LINEAR TOPOLOGIES ON SEMI-ORDERED LINEAR SPACES

By

Hidegorô NAKANO

Normed semi-order linear spaces are considered first by L. KAN-TOROVITCH.⁽¹⁾ In this paper we shall consider linear topologies on semiordered linear spaces.

Let R be a linear space. A manifold $V \subseteq R$ is called a *vicinity*, if for any $a \in R$ we can find $\varepsilon > 0$ such that $\varepsilon a \in V$ for $|\varepsilon| \leq \varepsilon$. A collection of vicinities \mathfrak{B} is said to be a *linear topology* on R, if

- 1) $U \subset V \in \mathfrak{B}$ implies $U \in \mathfrak{B}$,
- 2) $U, V \in \mathfrak{B}$ implies $UV \in \mathfrak{B}$,
- 3) $V \in \mathfrak{B}$ implies $\xi V \in \mathfrak{B}$ for every real number ξ ,
- 4) for any $V \in \mathfrak{B}$ we can find $U \in \mathfrak{B}$ such that $\xi U \subset V$ for $|\xi| \leq 1$,
- 5) for any $V \in \mathfrak{B}$ we can find $U \in \mathfrak{B}$ such that $U \times U \subset V$,

adopting the notations:

 $\xi U = \{\xi x : x \in U\}, \quad U \times V = \{x + y : x \in U, y \in V\}.$

A subset $\mathfrak{B} \subset \mathfrak{B}$ is called a *basis* of a linear topology \mathfrak{B} , if for any $V \in \mathfrak{B}$ we can find $U \in \mathfrak{B}$ and $\varepsilon > 0$ such that $\varepsilon U \subset V$.

Let R be now a semi-ordered linear space and universally continuous, that is, for any system of positive elements $a_{\lambda} \in R$ ($\lambda \in \Lambda$) there exists $\bigcap_{\lambda \in \Lambda} a_{\lambda}$. In this paper we shall consider only such linear topologies \mathfrak{B} on R that \mathfrak{B} have a basis composed only of vicinities V subject to the conditions:

6) $a \in V$, $|x| \leq a$ implies $x \in V$,

7) $0 \leq a_{\lambda} \in V(\lambda \in \Lambda)$, $a_{\lambda} \uparrow_{\lambda \in \Lambda} a$ implies $a \in V$.

Here $a_{\lambda} \uparrow_{\lambda \in \Lambda} a$ means that for any two $\lambda_1, \lambda_2 \in \Lambda$ we can find $\lambda \in \Lambda$ such that

$$a_{\lambda} \ge a_{\lambda_1} \cup a_{\lambda_2}$$
, and $a = \bigcup_{\lambda \in A} a_{\lambda}$.

For such a linear topology, we shall prove as a principal result that the manifold $\{x: a \leq x \leq b\}$ is complete as a uniform space in WEIL'S (1) L. KANTOROVITCH: Lineare halbgeordnete Räume, Math. Sbornik, 2 (44), (1937), 121-168.

sense.⁽²⁾

For a vicinity V subject to the conditions 6), 7), putting

$$\|x\|_{\mathcal{V}} = \inf_{\substack{\epsilon \ x \in \mathcal{V}}} \frac{1}{|\xi|}$$

we obtain a pseudo-norm on R. A manifold $A \subset R$ is said to be topologically bounded, by a linear topology \mathfrak{B} , if $\sup_{r \to \infty} ||x||_{r} < +\infty$ for every such x $\in A$ vicinity $V \in \mathfrak{B}$. A linear topology \mathfrak{B} on R is said to be monotone complete, if for any topologically bounded system $0 \leq a_{\lambda} \in R$ ($\lambda \in \Lambda$) such that $a_{\lambda} \uparrow_{\lambda \in \Lambda}$, we can find $a \in R$ for which $a_{\lambda} \uparrow_{\lambda \in A} a$. With this definition, we can prove that if a linear topology \mathfrak{B} is monotone complete, then R is complete by B in WEIL's sense. This result may be considered as a generalization of the famous RIESZ-FISCHER's theorem about L_p -spaces. A vicinity V is said to be convex, if $V \times V \subset 2V$. A linear topology B is said to be convex, if B has a basis composed only of convex vicinities. There exists a linear topology \mathfrak{B} on R of which the totality of convex vicinities subject to the conditions 6), 7) is a basis. This linear topology \mathfrak{B} is called the strong topology of R. A linear topology \mathfrak{B} is said to be sequential, if \mathfrak{B} has a basis composed of at most countable vicinities. We shall prove that if a linear topology B is sequential, convex, complete, and $\prod_{V\in\mathfrak{B}}V=\{0\}$, then \mathfrak{B} is the strong topology of R .

Let R be now reflexive and \overline{R} its conjugate space.⁽³⁾ The socalled weak linear topology of R by \overline{R} is not a linear topology in our sense. However there exists the weakest linear topology \mathfrak{W} among our linear topologies by which every $\overline{a} \in \overline{R}$ is topologically continuous. This linear topology \mathfrak{W} is called the *absolute weak topology* of R, as the system of vicinities $\{x:\overline{a}(|x|) \leq 1\}$ for all positive $\overline{a} \in \overline{R}$ is a basis of \mathfrak{W} . We can prove that the absolute weak topology \mathfrak{W} of R is weaker than the strong topology \mathfrak{S} of R, i.e., $\mathfrak{W} \subset \mathfrak{S}$, but \mathfrak{W} is equivalent to \mathfrak{S} , i.e., a manifold $A \subset R$ is topologically bounded by \mathfrak{M} , if and only if A is so by \mathfrak{S} .

A pseudo-norm ||x|| on R is said to be *reflexive*, if for

$$\overline{A}=\left\{ \overline{x}:\sup_{\left\|oldsymbol{x}
ight\|\leq1}\left\left\|oldsymbol{\overline{x}}\left(x
ight)
ight\|\leq1
ight\}$$
 ,

we have $||x|| = \sup_{x \in \overline{A}} |\overline{x}(x)|$. A linear topology \mathfrak{B} on R is said to be *reflexive*, if \mathfrak{B} has a basis \mathfrak{B} such that the pseudo-norm $||x||_{\mathcal{V}}$ is reflexive

2) A. WEIL: Sur les espaces à structure uniforme, Actual. Sci. et Industr. Paris, (1938).

³⁾ H. NAKANO: Modulared semi-ordered linear spaces, Tokyo Math. Book Series I (1950), §22. This book will be denoted by MSLS in this paper.

for every $V \in \mathfrak{B}$. The absolute weak topology of R is reflexive. We shall prove that if the strong topology of R is sequential, then it is reflexive. This result is a generalization of the theorem: if there is a complete norm on R, then there exists a complete reflexive norm on R.

We shall make use of notations in MSLS and the following notations:

$$A^{+} = \{x^{+} : x \in A\}, \quad A^{-} = \{x^{-} : x \in A\}, \quad |A| = \{|x| : x \in A\}, \\ A^{\frown}B = \{x^{\frown}y : x \in A, \ y \in B\}, \quad A_{\frown}B = \{x_{\frown}y : x \in A, \ y \in B\}.$$
$$A \times B = \{x + y : x \in A, \ y \in B\}$$

for manifolds A, B of R.

1.11

§1. Linear topologies

Let R be a universally continuous semi-ordered linear space. A set of positive elements V is said to be a *positive vicinity*, if

1) for any $a \ge 0$ we can find $\varepsilon > 0$ such that $\varepsilon a \in V$,

2) $0 \leq b \leq a \in V$ implies $b \in V$,

3) $V \ni a_{\lambda} \uparrow_{\lambda \in A} a$ implies $a \in V$.

A positive vicinity V is said to be convex, if $x, y \in V$, $\lambda + \mu = 1$, $\lambda, \mu \ge 0$ implies $\lambda x + \mu y \in V$.

With this definition, we see easily that if V is a positive vicinity (convex), then ξV also is a positive vicinity (convex) for $\xi > 0$, and for two positive vicinity U, V(convex), both UV and U×V are positive vicinities (convex).

A collection \mathfrak{B} of positive vicinities is called a *linear topology*, if

1') $U \subset V \in \mathfrak{B}$ implies $U \in \mathfrak{B}$,

2') $U, V \in \mathfrak{B}$ implies $UV \in \mathfrak{B}$,

3') $V \in \mathfrak{B}$ implies $\xi V \in \mathfrak{B}$ for every $\xi > 0$,

4') for any $V \in \mathfrak{B}$ we can find $U \in \mathfrak{B}$ such that $U \times U \subset V$.

For a linear topology \mathfrak{B} on R, a subset $\mathfrak{B}\subseteq\mathfrak{B}$ is called a *basis* of \mathfrak{B} , if for any $V \in \mathfrak{B}$ we can find $U \in \mathfrak{B}$ ane $\alpha > 0$ such that $\alpha U \subseteq V$. With this definition, we can prove easily

Theorem 1.1 If a collection of positive vicinities Bsatisfies

1") for any $U, V \in \mathfrak{B}$ we can find $W \in \mathfrak{B}$ and $\alpha > 0$ such that $\alpha W \subset UV$.

2") for any $V \in \mathfrak{B}$ we can find $U \in \mathfrak{B}$ and $\alpha > 0$ such that $U \times U \subset \alpha V$, then there exists uniquely a linear topology \mathfrak{B} of which \mathfrak{B} is a basis.

A linear topology \mathfrak{B} is said to be *convex*, if \mathfrak{B} has a basis composed

only of convex positive vicinities. A linear topology \mathfrak{B} is said to be *sequential*, if \mathfrak{B} has a basis composed of at most countable positive vicinities. A sequence of positive vicinities V_{ν} ($\nu = 1, 2, \cdots$) is said to be *decreasing*, if

$$V_{\nu} \supset V_{\nu+1} \times V_{\nu+1}$$
 for every $\nu = 1, 2, \cdots$.

If a linear topology \mathfrak{B} is sequential, then we can find obviously by definition a decreasing sequence $V_{\nu} \in \mathfrak{B} (\nu = 1, 2, \cdots)$ as a basis of \mathfrak{B} . Such a basis is called a *decreasing basis* of \mathfrak{B} . If $V_{\nu} \in \mathfrak{B} (\nu = 1, 2, \cdots)$ is a decreasing basis of \mathfrak{B} , then for any $V \in \mathfrak{B}$ we can find ν such that $V_{\nu} \subset V$. Because we can find by definition μ and $\varepsilon > 0$ such that $\varepsilon V_{\mu} \subset V$. For such $\varepsilon > 0$, we can find $\nu > \mu$ such that $\frac{1}{2^{\nu-\mu}} < \varepsilon$, and then we have

$$V_{
u} \subset \frac{1}{2^{
u-\mu}} V_{\mu} \subset \varepsilon V_{\mu} \subset V$$
,

because we have $V_{\nu} \supset 2V_{\nu+1}$ for every $\nu = 1, 2, \cdots$.

A decreasing basis $V_{\nu} \in \mathfrak{B} (\nu = 1, 2, \cdots)$ is said to be *convex*, if every $V_{\nu} (\nu = 1, 2, \cdots)$ is convex. With this definition, we see at once by definition

Theorem 1.2. If a linear topology \mathfrak{B} is sequential and convex, then \mathfrak{B} has a convex decreasing basis.

A linear topology \mathfrak{B} is said to be of *single vicinity* if \mathfrak{B} has a basis composed only of a single positive vicinity. With this definition we have obviously

Theorem 1.3. If a linear topology \mathfrak{B} is of single vicinity and convex, then there is a convex positive vicinity which is a basis of \mathfrak{B} .

§2. Pseudo-norms

A functional ||x|| $(x \in R)$ on R is said to be a pseudo-norm on R, if

1) $0 \leq ||x|| < +\infty$ for every $x \in R$,

2) $|x| \leq |y|$ implies $||x|| \leq ||y||$,

3) $||\xi x|| = |\xi| ||x||$ for every real number ξ ,

4) $0 \leq x_{\lambda} \uparrow_{\lambda \in A} x$ implies $||x|| = \sup ||x_{\lambda}||$.

A pseudo-norm $||x|| (x \in R)$ is said to be convex, if

 $||x+y|| \leq ||x|| + ||y||$ for every $x, y \in R$.

For a pseudo-norm $||x|| (x \in R)$, putting

 $V = \{x : ||x|| \leq 1, x \geq 0\},\$

we see easily that V is a positive vicinity. Furthermore, if $||x||(x \in R)$ is convex, then this positive vicinity V is convex.

Conversely, for a positive vicinity V, putting

$$||x||_{\mathcal{F}} = \inf_{\xi \, |x| \in \mathcal{F}} \frac{1}{\xi}$$

we obtain a pseudo-norm $||x||_{\mathcal{V}}(x \in R)$, which will be called the *pseudo-norm* of V. With this definition, we see easily

(2)
$$V = \{x : ||x||_{V} \leq 1, x \geq 0\}$$

Furthermore we can prove easily

(3)
$$||x||_{\xi \, \nu} = rac{1}{\xi} ||x||_{
u}$$
 for $\xi > 0$,

(4) $V \subset U$ implies $||x||_{\mathcal{V}} \ge ||x||_{\mathcal{V}}$ for every $x \in R$,

(5) $V \times V \subset U \text{ implies } ||x+y||_{\mathcal{V}} \leq \operatorname{Max} \{||x||_{\mathcal{V}}, ||y||_{\mathcal{V}}\}.$

By virtue of Theorem 1.1, we can prove easily

Theorem 2.1. For a system of pseudo-norms $||x||_{\lambda}$ ($\lambda \in \Lambda$) on R, if for any $\lambda \in \Lambda$ we can find $\sigma \in \Lambda$ such that

 $||x+y||_{\lambda} \leq ||x||_{\sigma} + ||y||_{\sigma}$ for every $x, y \in \mathbb{R}$,

then there exists uniquely a linear topology \mathfrak{B} on R such that the totality of

$$V_{\lambda_{1},\lambda_{2},\cdots,\lambda_{k}} = \{x: ||x||_{\lambda_{\nu}} \leq 1 \ (\nu = 1, 2, \cdots, \kappa), \ x \geq 0\}$$

for every finite number of elements $\lambda_{\nu} \in \Lambda(\nu=1, 2, \dots, \kappa)$ is a basis of \mathfrak{B} .

A pseudo-norm $||x|| (x \in R)$ is said to be *proper*, if ||x|| = 0 implies x = 0. A pseudo-norm is called a *norm*, if it is convex and proper.

Theorem 2.2. For a convex pseudo-norm $||x|| (x \in R)$ there exists uniquely a normal manifold N of R such that $||x|| (x \in N)$ is proper in N and ||x|| = 0 for every $x \in N^{\perp}$.

Proof. Putting $N = \{x : ||x|| = 0\}$, we see easily that N is a normal manifold of R. For such N, it is evident that ||x||=0 for every $x \in N$. Conversely, if ||x||=0, then we have naturally $x \in N$, and hence $[N^{\perp}]$ x=0. Thus ||x|| is proper in N^{\perp} . If ||x|| is proper in a normal manifold M and ||x||=0 for every $x \in M^{\perp}$, then it is evident that $M^{\perp}=N$.

A system of pseudo-norms $||x||_{\lambda} (\lambda \in \Lambda)$ is said to be *proper*, if $||x||_{\lambda} = 0$ for all $\lambda \in \Lambda$ implies x=0. With this definition, we have

Theorem 2.3. For a system of pseudo-norms $||x||_{\lambda}$ ($\lambda \in \Lambda$) on R, if for any $\lambda \in \Lambda$ we can find $\sigma \in \Lambda$ such that

$$||x+y||_{\lambda} \leq ||x||_{\sigma} + ||y||_{\sigma} \qquad \text{for every} \quad x, y \in R,$$

then there exists uniquely a normal manifold N of R such that the system $||x||_{\lambda} (\lambda \in A)$ is proper in N and $||x||_{\lambda} = 0$ for every $\lambda \in A$ and $x \in N^{\perp}$.

Proof. Putting $M = \{x : ||x||_{\lambda} = 0$ for all $\lambda \in \Lambda\}$, we see easily that M is a normal manifold of R and M^{\perp} satisfies our requirement. Furthermore the uniqueness is obvious.

We shall say that R is *separated* by a linear topology \mathfrak{B} , or that \mathfrak{B} is *separative* if $\prod_{V \in \mathfrak{B}} V = \{0\}$. With this definition, we see at once

Theorem 2.4. A linear topology \mathfrak{B} is separative, if and only if for a basis \mathfrak{B} of \mathfrak{B} , the system of pseudo-norms $||x||_{v}(V \in \mathfrak{B})$ is proper.

§3. Completeness

Let \mathfrak{B} be a linear topology on R. A system of manifolds A_{λ} ($\lambda \in \Lambda$) is said to be a *CAUCHY system* by \mathfrak{B} , if $\prod_{\nu=1}^{k} A_{\lambda_{\nu}} \rightleftharpoons 0$ for every finite number of elements $\lambda_{\nu} \in \Lambda$ ($\nu = 1, 2, \dots, \kappa$), and for any $V \in \mathfrak{B}$ we can find $\lambda \in \Lambda$ such that

$$|x-y| \in V$$
 for every $x, y \in A_{\lambda}$.

A CAUCHY system A_{λ} ($\lambda \in \Lambda$) is said to be *convergent* to a *limit* $a \in R$, if for any $V \in \mathfrak{B}$ we can find $\lambda \in \Lambda$ such that

$$|x-a| \in V$$
 for every $x \in A_{\lambda}$.

If \mathfrak{B} is separative, then we see easily that the limit of a CAUCHY system is uniquely determined, if it is convergent.

We see easily by definition that for a basis \mathfrak{B} of \mathfrak{B} , a system of manifolds A_{λ} ($\lambda \in \Lambda$) is a CAUCHY system by \mathfrak{B} , if and only if $\prod_{\lambda=1}^{\kappa} A_{\lambda\nu} \neq 0$ for every finite number of elements $\lambda_{\nu} \in \Lambda$ ($\nu = 1, 2, \dots, \kappa$) and for any $V \in \mathfrak{B}$ and $\varepsilon > 0$ we can find $\lambda \in \Lambda$ such that

$$||x-y||_{v} \leq \varepsilon$$
 for every $x, y \in A_{\lambda}$.

Furthermore we see that a CAUCHY system A_{λ} ($\lambda \in \Lambda$) is convergent to a limit $a \in R$, if and only if for any $V \in \mathfrak{B}$ and $\varepsilon > 0$ we can find $\lambda \in \Lambda$ such that

 $||x-a||_{\mathcal{V}} \leq \varepsilon$ for every $x \in A_{\lambda}$.

By virtue of the formula $\S2(5)$, we can prove easily

Theorem 3.1. For two CAUCHY system A_{λ} and B_{λ} ($\lambda \in \Lambda$), all $A_{\lambda} \subset B_{\lambda}$, $A_{\lambda} \subset B_{\lambda}$, and $A_{\lambda} \times B_{\lambda}$ ($\lambda \in \Lambda$) are CAUCHY systems, furthermore, if A_{λ} and

 B_{λ} ($\lambda \in \Lambda$) are convergent respectively to limits a and b, then $A_{\lambda} \subset B_{\lambda}$, $A_{\lambda} \subset B_{\lambda}$, and $A_{\lambda} \times B_{\lambda}$ ($\lambda \in \Lambda$) are convergent to $a \subset b$, $a \subset b$, and a + b respectively.

We see further easily

Theorem 3.2. For a CAUCHY system $A_{\lambda}(\lambda \in \Lambda)$, all $A_{\lambda}^{+}, A_{\lambda}^{-}, |A_{\lambda}|, \alpha A_{\lambda}$, and $[N]A_{\lambda}(\lambda \in \Lambda)$ are CAUCHY systems for every real number α and projection operator [N]. If a CAUCHY system $A_{\lambda}(\lambda \in \Lambda)$ is convergent to a limit α , then $A_{\lambda}^{+}, A_{\lambda}^{-}, |A_{\lambda}|, \alpha A_{\lambda}$, and $[N]A_{\lambda}(\lambda \in \Lambda)$ are convergent to $\alpha^{+}, \alpha^{-}, |\alpha|, \alpha \alpha$, and [N]arespectively.

A manifold A of R is said to be *complete* by a linear topology \mathfrak{B} , if every CAUCHY system $A_{\lambda} \subset A(\lambda \in \Lambda)$ is convergent to a limit $a \in A$. With this definition we have

Theorem 3.3. For every positive element $a \in R$, $\{x : |x| \leq a\}$ is complete by \mathfrak{B} .

Proof. We shall consider firstly the case where \mathfrak{B} is sequential and separative. Let $V_{\nu} \in \mathfrak{B}$ ($\nu=1, 2, \cdots$) be a decreasing basis of \mathfrak{B} . We set

$$A = \{x : |x| \leq a\}$$

and assume that $A_{\lambda} \subset A$ ($\lambda \in \Lambda$) is a CAUCHY system by \mathfrak{B} . Then we can find $\lambda_{\nu} \in \Lambda$ ($\nu = 1, 1, \cdots$) such that

$$\sup_{v,v\in A_{\lambda_{\nu}}} ||x-y||_{v_{\nu}} \leq \frac{1}{\nu} \qquad (\nu = 1, 2, \cdots).$$

For such $\lambda_{\nu} \in \Lambda(\nu=1, 2, \cdots)$ we can find

$$a_{\mu} \in \prod_{\nu=1}^{\mu} A_{\lambda \nu} \qquad (\mu = 1, 2, \cdots).$$

As $V_{\nu+1} \times V_{\nu+1} \subset V_{\nu}$, we conclude by the formula §2(5)

$$\left\|\left(\sum_{\nu=\mu}^{\sigma}|a_{\nu+1}-a_{\nu}|\right)\right\|_{\nu=1}\leq \max_{\mu\leq\nu\leq\sigma}\|a_{\nu+1}-a_{\nu}\|_{\nu}\leq \frac{1}{\mu}$$

On the other hand we have

$$\bigcup_{\nu=\mu}^{\sigma} a_{\nu} - a_{\mu} = \bigcup_{\nu=\mu}^{\sigma} (a_{\nu} - a_{\mu}) \leq \sum_{\nu=\mu}^{\sigma} |a_{\nu+1} - a_{\nu}|$$

and hence $\left\|\bigcup_{\nu=\mu}^{\sigma} a_{\nu} - a_{\mu}\right\|_{\nu_{\mu-1}} \leq \frac{1}{\mu}$. This relation yields by 4) in §2

$$\left\|\bigcup_{\nu=\mu}^{\infty}a_{\nu}-a_{\mu}\right\|_{\nu=1}\leq\frac{1}{\mu}\qquad(\mu=2,3,\cdots)$$

We obtain likewise

$$\left|a_{\mu}-\bigcap_{\nu=\mu}^{\infty}a_{\nu}\right|_{\nu=1}\leq\frac{1}{\mu}\qquad (\mu=2,3,\cdots).$$

Consequently we have by the formula $\S2(5)$

$$\left\|\bigcup_{\nu=\mu}^{\infty}a_{\nu}-\bigcap_{\nu=\mu}^{\infty}a_{\nu}\right\|_{\nu}\leq\frac{1}{\mu}\qquad (\mu=3,4,\cdots).$$

Thus, putting $l_{\mu} = \bigcup_{\nu=\mu}^{\infty} a_{\nu} - \bigcap_{\nu=\mu}^{\infty} a_{\nu}$, $l = \bigcap_{\mu=1}^{\infty} l_{\mu}$, we obtain $||l||_{\nu_{\mu-n}} \leq \frac{1}{\mu}$ for every $\mu = 3, 4, \cdots$. As $||x||_{\nu_{1}} \leq ||x||_{\nu_{2}} \leq \cdots$ by §2(4), we conclude hence $||l||_{\nu_{\mu}} = 0$ for every $\mu = 1, 2, \cdots$, and hecce l = 0, as \mathfrak{B} is separative by assumption. Therefore there exists $a \in R$ such that $\lim_{\nu \to \infty} a_{\nu} = a$, and naturally $a \in A$. Furthermore we have

$$||a-a_{\mu}||_{\mathcal{V}_{\mu-2}} \leq \frac{1}{\mu}$$
 for every $\mu=3, 4, \cdots,$

because $\bigcup_{\nu=\mu}^{\infty} a_{\nu} \ge a \ge \bigcap_{\nu=\mu}^{\infty} a_{\nu}$. This relation shows that A_{λ} ($\lambda \in \Lambda$) is convergent to a by \mathfrak{B} .

Now we consider the general case. Let $A_{\lambda} \subset A(\lambda \in \Lambda)$ be an arbitrary CAUCHY system by \mathfrak{B} and $V_{\nu} \in \mathfrak{B}(\nu=1, 2, \cdots)$ an arbitrary decreasing sequence. By virtue of Theorem 2.3, we can find a normal manifold $N_{V_1,V_2,\cdots}$ of R such that the system $||x||_{V_{\nu}}(\nu=1, 2, \cdots)$ is proper in $N_{V_1,V_2,\cdots}$ and $||x||_{V_{\nu}}=0$ for every $x \in N_{V_1,V_2,\cdots}^{\perp}$ and $\nu=1, 2, \cdots$. Recalling Theorem 2.1, we can find then a linear topology $\mathfrak{B}_{V_1,V_2,\cdots}$ on $N_{V_1,V_2,\cdots}$ such that $[N_{V_1,V_2,\cdots}]V_{\nu}(\nu=1,2,\cdots)$ is a basis of $\mathfrak{B}_{V_1,V_2,\cdots}$. This linear topology $\mathfrak{B}_{V_1,V_2,\cdots}$ is obviously sequential and separative by Theorem 2.4. Furthermore, as $[N_{V_1,V_2,\cdots}]A_{\lambda}(\lambda \in \Lambda)$ is a CAUCHY system by $\mathfrak{B}_{V_1,V_2,\cdots}$, there exists uniquely a limit $a \in [N_{V_1,V_2,\cdots}]A$ of $[N_{V_1,V_2,\cdots}]A_{\lambda}(\lambda \in \Lambda)$, as proved just above.

Corresponding to every decreasing sequence $V_{\nu} \in \mathfrak{B} \ (\nu=1, 2, \cdots)$, we obtain thus uniquely a normal manifold $N_{V_1, V_2, \cdots}$ and a limit $a_{V_1, V_2, \cdots} \in [N_{V_1, V_2, \cdots}]A$ of $[N_{V_1, V_2, \cdots}]A_{\lambda} \ (\lambda \in \Lambda)$. We see further by Theorem 3.2 that for every two decreasing sequences V_{ν} and $U_{\nu} \in \mathfrak{B}(\nu=1, 2, \cdots)$, we have

$$[N_{V_1,V_2,\cdots}][N_{U_1,U_2,\cdots}]a_{V_1,V_2,\cdots} = [N_{V_1,V_2,\cdots}][N_{U_1,U_2,\cdots}]a_{U_1,U_2,\cdots}.$$

Therefore we can find $a \in A$ such that

 $[N_{V_1,V_2,\cdots}]a = a_{V_1,V_2,\cdots}$

for every decreasing sequence $V_{\nu} \in \mathfrak{B} (\nu=1, 2, \cdots)$. Such $a \in A$ is a limit of A_{λ} ($\lambda \in \Lambda$). Because, for any $V \in \mathfrak{B}$ we can find a decreasing sequence $V_{\nu} \in \mathfrak{B} (\nu=1, 2, \cdots)$ such that $V \supset V_1 \times V_1$, and $\lambda \in \Lambda$ such that

$$\sup_{x\in [N_{V_1,V_2},...]^A_\lambda} ||x-a_{V_1,V_2},...||_{V_1} \leq 1$$
 ,

and hence $\sup_{x \in A_{\lambda}} ||[N_{V_1, V_2, \cdots}](x-a)||_{V_1} \leq 1$. As

 $\| [N_{ec{v}_1, ec{v}_2, \cdots}](x\!-\!a) \|_{ec{v}_1} = 0$,

we obtain by \$2(5)

$$\sup_{x\in A_2} \|x-a\|_{\mathcal{V}} \leq 1 ,$$

that is, $|x-a| \in V$ for every $x \in A_{\lambda}$. Therefore A is complete by \mathfrak{B} .

Theorem 3.4. $\{x : a \leq x \leq b\}$ is complete by every linear topology \mathfrak{B} for every two elements $a \leq b$.

Proof. Putting $A = \{x : |x| \leq |a| + |b|\}$, $B = \{x : a \leq x \leq b\}$, we have obviously $B \subset A$ and A is complete by \mathfrak{B} on account of Theorem 3.3. For a CAUCHY system $A_{\lambda} \subset B(\lambda \in A)$ there exists hence a limit $c \in A$ of A_{λ} ($\lambda \in A$), and then we obtain by Theorem 3.1 that $(c \subset a) b$ is a limit of

$$(A_{\lambda} \subset a) b = A_{\lambda} \qquad (\lambda \in \Lambda),$$

and it is evident that $(c \lor a) \frown b \in B$. Therefore B is complete by \mathfrak{B} .

§4. Topologically bounded manifolds

A manifold A of R is said to be topologically bound by a linear topology \mathfrak{B} , if

$$\sup_{x\in A} ||x||_{\mathcal{V}} < +\infty$$
 for every $\mathcal{V}\in\mathfrak{B}$.

With this definition, it is obvious by the formula 2(4) that a manifold A is topologically bounded by a linear topology \mathfrak{B} , if and only if for a basis \mathfrak{B} of \mathfrak{B} we have

$$\sup_{x \in A} ||x||_{\mathcal{V}} < +\infty \qquad \text{for every } V \in \mathfrak{B}.$$

We can prove easily by definition

Theorem 4.1. If a manifold A is topologically bounded by a linear topology \mathfrak{B} , then all A^+ , A^- , |A|, αA , [N]A are topologically bound by \mathfrak{B} for every real number α and projection operator [N]. If both manifolds A and B are topologically bounded by \mathfrak{B} , then all $A^{\vee}B$, $A_{\frown}B$, and $A \times B$ are topologically bounded by \mathfrak{B} .

A manifold A of R is said to be order bound or merely bounded, if we can find a positive element $a \in R$ such that $|x| \leq a$ for every $x \in A$. Every bounded manifold is obviously topologically bounded by every linear topology.

A linear topology \mathfrak{B} on R is said to be monotone complete, if for any

topologically bounded manifold of positive elements $a_{\lambda}\uparrow_{\lambda\in\Lambda}$, we can find $a\in R$ such that $a_{\lambda}\uparrow_{\lambda\in\Lambda}a$.

Theorem 4.2. If a linear topology \mathfrak{V} on R is monotone complete, then R is complete by \mathfrak{V} .

Proof. Let A_{λ} ($\lambda \in \Lambda$) be a CAUCHY system by \mathfrak{B} . We suppose firstly that \mathfrak{B} is separative. As $A_{\lambda}^{+}(\lambda \in \Lambda)$ also is by Theorem 3.2 a CAUCHY system, corresponding to every $x \ge 0$, we obtain uniquely by Theorem 3.3 a limit a_x of a CAUCHY system $A_{\lambda}^{+} \frown x$ ($\lambda \in \Lambda$). For this limit a_x , we have obviously by Theorem 3.1 $0 \le a_x \uparrow_{x \ge 0}$. Furthermore the system a_x ($x \ge 0$) is topologically bounded by \mathfrak{B} . Because for any $V \in \mathfrak{B}$ we can find by definition $U \in \mathfrak{B}$ such that $U \times U \times U \times U \subset V$, and $\lambda_1 \in \Lambda$ such that $||y-z||_{v} \le 1$ for every $y, z \in A_{\lambda_1}^{+}$, and hence by $\S 2(5) \sup_{y \in A_{\lambda_1}^{+}} ||y||_{v \times v} < +\infty$.

For any $x \ge 0$ well_{$v \times v$} can find by definition, $\lambda_2 \in \Lambda$ such that

 $\|a_x - z\|_{U imes U} \leq 1$ for every $z \in A^+_{\lambda_2} \cap x$.

For an element $b \in A_{\lambda_1}^+ A_{\lambda_2}^+$, we have then by §2(5)

$$||a_x||_{\mathcal{V}} \leq \max\{1, ||b_{\frown}x||_{\mathcal{V} \times \mathcal{V}}\} \leq \max\{1, ||b||_{\mathcal{V} \times \mathcal{V}}\}$$
 ,

and hence $||a_x||_{\mathcal{V}} \leq \max \{1, \sup_{y \in A_{\lambda_1}^+} ||y||_{\mathcal{V} \times \mathcal{V}} \}$ for every $x \geq 0$.

Therefore there exists by assumption $a \in R$ such that $a_x \uparrow_{x \ge 0} a$. As we have by Theorem 3.1

$$a_{x\, \frown}\, y = a_{x \cap y}$$
 for every $x, y \geqq 0$,

we obtain $a \ x = a_x$ for every $x \ge 0$. For any $V \in \mathfrak{B}$ we can find $U \in \mathfrak{B}$ such that $U \times U \subset V$, and further $\lambda_0 \in \Lambda$ such that

$$\sup_{y,z\in A_{\lambda_0}^+} ||y-z||_v \leq 1.$$

Thus, for any $y \in A_{\lambda_0}^+$, putting $x = y^{\smile} a$, we can find $\lambda_1 \in \Lambda$ such that

$$\sup_{z \in A_{\lambda_1}^+} ||z_{\frown} x - a||_{\scriptscriptstyle U} = \sup_{z \in A_{\lambda_1}^+} ||z_{\frown} x - a_x||_{\scriptscriptstyle U} \leq 1 ,$$

and for $z \in A_{\lambda_0}^+ A_{\lambda_1}^+$ we have

$$||y-z_{n}x||_{v} = ||y_{n}x-z_{n}x||_{v} \le ||y-z||_{v} \le 1$$

Consequently we obtain by \$2(5)

$$\|y-a\|_{\mathcal{V}} \leq 1$$
 for every $y \in A^+_{\lambda_0}$.

Therefore a is a limit of $A_{\lambda}^{+}(\lambda \in \Lambda)$. We obtain likewise a limit b of A_{λ}^{-}

 $(\lambda \in \Lambda)$. Thus we see by Theorem 3.1 that a-b is a limit of A_{λ} ($\lambda \in \Lambda$).

In general, we can find by Theorem 2.3 a normal manifold N of R, such that the system of pseudo-norms $||x||_{\nu}(V \in \mathfrak{B})$ is proper in N and $||x||_{\nu} = 0$ for every $x \in N^{\perp}$ and $V \in \mathfrak{B}$. Then there exists a limit $a \in N$ of $[N]A_{\lambda}$ ($\lambda \in \Lambda$), as proved just above. This limit a also is a limit of A_{λ} ($\lambda \in \Lambda$), because for any $V \in \mathfrak{B}$ we can find $U \in \mathfrak{B}$ such that $U \times U \subset V$, and we have by §2 (5) for every $x \in R$

$$||x-a||_{V} \leq ||[N]|x-a||_{V}$$
.

A linear topology \mathfrak{B} on R is said to be *complete*, if R is complete by \mathfrak{B} . We can state then by Theorem 4.2 that every monotone complete linear topology is complete.

Theorem 4.3. If a linear topology \mathfrak{B} on R is separative, convex, and complete, and a manifold A of R is topologically bounded by \mathfrak{B} , then we have for every positive vicinity W

$$\sup_{w \in A} ||x||_{W} < +\infty$$

Proof. If $\sup_{x \in A} ||x||_{W} = +\infty$, then we can find $x_{\nu} \in A(\nu = 1, 2, \cdots)$ such that $||x_{\nu}||_{W} \ge \nu 2^{\nu}$ for every $\nu = 1, 2, \cdots$. As A is by assumption topologically bounded by \mathfrak{B} , we have obviously $\sum_{\nu=1}^{\infty} \frac{1}{2^{\nu}} ||x_{\nu}||_{\nu} < +\infty$ for every $V \in \mathfrak{B}$. As \mathfrak{B} is convex and complete by assumption, we can find $a \in R$ such that

 $\lim_{\mu\to\infty} \left\| \sum_{\nu=1}^{\mu} \frac{1}{2^{\nu}} |x_{\nu}| - a \right\|_{\nu} = 0 \quad \text{for every } V \in \mathfrak{B}.$

As \mathfrak{B} is separative by assumption, we conclude easily that $a = \sum_{\nu=1}^{\infty} \frac{1}{2^{\nu}} |x_{\nu}|$, and hence we have

$$\|a\|_{W} \ge rac{1}{2^{
u}} \|x_{
u}\|_{W} \ge
u$$
 for every $u = 1, 2, \dots,$

contradicting $||a||_{W} < +\infty$.

§5. Equivalence

A linear topology \mathfrak{B} on R is said to be *equivalent* to a linear topology \mathfrak{A} on R, if \mathfrak{B} has the same topologically bounded manifolds with \mathfrak{U} , that is, a manifold A is topologically bounded by \mathfrak{B} if and only if A is so by \mathfrak{U} . With this definition, we have obviously

Theorem 5.1. If a linear topology B is monotone complete, then every

linear topology equivalent to \mathfrak{B} is also monotone complete.

We shall say that a linear topology \mathfrak{B} on R is stronger than a linear topology \mathfrak{U} on R, or that \mathfrak{U} is weaker than \mathfrak{B} , if $\mathfrak{B} \supset \mathfrak{U}$. With this definition we have obviously by Theorem 4.3.

Theorem 5.2. If a linear topology \mathfrak{B} is separative, convex, and complete, then every linear topology stronger than \mathfrak{B} is equivalent to \mathfrak{B} .

By virtue of Theorem 1.1, we see easily that there exists uniquely a linear topology \mathfrak{B} of which the totality of convex vicinity in R is a basis. This linear topology \mathfrak{B} is called the *strong topology* of R. With this definition, we have obviously that the strong topology of R is the strongest convex linear topology on R, that is, the strong topology of R is stronger than every other convex linear topology on R.

Recalling Theorem 5.2, we obtain at once

Theorem 5.3. If a linear topology \mathfrak{B} on R is separative, convex, and complete, then \mathfrak{B} is equivalent to the strong topology of R.

Theorem 5.4. If a linear topology \mathfrak{B} on R is sequential and equivalent to a linear topology \mathfrak{U} on R, then \mathfrak{B} is stronger than \mathfrak{U} .

Proof. Let $V_{\nu} \in \mathfrak{B}(\nu=1,2,\cdots)$ be a decreasing basis of \mathfrak{B} . If \mathfrak{B} is not stronger than \mathfrak{U} , then we can find $U \in \mathfrak{U}$ such that $U \in \mathfrak{B}$. For such U, there is a sequence $a_{\nu} \in R$ ($\nu=1,2,\cdots$) such that

 $\nu U \bar{\ni} a_{\nu} \in V_{\nu}$ for every $\nu = 1, 2, \cdots$,

and hence we have by the formulas (2), (3) in §2

 $||a_{\nu}||_{\mathcal{V}_{\nu}} \leq 1, ||a_{\nu}||_{\mathcal{D}} \geq \nu$ for every $\nu = 1, 2, \cdots$.

Then $\{a_1, a_2, \dots\}$ is a bounded by \mathfrak{B} but not by \mathfrak{U} , contradicting assumption. On account of this Theorem 5.4, we conclude by Theorem 5.3

Theorem 5.5. If a linear topology \mathfrak{B} on R is sequential, separative, convex, and complete, then \mathfrak{B} is the strong topology of R.

§6. Continuous linear topologies

A pseudo-norm ||x|| on R is said to be *continuous*, if $R \ni x_{\nu} \downarrow_{\nu=1}^{\infty} 0$ implies $\lim_{\nu \to \infty} ||x_{\nu}|| = 0$. A linear topology \mathfrak{B} on R is said to be *continuous*, if the preudo-norm $||x||_{\nu}$ is continuous for every $V \in \mathfrak{B}$. With this definition, we see at once by the formulas (3), (4) in §2 that \mathfrak{B} is continuous if and only if for a basis \mathfrak{B} of \mathfrak{B} , the pseudo-norm $||x||_{\nu}$ is continuous for every $V \in \mathfrak{B}$.

Theorem 6.1. If a linear topology \mathfrak{B} on R is sequential, separative and

continuous, then R is superuniversally continuous, that is, for any system of positive elements $a_{\lambda} \in R$ ($\lambda \in \Lambda$) we can find countable $\lambda_{\nu} \in \Lambda$ ($\nu = 1, 2, \cdots$) such that $\bigcap_{\nu=1}^{\infty} a_{\lambda_{\nu}} = \bigcap_{\lambda \in \Lambda} a_{\lambda}$.

Proof. Let $V_{\nu} \in \mathfrak{B}(\nu=1,2,\cdots)$ be a decreasing basis of \mathfrak{B} . $0 \leq x_{\lambda} \downarrow_{\lambda \in \Lambda}$ implies then

 $\inf_{\lambda \in \Lambda} \{ \sup_{x_{\sigma} \leq x_{\lambda}} ||x_{\lambda} - x_{\sigma}||_{v_{\nu}} \} = 0 \qquad \text{for every} \quad \nu = 1, 2, \cdots.$

Because, if $0 \leq x_{\lambda} \downarrow_{\lambda \in A}$ and

$$\inf_{{\boldsymbol{\lambda}}\in{\boldsymbol{\Lambda}}} \{ \sup_{{\boldsymbol{x}}_{\sigma} \leq {\boldsymbol{x}}_{{\boldsymbol{\lambda}}}} ||{\boldsymbol{x}}_{{\boldsymbol{\lambda}}} - {\boldsymbol{x}}_{\sigma}||_{{\boldsymbol{v}}_{{\boldsymbol{\nu}}}} \} \geqq \varepsilon > 0$$

for some ν , then we can find $\lambda_{\mu} \in \Lambda(\mu = 1, 2, \cdots)$ such that

$$x_{\lambda_1} \geq x_{\lambda_2} \geq \cdots, \quad ||x_{\lambda_{\mu}} - x_{\lambda_{\mu+1}}||_{\nu_{\nu}} \geq \varepsilon \qquad (\mu = 1, 2, \cdots).$$

Then, putting $x_0 = \bigcap_{\mu=1}^{\infty} x_{\lambda\mu}$, we have $x_{\lambda\mu} - x_0 \downarrow_{\mu=1}^{\infty} 0$, but

$$||x_{\lambda_{\mu}} - x_0||_{\nu_{\nu}} \ge ||x_{\lambda_{\mu}} - x_{\lambda_{\mu+1}}||_{\nu_{\nu}} \ge \varepsilon$$

for every $\mu = 1, 2, \cdots$, contradicting the assumption that \mathfrak{B} is continuous. Therefore for $0 \leq x_{\lambda} \downarrow_{\lambda \in \Lambda}$ we can find $\lambda_{\nu} \in \Lambda (\nu = 1, 2, \cdots)$ such that $x_{\lambda_{\nu}} \downarrow_{\nu=1}^{\infty}$ and

$$\sup_{x_{\sigma} \leq x \lambda_{\nu}} ||x_{\lambda_{\nu}} - x_{\sigma}||_{\nu_{\nu}} \leq \frac{1}{2^{\nu}} \quad \text{for every} \quad \nu = 1, 2, \cdots.$$

Then, putting $x_0 = \bigcap_{\nu=1}^{\infty} x_{\lambda_{\nu}}$, we have for every $\sigma \in A$

$$||\boldsymbol{x}_{\boldsymbol{\lambda}_{\nu}}-\boldsymbol{x}_{\boldsymbol{\sigma}_{\nu}}\boldsymbol{x}_{\boldsymbol{\sigma}}||_{\boldsymbol{\nu}_{\nu}} \leq \frac{1}{2^{\nu}} \qquad (\nu=1,2,\cdots),$$

because $x_{\lambda_{\nu}} - x_{\lambda_{\mu}} - x_{\sigma} \uparrow_{\mu=1}^{\infty} x_{\lambda_{\nu}} - x_{\sigma} - x_{\sigma}$, $||x_{\lambda_{\nu}} - x_{\lambda_{\mu}} - x_{\sigma}||_{\nu_{\nu}} \leq \frac{1}{2^{\nu}}$ for $\mu \geq \nu$. Thus we obtain naturally for every $\sigma \in \Lambda$

$$||x_0-x_0 x_\sigma||_{\nu_{\nu}} \leq \frac{1}{2^{\nu}} \qquad (\nu=1,2,\cdots).$$

As \mathfrak{B} is separative by assumption, we obtain hence $x_0 - x_0 - x_{\sigma} = 0$, and consequently $x_0 \leq x_{\sigma}$ for every $\sigma \in A$. Therefore $x_{\lambda} \downarrow_{\lambda \in A} x_0$.

Theorem 6.2. If a linear topology \mathfrak{B} on R is continuous, then $a_{\lambda} \downarrow_{\lambda \in A} 0$ implies $\inf ||a_{\lambda}||_{\nu} = 0$ for every $V \in \mathfrak{B}$.

Proof. For any $V \in \mathfrak{B}$ we can find a decreasing sequence $V_{\nu} \in \mathfrak{B}$ $(\nu=1,2,\cdots)$ such that $V_1 \times V_1 \subset V$. For such $V_{\nu} \in \mathfrak{B}$ $(\nu=1,2,\cdots)$, we can

find by Theorem 2.3 a normal manifold N of R such that the system of pseudo-norms $||x||_{V_{\nu}}$ ($\nu=1, 2, \cdots$) is proper in N and $||x||_{V_{\nu}}=0$ for every $x \in N^{\perp}$ and $\nu = 1, 2, \cdots$. Then the linear topology on N, of which $\{x : x \in N^{\perp} \}$ $||x||_{\nu_{\nu}} \leq 1, \ 0 \leq x \in N$ } ($\nu = 1, 2, \cdots$) is a basis, is obviously sequential, separative, and continuous. Thus N is superuniversally continuous by Theorem Therefore, if $R \ni a_{\lambda} \downarrow_{\lambda \in A} 0$, then we can find $\lambda_{\mu} \in \Lambda(\mu = 1, 2, \cdots)$ such **6.1**. that

$$[N]a_{\lambda_{\nu}}\downarrow_{\nu=1}^{\infty}0$$

and hence $\lim_{n \to \infty} ||[N] a_{\lambda_{\mu}}||_{\nu_1} = 0$, because \mathfrak{B} is continuous by assumption. As $||[N^{\perp}]a_{\lambda\mu}||_{\nu_1}=0$, we obtain hence by \$2(5)

$$\begin{aligned} ||a_{\lambda_{\mu}}||_{\nu} &\leq ||[N]a_{\lambda_{\mu}}||_{\nu}, & \text{for every } \mu = 1, 2, \cdots . \\ \text{y we have } \lim_{\mu \to \infty} ||a_{\lambda_{\mu}}||_{\nu} = 0. & \text{Thus we have naturally} \\ & \inf ||a_{\lambda}||_{\nu} = 0. \end{aligned}$$

$$\inf_{\lambda\in\Lambda}||a_{\lambda}||_{\nu}=0.$$

Theorem 6.3. If a linear topology \mathfrak{B} on R is sequential, separative, continuous, and complete, then R is regularly complete, that is, for any double sequence $a_{\nu,\mu} \downarrow_{\nu=1}^{\infty} 0 \ (\mu=1, 2, \cdots)$, we can find $\nu_{\mu} \ (\mu=1, 2, \cdots)$ such that $\sum_{\mu=1}^{\infty} a_{\nu_{\mu},\mu}$ is convergent.

Proof. Let $V_{\nu} \in \mathfrak{B}$ ($\nu = 1, 2, \cdots$) be a decreasing basis of \mathfrak{B} . If $a_{\nu, \mu} \downarrow_{\nu=1}^{\infty} 0$ $(\mu = 1, 2, \cdots)$, then we have

$$\lim_{\nu \to \mu} ||a_{\nu,\mu}||_{\nu_{\mu}} = 0 \qquad \text{for every} \quad \mu = 1, 2, \cdots.$$

because \mathfrak{B} is continuous by assumption. Thus we can find ν_{μ} ($\mu=1, 2, \cdots$) such that $a_{\nu_{\mu},\mu} \in V(\mu=1,2,\cdots)$. Then we have obviously

$$\sum_{\mu=\sigma}^{\rho} a_{\nu_{\mu},\mu} \in V_{\sigma-1} \qquad \text{for} \quad \rho > \sigma.$$

As \mathfrak{B} is complete and separative, we see easily that $\sum_{\mu=1}^{\infty} a_{\nu_{\mu},\mu}$ is con-Therefore R is regularly complete. vergent.

§7. Linear functionals

Let \mathfrak{B} be a linear topology on R. A linear functional φ on R is said to be topologically bounded by \mathfrak{B} , if $\sup |\varphi(x)| < +\infty$ for every topologically bounded manifold A.

For any positive element $a \in R$, $\{x : 0 \leq x \leq a\}$ is obviously topologically bounded by \mathfrak{B} . Thus we have

100

Consequentl

Theorem 7.1. If a linear functional φ on R is topologically bounded by \mathfrak{B} , then φ is bounded, that is,

$$\sup_{0\leq x\leq a} |arphi\left(x
ight)|<+\infty \qquad \qquad ext{for every} \quad a\geq 0\,.$$

Conversely we have

Theorem 7.2. If a linear topology \mathfrak{B} on R is separative, convex, and complete, then every bounded linear functional φ on R is topologically bounded by \mathfrak{B} .

Proof. Let φ be a positive linear functional on R. If φ is not topologically bounded by \mathfrak{B} , then we can find a sequence $a_{\nu} \geq 0$ ($\nu = 1$, 2,...) such that $\{a_1, a_2, \ldots\}$ is topologically bounded, but

$$\varphi\left(a_{\nu}\right) \geq \nu 2^{\nu}$$
 $(\nu = 1, 2, \cdots).$

Then we have obviously $\sum_{\nu=1}^{\infty} \frac{1}{2^{\nu}} ||a_{\nu}||_{\nu} < +\infty$ for every $V \in \mathfrak{B}$. As \mathfrak{B} is separative, convex, and complete by assumption, we obtain hence that $\sum_{\nu=1}^{\infty} \frac{1}{2^{\nu}} a_{\nu}$ is convergent, and putting $a = \sum_{\nu=1}^{\infty} \frac{1}{2^{\nu}} a_{\nu}$, we have that $\varphi(a) \ge \varphi\left(\frac{1}{2^{\nu}} a_{\nu}\right) \ge \nu$ for every $\nu = 1, 2, \cdots$, contradicting $\varphi(a) < +\infty$.

A linear functional φ on R is said to be *topologically continuous* by a linear topology \mathfrak{B} , if we can find $V \in \mathfrak{B}$ such that

$$\|\varphi(x)\| \leq \|x\|_{\nu}$$
 for every $x \in R$.

With this definition, we see at once by the formulas (3), (4) in §2 that a linear functional φ on R is topologically continuous by \mathfrak{B} , if and only if for a basis \mathfrak{B} of \mathfrak{B} we can find $V \in \mathfrak{B}$ and $\alpha > 0$ such that

$$\|\varphi(x)\| \leq \alpha \|x\|_{\mathcal{V}}$$
 for every $x \in \mathbb{R}$.

If a linear functional φ on R is topologically continuous by \mathfrak{B} , then φ is obviously by definition topologically bounded by \mathfrak{B} .

If a linear functional φ on R is universally continuous, that is, if $x_{\lambda}\downarrow_{\lambda\in A} 0$ implies $\inf_{\lambda\in A} |\varphi(x_{\lambda})| = 0$, then, putting

$$V=\{x: \sup_{|y|\leq x}|arphi(y)|\leq 1$$
 , $x\geq 0\}$,

we see easily that V is a convex positive vicinity. Thus we have

Theorem 7.3. If a linear functional φ on R is universally continuous, then φ is topologically continuous by the strong topology of R.

Recalling Theorem 6.2, we obtain immediately

Theorem 7.4. If a linear topology \mathfrak{B} on R is continuous, then every topologically continuous linear functional on R is universally continuous.

If a convex pseudo-norm ||x|| on R is not continuous, then we can find a linear functional φ on R such that

$$\sup_{|x|\leq 1}|arphi\left(x
ight)|\,<+\infty$$
 ,

but there is a sequence $a_{\nu} \downarrow_{\nu=1}^{\infty} 0$ for which we have $\lim_{\nu \to \infty} \varphi(a_{\nu}) > 0$. (c.f. MSLS Theorem 31.10). Therefore we have

Theorem 7.5. For a convex linear topology \mathfrak{B} on R, if every topologically continuous linear functional on R is continuous, then \mathfrak{B} is continuous.

§8. Reflexive linear topologies

Let R be a reflexive semi-ordered linear space and \overline{R} the conjugate space of R. For any positive $\overline{a} \in \overline{R}$, putting

(1)
$$V_{\bar{a}} = \{x : \bar{a}(x) \leq 1, x \geq 0\}$$
,

we obtain obviously a convex positive vicinity $V_{\bar{a}}$. For this $V_{\bar{a}}$ we have obviously

(2)
$$||x||_{\overline{P_a}} = \overline{a} (|x|)$$
 for every $x \in R$,

because $||x||_{p_{\bar{a}}} = \inf_{\xi \mid x \mid \in P_{\bar{a}}} \frac{1}{\xi} = \inf_{\bar{a}(\xi \mid x \mid) \leq 1} \frac{1}{\xi} = \bar{a}(|x|).$

Recalling Theorem 1.1, we see easily that there exists uniquely a linear topology \mathfrak{W} on R such teat the system $V_{\bar{a}} (0 \leq \bar{a} \in \bar{R})$ is a basis of \mathfrak{W} . This linear topology \mathfrak{W} is called the *absolute weak topology* of R. With this definition we have

Theorem 8.1. The absolute weak topology \mathfrak{W} of R is separative, convex, continuous, and monotone complete.

Proof. It is evident by definition that \mathfrak{W} is separative, convex, and continuous. If a system of positive elements $x_{\lambda} \uparrow_{\lambda \in \Lambda}$ is topologically bounded by \mathfrak{W} , then we have by the formula (2)

$$\sup_{\lambda \in A} \bar{a} (x_{\lambda}) = \sup_{\lambda \in A} ||x_{\lambda}||_{F_{\bar{a}}} < +\infty$$

for every positive $\bar{a} \in \bar{R}$. Therefore there exists $a \in R$ such that $x_{\lambda} \uparrow_{\lambda \in A} a$. (c.f. MSLS. Theorem 24.4)

Theorem 8.2. A manifold A of R is topologically bounded by the absolute weak topology \mathfrak{M} if and only if A is weakly bounded, that is,

$$\sup_{x\in A} |\overline{x}(x)| < +\infty \qquad \qquad for \ every \quad \overline{x}\in \overline{R} \ .$$

Proof. If A is weakly bounded, then we have

$$\sup_{x \in A} \bar{a} (|x|) < +\infty \qquad \text{for} \quad 0 \leq \bar{a} \in \bar{R}$$

(MSLS. Theorem 24.15). Thus we obtain by (2)

$$\sup_{x\in A}\|x\|_{V_{ar{a}}}<+\infty \qquad \qquad ext{for} \quad 0\leq ar{a}\in ar{R}$$
 ,

and hence A is topologically bounded by \mathfrak{W} . Conversely, if A is topologically bounded by \mathfrak{W} , then we have by (2)

 $\sup_{x\in A} |\bar{a}(x)| \leq \sup_{x\in A} |\bar{a}|(|x|) = \sup_{x\in A} ||x||_{V_{|\bar{a}|}} < +\infty,$

and hence A is weakly bounded.

Recalling Theorem 5.3, we obtain by Theorem 8.1

Theorem 8.3. The strong topology of R is separative and equivalent to the absolute weak topology of R.

A pseudo-norm ||x|| on R is said to be *reflexive*, if for

$$\overline{A} = \{\overline{x}: \sup_{\|x\| \leq 1} |\overline{x}(x)| \leq 1\}$$
 ,

we have $||x|| = \sup_{x \in \overline{A}} |\overline{x}(x)|$ for every $x \in R$. With this definition, we see at once that every reflexive pseudo-norm is convex.

Let $\overline{\mathfrak{M}}$ be the absolute weak topology of the conjugate space \overline{R} . For every topologically bounded manifold \overline{A} of \overline{R} by $\overline{\mathfrak{M}}$, putting

 $V = \{x : |\overline{x}| (x) \leq 1 \text{ for every } \overline{x} \in \overline{A}, x \geq 0\}$,

we see easily that V is a positive vicinity in R and the pseudo-norm $||x||_{v}$ is reflexive.

Theorem 8.4. If a pseudo-norm $||x|| (x \in R)$ is convex and continuous, then it is reflexive.

Proof. By virtue of BANACH's extension theorem, for any $a \in R$ we can find a linear functional φ on R such that

$$arphi\left(a
ight)=\left|\left|a
ight|
ight|$$
 , $\left|arphi\left(x
ight)
ight|\leq\left|\left|x
ight|
ight|$ for every $x\in R$.

As $||x|| (x \in R)$ is convex and continuous by assumption, we see by Theorem 6.2 that φ is universally continuous, and hence $\varphi \in \overline{R}$. Furthermore, putting

$$\overline{A}=\left\{ \overline{x}:\sup_{\|x\|\leq1}\left|\overline{x}\left(x
ight)
ight|\leq1
ight\}$$
 ,

we have obviously $\varphi \in \overline{A}$, and hence

$$\sup_{\overline{x}\in \overline{A}}|\overline{x}(a)|\geq arphi(a)=||a||$$

On the other hand, it is evident that $||a|| \ge \sup_{\bar{x} \in \bar{A}} |\bar{x}(a)|$. Thus we conclude $||a|| = \sup_{\bar{x} \in \bar{A}} |\bar{x}(a)|$ for every $a \in R$, that is, the pseudo-norm $||x|| (x \in R)$ is reflexive by definition.

A linear topology \mathfrak{B} on R is said to be *reflexive*, if there is a basis \mathfrak{B} of \mathfrak{B} such that $||x||_{\mathcal{V}}$ is reflexive for every $\mathcal{V} \in \mathfrak{B}$. With this definition, we have obviously by Theorem 8.4

Theorem 8.5. If a linear topology \mathfrak{B} on R is convex and continuous, then \mathfrak{B} is reflexive.

Consequently we obtain by Theorem 8.1

Theorem 8.6. The absolute weak topology of R is reflexive.

Theorem 8.7. If the strong topology of R is sequential, then it is reflexive.

Proof. Let V_{ν} ($\nu=1,2,\cdots$) be the convex decreasing basis of the strong topology of R. Putting

$$\overline{A}_{
u} = \{\overline{x}: \sup_{x\in V} \overline{x}(x) \leq 1, \quad 0 \leq \overline{x} \in \overline{R}\}$$
 ,

we see easily that every \overline{A}_{ν} ($\nu=1, 2, \cdots$) is topologically bounded by the absolute weak topology \mathfrak{B} of \overline{R} . Thus, putting

$$U_
u = \{x: \sup_{x\in A_
u} \overline{x}\,(x) \leq 1\,, \ 0 \leq x\,{\in}\,R\}$$
 ,

we obtain a convex positive vicinity U_{ν} in R such that $||x||_{\sigma_{\nu}}$ is reflexive. For any positive $\bar{a} \in \bar{R}$, putting

$$V_{ar{a}} = \{x: ar{a}(x) \leq 1, \quad 0 \leq x \in R\}$$
 ,

we obtain a convex vicinity $V_{\bar{a}}$ and hence we can find ν such that $V_{\bar{a}} \supset V_{\nu}$, because V_{ν} ($\nu=1, 2, \cdots$) is a basis of the strong topology of R. For such ν , we have obviously $\bar{a} \in \bar{A}_{\nu}$, and consequently $U_{\nu} \subset V_{\bar{a}}$. Therefore the convex linear topology \mathfrak{B} , of which U_{ν} ($\nu=1, 2, \cdots$) is a basis, is stronger than the absolute weak topology of R. Recalling Theorem 5.2, we see that \mathfrak{B} is monotone complete, and hence \mathfrak{B} coincides by Theorem 7.5 with the strong topology of R. Furthermore \mathfrak{B} is obviously reflexive. Consequently the strong topology of R is reflexive.

If a norm ||x|| on R is complete, that is, if the linear topology \mathfrak{B} , of which $\{x: ||x|| \leq 1, 0 \leq x \in R\}$ is a basis, is complete, then \mathfrak{B} is by Theorem 5.5 the strong topology of R, and hence reflexive by Theorem 8.7. Therefore we obtain.

Theorem 8.8. If there is a complete norm on R, then there exists a complete reflexive norm on R.