that $V\supset V_{1}\times V_{1}$ , and $\lambda\in\Lambda$ such that

$\sup_{xe[N_{V_{1},V}]A\chi},\cdots||x-a_{V_{1},V}.||_{V_{1}}\leqq 1\rightarrow.,\cdots$
,
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and hence $\sup_{xeA_{\lambda}}||\overline{\lfloor}N_{V_{1},V_{\sim}}.,,\cdot.$] $(x-a)||_{V_{1}}\leqq 1$ . As

$||[N_{V_{I},V_{2}}^{L},\cdots](x-a)||_{V_{1}}=0$ ,

we obtain by \S 2 (5)

$\sup||x-a||_{V}\leqq 1$ ,
$xeA_{\lambda}$

that is, $|x-a|EV$ for every $x\in A_{\lambda}$ . Therefore $A$ is complete by $\mathfrak{B}$ .
Theorem 3. 4. $\{x : a\leqq x\leqq b\}$ is complete by every linear topology $\mathfrak{B}$ for

every two elements $a\leqq b$ .
Proof. Putting $A=\{x:|x|\leqq|a|+|b|\}$ , $B=\{x:a\leqq x\leqq b\}$ , we have

obviously $B\subset A$ and $A$ is complete by $\mathfrak{B}$ on account of Theorem 3.3.
For a CAUCHY system $A_{l}\subset B(\lambda\in\Lambda)$ there exists hence a limit $c\in A$ of
$A_{R}(\lambda\in\Lambda)$ , and then we obtain by Theorem 3.1 that $(ca)_{\cap}b$ is a limit of

$(A_{\lambda} a)_{\wedge}b=A_{\lambda}$ $(\lambda\in\Lambda)$ ,

and it is evident that $(c a)_{\cap}b\in B$ . Therefore $B$ is complete by $\mathfrak{B}$ .
\S 4. Topologically bounded manifolds

A manifold $A$ of $R$ is said to be topologically $\ovalbox{\tt\small REJECT} nd$ by a linear to-
p\^ology $\mathfrak{B}$ , if

$\sup_{eA}||x||_{V}<+\infty$ for every $V\in \mathfrak{B}$ .
With this definition, it is obvious by the formula \S 2 (4) that a manifold
$A$ is topologically bounded by a linear topology $\mathfrak{B}$ , if and only if for
a basis $\mathfrak{B}$ of $\mathfrak{B}$ we have

$\sup_{e}||x||_{V}<+\infty$ for every VE $\mathfrak{B}$ .
We can prove easily by definition
Thecrem 4. 1. If a manifold $A$ is topologically $\ovalbox{\tt\small REJECT}$n&d by a linear

topology $\mathfrak{B}$ , then all $A^{+},$ $A^{-},$ $|A|,$ $aA,$ $[N]$ $A$ are topologrzcally bmnd by $\mathfrak{B}$ for
every real number $a$ and projection operator $[N]$ . If both manifolds $A$ and
$B$ are topologically bounded by $\mathfrak{B}$ , then all $A^{\cdot}B,$ $A_{\wedge}B$ , and $A\times B$ are topolo-
gically bmnded by $\mathfrak{B}$ .

A manifold $A$ of $R$ is said to be order bound or merely bounded, if
we can find a positive element $a\in R$ such that $|x|\leqq a$ for every $x\in A$ .
Every bounded manifold is obviously topologically bounded by every
linear topology.

A linear topology $\mathfrak{B}$ om $R$ is said to be monotone cmplete, if for any
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topologically bounded manifold of positive elements $ a_{\lambda}\uparrow$ a $C\sim\Lambda$ ’ we can find
$a\in R$ such that $a_{R}\uparrow_{\lambda C\sim\Lambda}a$ .

Theorem 4. 2. If a hnear topology $\mathfrak{B}$ on $R$ is monotone complete, then
$R$ is complete by $\mathfrak{B}$ .

Proof. Let $A_{\lambda}(\lambda\in\Lambda)$ be a CAUCHY system by $\mathfrak{B}$ . We suppose firstly

that $\mathfrak{B}$ is separative. As $A_{f}^{+}(\lambda\in_{t}1)$ also is by Theorem 3. 2 a CAUCaY
system, corresponding to every $x\geqq 0$ , we obtain uniquely by Theorem
3.3 a limit $a_{x}$ of a CAUCHy system $A_{\lambda\leftrightarrow}^{+}x(\lambda\in\Lambda)$ . For this limit $a_{x}$ , we
have obviously by Iheorem 3.1 $0\leqq a_{x}\uparrow_{x\geqq 0}$ . Furthermore the system
$a_{x}(x\geqq 0)$ is topologically bounded by $\mathfrak{B}$ . B\‘ecause for amy $V\in \mathfrak{B}$ we can
find by definition $U\in \mathfrak{B}$ such that $U\times U\times U\times U\subset V$, and $\lambda_{1}E\Lambda$ such that
$||y-z||_{U}\leqq 1$ for every $y,$ $z\in A_{\lambda 1}^{+}$ , and hence by \S 2 (5) $\sup[|y||_{U\times U}<+\infty$ .

$yeA^{+}$
$\lambda l$

For any $ x\geqq 0we||_{U\langle U}\rangle$ can find by definition, $\lambda_{2}\in\Lambda$ such that

$||a_{x}-z||_{U\times U}\leqq 1$ for every $z\in A_{\lambda_{\sim}\cap}^{+}x$ .
For an element $b\in A_{f_{1}}^{+}A_{l_{2}}^{+}$ , we have then by \S 2 (5)

$||a_{x}||_{V}\leqq{\rm Max}\{1, ||b_{\cap}x||_{U\times U}\}\leqq.{\rm Max}\{1, ||b||_{U\times U}\}$ ,

and hence $||a_{x}||_{V}\leqq{\rm Max}\{1, \sup||y||_{U\times U}\}$ for every $x\geqq 0$ .
$yeA_{\lambda 1}^{+}$

Therefore there exists by assumption $a\in R$ such that $ a_{x}\uparrow_{x\geqq}\mu$ . As
we have by Theorem 3.1

$a_{x\wedge}y=a_{x\cap y}$ for every $x,$ $y\geqq 0$ ,

we obtain $a_{\cap}x=a_{x}$ for every $x\geqq 0$ . For any $V\in \mathfrak{B}$ we can find $U\in \mathfrak{B}$

such that $U\times U\subset V$, and further $\text{{\it \‘{A}}}_{0}\in\Lambda$ such that

$\sup_{y,zeA_{l_{()}}^{+}}||y-z||_{U}\leqq 1$
.

Thus, for any $y\in A_{\lambda_{o}}^{+}$ , putting $x=ya$ , we can find $\lambda_{1}\in\Lambda$ such that

$\sup_{zeA_{\lambda_{1}}^{+}}||z_{\wedge}x-a||_{U}=\sup_{+,zeA_{\lambda 1}}||z_{\wedge}x-a_{x}||_{U}\leqq 1$

,

and for $z\in A_{l_{O}}^{+}A_{\lambda_{1}}^{+}$ we have

$||y-z_{\wedge}x||_{U}=||y_{\wedge}x-z_{\wedge}x||_{U}\leqq||y-z||_{U}\leqq 1$ .
Consequently we obtain by \S 2 (5)

$|Iy-a$ llv $\leqq 1$ for every $y\in A_{l_{O}}^{+}$ .
Therefore $a$ is a limit of $A_{\lambda}^{+}(\lambda\in\Lambda)$ . We obtain likewise a limit $b$ of $A_{R}^{-}$
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$(\lambda\in\Lambda)$ . Thus we see by Theorem 3.1 that $a-b$ is a limit of $A_{\lambda}(\lambda\in\Lambda)$ .
In general, we can find by Theorem 2.3 $a$ normal manifold $N$ of

$R$ , such that the system of pseudo-norms $||x||_{V}(V\in \mathfrak{B})$ is proper in $N$

and $||x||_{V}=0$ for every $x\in N^{L}$ and $V\in \mathfrak{B}$ . Then there exists a limit
$a\in N$ of $[N]A_{l}(\lambda\in\Lambda)\vee$

’ as proved just above. This limit $a$ also is a limit
of $A_{\lambda}(\lambda\in\Lambda)$ , because for any $V\in \mathfrak{B}$ we can find UE $\mathfrak{B}$ such that $U\times U\subset V$ ,
and we have by \S 2 (5) for every $x\in R$

$||x-a||_{V}\leqq||_{\rightarrow}\lceil N]x-a||_{U}$ .
A linear topology $\mathfrak{B}$ on $R$ is said to be canzplete, if $R$ is complete

by B. We can state then by Theorem 4.2 that every monotone com-
plete linear topology is complete.

Theorem 4. 3. If a linear topology $\mathfrak{B}$ on $R$ is separative, convex, and
complete, and a manifold $A$ of $R$ is topologically bounded by $\mathfrak{B}$ , then we have
for every positive $\dot{m}\sigma inityW$

$\sup_{e}1x$ llw $<+\infty$

Proof. If $\sup_{c}||x||_{W}=+\infty$ , then we can find $x_{\nu}\in A(\nu=1,2, \cdots)$ such
that $||x_{\nu}||_{W}\geqq\nu 2^{\nu}$ for every $\triangleright=1,2,\cdots$ . As $A$ is by assumption topologically

bounded by $\mathfrak{B}$ , we have obviously $\sum_{\nu=1}^{\infty}\frac{1}{2^{\nu}}||x_{\nu}||_{V}<+\infty$ for every $V\in \mathfrak{B}$ .
As $\mathfrak{B}$ is convex and complete by assUmption, we can find $a\in R$ such that

$\lim_{\mu\rightarrow\infty}||\sum_{\nu=1}^{\mu}\frac{1}{2^{\nu}}|x_{\nu}|-a\Vert_{V}=0$ for every $V\in \mathfrak{B}$ .

As $\mathfrak{B}$ is separative by assumption, we conclude easily that $a=\sum_{\nu-1}^{\infty}\frac{1}{2^{\nu}}|x_{\nu}|$ ,

and hence we have

$||a||_{W}\geqq\frac{1}{2^{\prime\nu}}||x_{\nu}||_{W}\geqq\nu$ for every $\nu=1,2,\cdots$ ,

$c$ontradicting $||a||_{W}<+\infty$ .

\S 5. Equivalence

A linear topology $\mathfrak{B}$ on $R$ is said to be $e$quivalent to a linear topology
1I on $R$ , if $\mathfrak{B}$ has the same topologically bounded manifolds with II,

that $i\grave{s}$ , a manifold $A$ is topologically bounded by $\mathfrak{B}$ if and only if $A$

is so by $\mathfrak{n}$ . With this dePnition, we have obviously

Theorem 5. 1. If a hnear topology $\mathfrak{B}$ is monotone complete, then every
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linear topology equivalent to $\mathfrak{B}$ is also monoWne complete.
We shall say that a linear topology $\mathfrak{B}$ on $R$ is stronger than a linear

topology $l1$ on $R$, or that $1l$ is weaker than $\mathfrak{B}$ , if $\mathfrak{B}\supset ll$ . With this de-
finition we have obviously by Theorem 4.3.

Theorem 5. 2. If a l,inear topology $\mathfrak{B}\prime is$ separat,ive, cmvex, and complete,
then every linear topology stronger than $\mathfrak{B}$ is equivalent to $\mathfrak{B}$ .

By virtue of Theorem 1.1, we see easily that there exists uniquely
a linear topology $\mathfrak{B}$ of which the totality of convex vicinity in $R$ is
a basis. This linear topology $\mathfrak{B}$ is called the strong topology of $R$ . With
this definition, we have obviously that the strong topology of $R$ is the
strongest convex linear topology on $R$, that is, the strong topology of
$R$ is stronger than every other convex linear topology on $R$.

Recalling Theorem 5.2, we obtain at once
Theorem 5. 3. If a linear topology $\mathfrak{B}$ on $R$ is separatw$e$, convex, and

complete, then $\mathfrak{B}$ is equivalent to the strong topology of $R$ .
Theorem 5. 4. If a hnear topology $\mathfrak{B}$ on $R$ is sequential and equivalent

to a linear topology II on $R$ , then $\mathfrak{B}$ is stronger than $ll$ .
Proof. Let $V_{\nu}\in \mathfrak{B}(\nu=1,2,\cdots)$ be a decreasing basis of $\mathfrak{B}$ . If $\mathfrak{B}$ is

not stronger than $n$ , then we can find UE $\mathfrak{n}$ such that $U\overline{\in}\mathfrak{B}$ . For such
$U$, there is a sequence $a_{\nu}\in R(\nu=1,2,\cdots)$ such that

$\nu U\overline{\ni}a_{\nu}EV_{\nu}$ for every $\nu=1,2,\cdots$ ,

and hence we havh by the formulas (2), (3) in \S 2

$||a_{\nu}||_{V_{y}}\leqq 1$ , $||a_{\nu}||_{U}\geqq\nu$ for every $\nu=1,2,\cdots$ .
Then $\{a_{1}, a_{2},\cdots\}$ is a bounded by $\mathfrak{B}$ but not by $lt$ ; contradicting assumption.

On account of this Theorem 5.4, we conclude by Theorem 5.3
Theorem 5. 5. If a hnear topology $\mathfrak{B}$ on $R$ is sequential, separative, con-

vex, and complete, then $\mathfrak{B}$ is the strong topology of $R$ .

\S 6. Continuous linear topologies

A pseudo-norm $||x||$ on $R$ is said to be continuous, if $R\ni x_{\nu}\downarrow\nu\leftrightarrow 1\infty o$

implies $\lim_{\nu’\infty}||x_{\nu}||=0$ . A linear topology $\mathfrak{B}$ on $R$ is said to be continuous,

if the preudo-norm $|\rfloor x||_{V}$ is continuous for every $V\in \mathfrak{B}$ . With this de-
finition, we see at once by the formulas (3), (4) in \S 2 that $\mathfrak{B}$ is con-
tinuous if and only if for a basis $\mathfrak{B}$ of $\mathfrak{B}$ , the pseudo-norm $||x||_{V}$ is
continuous for every $V\in \mathfrak{B}$.

Theorem 6. 1. If a linear topology $\mathfrak{B}$ on $R$ is sequential, $separat^{r}\acute{w}e$ and
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$c\sigma nt\dot{m}$uous, then $R$ is superuniversally continuous, that is, for any system of
positive elements $a_{\lambda}\in R(\lambda\in\Lambda)$ we can find countable $\lambda_{\nu}\in\Lambda(\nu=1,2,\cdots)$ such that
$\bigcap_{\nu=1}^{\infty}a_{\lambda}\nu=\bigcap_{ae\Lambda}a_{\lambda}$ .

Proof. Let $V_{\nu}\in \mathfrak{B}(\nu=1,2,\cdots)$ be a decreasing basis of $\mathfrak{B}$ .
$ 0\leqq x_{l}\downarrow\lambda e\Lambda$ implies then

$\inf_{Re\Lambda}\{\sup_{it_{O}\leqq x_{\lambda}}||x_{\lambda}-x_{\sigma}||_{V}\nu\}=0$ for every $\nu=1,2,\cdots$ .
Because, if $ 0\leqq x_{f}\downarrow$ ae $\Lambda$ and

$inf\{\sup||x_{R}-x_{\sigma}||_{V}\nu\}\geqq e>0$

ae $\Lambda x_{O}\leqq x_{\lambda}$

for some $\nu$ , then we can find $\lambda_{\mu}\in\Lambda$ $(\mu=1,2,--)$ such that

$ x_{\lambda_{1}}\geqq x_{\lambda_{g}}\geqq\cdots$ , $||x_{\lambda_{\mu}}-x_{h_{\mu+i}}||_{V}\nu\geqq e$ $(\mu=1,2,\cdots)$ .
Then, putting $x_{0}=\bigcap_{\mu=1}^{\infty}x_{\lambda_{\mu}}$ , we have $x_{\lambda_{\mu}}-x_{0}\downarrow_{\mu-1}^{\infty}0$ , but

$||x_{l_{\mu}}-x_{0}||_{V}\nu\geqq||x_{l_{\mu}}-x_{\lambda_{\mu\cdot t\cdot l}}||_{V\nu}\geqq e$

for every $\mu=1,2,\cdots$ , contradicting the assumption that $\mathfrak{B}$ is continuous.
Therefore for $ 0\leqq x_{\lambda}\downarrow\hslash e\Lambda$ we can find $\lambda_{\nu}\in\Lambda(\nu=1,2,\cdots)$ such that

$X_{\lambda}\nu\downarrow_{\nu-l}^{\infty}$ and

$x\leqq xRy\sup_{\sigma}||x_{\lambda}\nu-x_{\sigma}||_{r_{\nu}}\leqq\frac{1}{2^{\nu}}$ for every $\nu=1,2,\cdots$ .

Then, putting $ x_{0}=\bigcap_{\nu\Rightarrow 1}^{\infty}x_{\lambda}\nu$ we have for every $\sigma E_{l}1$

$||r_{\lambda y}-x_{0\leftrightarrow}x_{\sigma}||_{V}\nu\leqq\frac{1}{2^{\nu}}$ $(\nu=1,2,\cdots)$ ,

because $x_{\lambda\nu}-x_{l_{\mu\wedge}}x_{\sigma}\uparrow_{\mu-1}^{\infty}x_{\lambda\nu}-x_{0_{\neg}}x_{\sigma},$
$||x_{\lambda\nu}-x_{\lambda_{\mu\wedge}}x_{\sigma}||_{V}\nu\leqq\frac{1}{2^{\nu}}$ for $\mu\geqq\nu$ .

Thus we obtain naturally for every $\sigma\in\Lambda$

$||x_{0}-x_{0\cap}x_{\sigma}||_{Vy}\leqq\frac{1}{2^{\prime\nu}}$ $(\nu=1,2,\cdots)$ .

As $\mathfrak{B}$ is separative by assumption, we obtain hence. $x_{0}-x_{0\wedge}x_{\sigma}=0$ , and
consequently $x_{0}\leqq x_{\sigma}$ for every. $\sigma\in\Lambda$ . Therefore $x_{t}\downarrow xe\Lambda x_{0}$ .

Theorem 6. 2. If a linear topology $\mathfrak{B}$ on $R$ is continuous, then $a_{\lambda}\downarrow xe\Lambda 0$

imphes $\inf_{\lambda e\Lambda}||a_{\lambda}||_{V}=0$ for every $V\in \mathfrak{B}$ .
Proof. For any $V\in \mathfrak{B}$ we can find a decreasing sequenc $e$ $V_{\nu}\in \mathfrak{B}$

$(\nu=1,2,\cdots)$ such tbat $V_{1}\times V_{1}\subset V$. For such $V_{\nu}\in \mathfrak{B}(\nu=1,2,\cdots)$ , we can
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find by Theorem 2. 3 a normal manifold $N$ of $R$ such that the system
of pseudo-norms $||x||_{V}\nu(\nu=1,2,\cdots)$ is proper in $N$ and $||x||_{V}\nu=0$ for every
$x\in N^{\perp}$ and $\nu=1,2,\cdots$ . Then the linear topology on $N$, of which { $x$ :
$||x||_{V\nu}\leqq 1,0\leqq x\in N\}(\nu=1,2,\cdots)$ is a basis, is obviously sequential, separa-
tive, and continuous. Thus $N$ is superuniversally continuous by Theorem
6.1. Therefore, if $R\ni a_{\lambda}\downarrow\lambda e\Lambda 0$ , then we can find $\lambda_{\mu}\in\Lambda(\mu=1,2,\cdots)$ such
that

$[N]a_{\lambda\nu}^{\backslash }\downarrow_{yAl}^{\infty}0$ ,

and hence $\lim_{\mu\rightarrow\infty}||[N]a_{\lambda_{\mu}}||_{V_{1}}=0$ , because $\mathfrak{B}$ is continuous by assumption.

As $||[N^{\perp}]a_{\lambda_{\mu}}||_{V_{1}}=0$ , we obtain hence by \S 2 (5)

$||a_{\lambda_{\mu}}||_{V}\leqq||[N]a_{\lambda_{\mu}}||_{V_{1}}$ for every $\mu=1,2,\cdots$ .
Consequently we have $\lim_{\mu\rightarrow\infty}||\alpha_{\lambda_{\mu}}||_{V}=0$ . Thus we have naturally

$inf||a_{\lambda}||_{V}=0$ .
ae $\Lambda$

Theorem 6. 3. If a hnear topology $\mathfrak{B}$ on $R$ is sequential, separative, con-
tinuous, and complete, then $R$ is regularly complete, $thaX$ is, for any double

sequence $a_{\nu,\mu}\downarrow\nu\infty-10(f^{l}=1,2,\cdots)$ , we can find $\nu_{\mu}(\mu=1,2,\cdots)$ such that $\sum_{\mu-1}^{\infty}\alpha_{\nu_{\mu’\mu}}$

is convergent.
Proof. Let $V_{\nu}\in \mathfrak{B}(\nu=1,2,\cdots)$ be a decreasing basis of $\mathfrak{B}$ . If $a_{\nu,\mu}\downarrow_{\nu-l}^{\infty}0$

$(\mu=1,2, --)$ , then we have

$\lim_{\nu-\sim}||a_{\nu,\mu}||_{V_{\mu}}=0$ for every $\mu=1,2,\cdots$ ,

because $\mathfrak{B}$ is continuous by assumption. Thus we can find $\nu_{\mu}(\mu=1,2,--)$

sucb that $a_{\nu_{\mu},\mu}\in V(\mu=1,2,\cdots)$ . Then we have obviously

$\sum_{\mu=\sigma}^{\rho}a_{\nu_{\mu’\mu}}\in V_{\sigma-\rceil}$ for $\rho\nearrow^{\sim}\sigma$ .

As $\mathfrak{B}$ is complete and separative, we see easily that $\sum_{\mu-l}^{\infty}a_{\nu_{\mu’\mu}}$ is con-
vergent. Therefore $R$ is regularly complete.

\S 7. Linear functionals

Let $\mathfrak{B}$ be a linear topology on $R$ . A linear functional $\varphi$ on $R$ is
said to be topologically bounded by $\mathfrak{B}$ , if $\sup_{xeA}\rceil\varphi(x)|<+\infty$ for every topo-

logically bounded manifold $A$ .
For any positive element $a\in R,$ $\{x:0\leqq x\leqq a\}$ is obviously topologically

bounded by $\mathfrak{B}$ . Thus we have
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Theorem 7. 1. If a linear functional $\varphi$ on $R$ is topologically bounded by
$\mathfrak{B}$ , then $\varphi$ is bmrded, that is,

$\sup_{0\leqq x\leqq a}|\varphi(x)|<+\infty$ for every $a\geqq 0$ .
Conversely we bave
Theorem 7. 2. If a hnear topology $\mathfrak{B}$ on $R$ is separative, convex, and

eomplete, then every $b\sigma unded$ ’ linear functional $\varphi$ on $R$ is topologically bounded
by $\mathfrak{B}$ .

Prcwf. Let $\varphi$ be a positive linear functional on $R$ . If $\varphi$ is not
topologically bounded by $\mathfrak{B}$ , then we can find a sequence $a_{\nu}\geqq 0(\nu=1$ ,
2, $\cdots$ ) such that $\{a,, a_{-},,\cdots\}$ is topologically bounded, but

$\varphi(a_{\nu})\geqq\nu 2^{\nu}$ $(\nu=1,2,\cdots)$ .

Then we have obviously $\sum_{\nu\approx 1}^{\infty}\frac{1}{2^{\nu}}||a_{\nu}||_{V}<+\infty$ for every $V\in \mathfrak{B}$ . As $\mathfrak{B}$ is

separative, convex, and complete by assumption, we obtain hence that
$\sum_{\nu\infty 1}^{\infty}\frac{1}{2^{\nu}}$ aノ is convergent, and putting $a=\sum_{\nu-1}^{\infty}\frac{1}{2^{\nu}}a_{\nu},$ we have that $\varphi(a)$

$\geqq\varphi(\frac{1}{2^{\nu}}a_{\nu})\geqq\nu$ for every $\nu=1,2,\cdots$ , contradicting $\varphi(a)<+\infty$ .
A linear functional $\varphi$ on $R$ is said to be topologically $c\sigma ntinu\sigma us$ by

a linear topology $\mathfrak{B}$ , if we can find $V\in \mathfrak{B}$ such that

$|\varphi(x)|\leqq||x||_{V}$ for every $x\in R$ .
With this definition, we see at once by the formulas (3), (4) in \S 2 that
a linear functional $\varphi$ on $R$ is topologically continuous by $\mathfrak{B}$ , if and only
if for a basis $\mathfrak{B}$ of $\mathfrak{B}$ we can find $V\in \mathfrak{B}$ and $\alpha>0$ such that

$|\varphi(x)|\leqq a||x||_{V}$ for every $x$ ER.

If a linear functional $\varphi$ on $R$ is topologically continuous by $\mathfrak{B}$ , then $\varphi$

is obviously by definition topologically bounded by $\mathfrak{B}$ .
If a Iinear functional $\varphi$ on $R$ is universauy continuous, that is,. if

$x_{\lambda}\downarrow lC\Lambda 0$ implies $\inf_{le\Lambda}|\varphi(x_{l})|=0$ , then, putting

$V=\{x : |y|\leqq x8Up|\varphi(y)|\leqq 1 , x\geqq 0\}$ ,

we see easily that $V$ is a convex positive vicinity. Thus we $ha$ve
Theorem 7. 3. If a linear functional $\varphi$ on $R$ is universally continuous,

then $\varphi$ is topological $ly$ continuous by the strong topology of $R$ .
Recalling Theorem 6.2, we obtain immediately
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Theorem 7. 4. If a hnear topology $\mathfrak{B}$ on $R$ is $c\sigma nt\dot{m}$uous, then every
topologically continuous linear functional on $R$ is $un\dot{w}$ersaZly continuous.

If a convex pseudo-norm $||x||$ on $R$ is not continuous, then we can
find a linear functional $\varphi$ on $R$ such that

$\sup_{|x|}1\varphi(x)1<+\infty$ ,

but there is a sequence $a_{\nu}\downarrow\nu\infty-10$ for which we have $\lim_{\nu\rightarrow\infty}\varphi(a_{\nu})>0$ . (c.f.

MSLS Theorem 31.10). Therefore we have
Theorem 7. 5. For a $c\alpha nvex$ linear topology $\mathfrak{B}$ on $R$, if every $topologi,cauy$

continuous linear functional on $R$ is continuous, then $\mathfrak{B}$ is $coMin\mu\sigma us$.

\S 8. Reflexive linear topologies

Let $R$ be a reflexive semi-ordered linear space and $\overline{R}$ the conjugate
space of $R$ . For any positive $\overline{\alpha}E\overline{R}$ , putting

(1) $V_{\overline{\alpha}}=\{x:\overline{a}(x)\leqq 1, x\geqq 0\}$ ,

we obtain obviously a convex positive vicinity $V_{\overline{\alpha}}$ . For this $V_{\overline{\alpha}}$ we have
obviously

(2) $||x||_{V_{l}}=\overline{\alpha}(|x|)$ for every $x\in R$ ,

because $||x||_{V_{\overline{\alpha}}}=\inf_{\xi|x|ev_{\overline{\alpha}}}\frac{1}{\xi}=\overline{\alpha}(\xi|x|)_{\mapsto}1\inf_{<}\frac{1}{\xi}=\overline{\alpha}(|x|)$ .
Recalling Theorem 1.1, we see easily that there exists uniquely

a linear topology $\mathfrak{W}$ on $R$ such teat the system $V_{\overline{a}}(0\leqq\overline{a}E\overline{R})$ is a basis
of $\mathfrak{W}$ . This linear topology $\mathfrak{W}$ is called the absolute weak topology of $R$ .
With this definition we have

Theorem 8. 1. The absolute weak topology $\mathfrak{W}$ of $R$ is separative, convex,
continuous, and monotone complete.

Proof. It is $e$ vident by definition that $\mathfrak{W}$ is separativ\’e, convex, and
continuous. If a system of positive elements $x_{\lambda}$ Ta $e\Lambda$ is topologically
bounded by $\mathfrak{W}$, then we have by the formula (2)

$\sup_{\lambda eA}$
ii $(x_{\lambda})=\sup_{xe\Lambda}||x_{\lambda}||_{V\&}<+\infty$

for every positive $\overline{a}\in\overline{R}$ . Therefore there exists $a$ ER such that $x_{\lambda}\uparrow_{le\Lambda}a$ .
(c.f. MSLS. Theorem 24.4)

Theorem 8. 2. A manifold $A$ of $R$ is $topolog^{\prime}ically$ bounded by the absolute
weak topology $\mathfrak{W}$ if and only if $A$ is weakly bounded, that is,

$\sup_{e}|\overline{x}(x)|<+\infty$ for every $\overline{x}\in\overline{R}$ .
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Proof. If $A$ is weakly bounded, then we have

$\sup_{eA}\overline{a}(|x|)<+\infty$ for $0\leqq\overline{a}\in\overline{R}$

(MSLS. Theorem 24.15). Thus we obtain by (2)

$\sup_{xeA}||x||_{V_{\overline{a}}}<+\infty$ for $0\leqq\overline{a}\in\overline{R}$ ,

and hence $A$ is topologically bounded by $\mathfrak{W}$ . Conversely, if $A$ is topo-
logically bounded by $\mathfrak{W}$, then we have by (2)

$\sup_{e}|\overline{\alpha}(x)|\leqq\sup_{xSA}|\overline{\mathfrak{a}}|(|x|)=\sup_{xeA}||x||_{V|_{\overline{\alpha}}|}<+\infty$ ,

and hence $A$ is weakly bounded.
Recalling Theorem 5.3, we obtain by Theorem 8.1
Theorem 8. 3. The strong topology of $R$ is $separat\dot{w}e$ and equivalent to

the absofute weak topology of $R$ .
A pseudo-morm $||x||$ on $R$ is said to be reflexive, if for

$\overline{A}=\{\overline{x} ; \sup_{(|x|}|\overline{x}(x)|\leqq 1\}$ ,

we have $||x||=\sup_{xez}|\overline{x}(x)|$ for every $x\in R$ . With this definition, we see
at once that every reflexive pseudo-norm is convex.

Let $\overline{\mathfrak{W}}$ be the absolute weak topology of the conjugate space $\overline{R}$ .
For every topologically bounded manifold $\overline{A}$ of $\overline{R}$ by $\overline{\mathfrak{W}}$ , putting

$V=$ { $x:|\overline{x}|(x)\leqq 1$ for every $x\in A,$ $x\geqq 0$ } ,

we see easily that $V$ is a positive vicinity in $R$ and the pseudo-norm
$||x||_{\gamma}$ is reflexive.

Theorem 8. 4. If a pseudo-norm $||x||(x\in R)$ is convex and continuous,
then it is $reflex\dot{w}e$ .

Proof. By virtue of BANACH’S extension theorem, for any $a\in R$ we
can find a linear fumctional $\varphi$ on. $R$ such that

$\varphi(a)=||a||$ , $|\varphi(x)|\leqq||x||$ for every $x$ ER.

As $||x||(xER)$ is convex and continuous by assumption, we see by
Theorem 6.2 that $\varphi$ is universally continuous, and hence $\varphi E$ R. . Further-
more, putting

$\overline{A}=$ {oo: $\sup_{|x||}|\overline{x}(x)|\leqq 1$ },

we have obviously $\varphi\in\overline{A}$ , and hence

suxeA $|\overline{x}(a)|\geqq\varphi(a)=||a||$ .
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On the other hand, it is evident that $||a||\geqq\sup|\overline{x}(a)|$ . Thus we con-
$\overline{x}e_{-}z$

clude $||a||\simeq-\sup_{c}|X(a)|$ for every $a$ E $R$ , that is, the pseudo-norm $||x||(x\in R)$

is reflexive by definition.
A linear topology $\mathfrak{B}$ on $R$ is said to be reflexw$e$ , if there is a basis

$\mathfrak{B}$ of $\mathfrak{B}$ sucfi that $||x||_{V}$ is reflexive for every VE $\mathfrak{B}$ . With this definition,
we have obviously by Theorem 8.4

Theorem 8. 5. If a linear topology $\mathfrak{B}$ on $R$ is convex and contmuous, then
$\mathfrak{B}$ is reflexive.

Consequently we obtain by Theorem 8.1
Theorem 8. 6. The absolute weak topology of $R$ is reflexive.
Theorem 8. 7. If the strong topology of $R$ is sequential, then it is re-

flexiv$e$ .
Proof. Let $V_{\nu}(\nu=1,2, \cdots)$ be the convex decreasing basis of the

strong topology of $R$ . Putting

$\overline{A}_{\nu}=$ { $\overline{x}$ : $\sup$ hi $(x)\leqq 1$ , $0\leqq\overline{x}E\overline{R}$ } ,
$xev_{\nu}$

we see easily that every $\overline{A}_{\nu}(\nu=1,2,\cdots)$ is topologically bounded by the
absolute weak topology SESS of $\overline{R}$ . Thus, putting

$U_{\nu}=$ { $x$ : sup hi $(x)\leqq 1$ , $0\leqq xER$},
$xez_{\nu}$

we obtain a convex positive vicinity $U_{\nu}$ in $R$ such that $||x||_{\sigma_{\nu}}$ is reflexive.
For any positive $\overline{\mathfrak{a}}\in\overline{R}$ , putting

$V_{\overline{\alpha}}=\{x : \overline{\alpha}(x)\leqq 1. 0\leqq x\in R\}$ ,

we obtain a convex vicinity $V_{\overline{\alpha}}$ and hence we can find $\nu$ such that $V_{\overline{a}}\supset V_{\nu}$ ,
because $V_{\nu}(\nu=1,2,\cdots)$ is a basis of the strong topology of $R$ . For such
$\nu$ , we have obviously a E $\overline{A}_{\nu}$ , and consequently $U_{\nu}\subset V_{\overline{\alpha}}$ . Therefore the
convex linear topology $\mathfrak{B}$ , of which $U_{\nu}(\nu=1,2,\cdots)$ is a basis, is stronger
than the absolute weak topology of $R$ . Recalling Theorem 5. 2, we see
that $\mathfrak{B}$ is monotone complete, and hence $\mathfrak{B}$ coincides by Theorem 7.5
with thet strong topology of $R$ . Furthermore $\mathfrak{B}$ is obviously reflexive.
Consequently the strong topology of $R$ is reflexive.

If a Iiorm $||x||$ on $R$ is complete, that is, if the linear topology $\mathfrak{B}$ ,
of which $\{x:||x||\leqq 1,0\leqq x\in R\}$ is a basis, is complete, then $\mathfrak{B}$ is by
Theorem 5.5 the strong topology of $R$ , and hence reflexive by Theorem
8.7. Therefore we obtain.

Theoreve 8. 8. If there is a complete norm on $R$ , then there exists a
complete $reflex\dot{w}e$ norm on $R$ .


