- LINEAR TOPOLOGIES ON SEMI-ORDERED
LINEAR SPACES

By

Hidegor6 NAKANO

Normed semi-order linear spaces are considered first by L. Kax-
ToROVITCH."” In this paper we shall consider hnear topologles on semi-
ordered linear spaces.

Let R be a linear space. A manifold VC R is called a vicinity, if
for any a€ R we can find € > 0 such that éa€ V for |¢] <e. A collec-
tion of vicinities {3 is said to be a linear topology on R if

1) UCVe® implies Ue 8,

2) U, Ve implies UVeS,

3) Ve implies éVeER for every real number &,

4) for any VEB we can find Ue€ B such that eUCV for |¢] <1,

5) for any Ve we can find U€RB such that Ux UCV,
adopting the notations: . »

U={x:2€U}, UxV={zx+y:x€U, yCV}

A subset BCL is called a basis of a linear topology B, if for any
Ve®B we can find Ue B and & >0 such that sUC V.

Let R be now a semi-ordered linear space and umversally con-

tinuous, that is, for any system of positive elements a, € R (4 € 4) there

exists aﬂ @, . In this paper we shall consider only such linear topologies
eAa .
6 on R that 8 have a basis composed only of vicinities V subject to

the conditions :
6) acV,|z|] Za implies z€V,
7) 0=a,€V(@A€A),a,]aieqsa implies a€V .
Here a; 1,¢,0 means that for any two-/h,zze/l we can find 1€ 4 such

that

ar Z 03, U &y, , anda:%/cltl .

For such a linear topology, we shall prove as a principal result
that the manifold {x: a < x < b} is complete as a uniform space .in WEeI’s
(1) L. Ka~torovircu: Lineare halbgeordnete Ridume, Math. Sbornik, 2 (44), (1937), 121- 168.
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sense.® . ‘ ‘_
For a vicinity V subject to the conditions 6),7), putting

1
ll2]ly = 1nf L TET

we obtain a pseudo-norm on R. A manifold ACR is said to b’-\ topo-
logically bounded, by a linear topology %, if sup llx|ly < + o= for every such

vicinity VeB. A linear topology & on R 1s said to be monotone complete,
if for any topologically bounded system 0=a, € R (1 € 4) such that a¢;7.¢c
we can find a€ B for which a,1:c,.0. With this definition, we can
prove that if a linear topology I is monotone complete, then R is
complete by B in Wemn’s sense. This result may be considered as a
generalization of the famous Riesz-FiscHeEr’s theorem about L,-spaces.

A vicinity V is said to be convex, if Vx VC2V. A linear topology
B is said to be conver, if B has a basis composed only of convex vicinities.
There exists a linear topology B8 on R of which the totality of convex
vicinities subject to the conditions 6), 7) is a basis. This linear topology
B is called the strong topology of R.. A linear topology B is said to be
sequential, if {5 has a basis composed of at most countable vicinities. We
shall prove that if a linear topology 98 is sequential, convex, complete,
and TI V={0}, then B is the strong topology of E. :

Let R be now reflexive and R its conjugate space. @ The so-
called weak. 11near topology of Rby R is not ahnear topology in our
sense. However there exists the weakest linear topology 9 among
our linear topologies by which every a € R is topologically continuous.
This linear topology ¥ is called the absolute weak topology of R, as the
system of vicinities {r:@(jz]) <1} for all pos1t1ve a€ R is a basis of
9% .. We. can prove that the absolute weak topology % of R is weaker
than the strong topology € of R, i.e., WWC &, but W is equivalent to
&, i.e., a manifold ACR is topolog1cally bounded by QB, if and only if
A is so by €.

' A pseudo-norm lle on R 1s sa1d to be reflexwe 1f for
= {@: sup |z (x)| =1},

we have ||z|] = sup |z (x)] . A linear topology 8 on R is said to bev
reflexive, if B has a basis B such that the pseudo-norm leHV is reflexive

2) A. WriL: Sur les espaces a structure uniforme, Actual. Sci. et Industr. Paris, (1938)
3) H. Naxawo: Modulared semi-ordered linear spaces, Tokyo Math Book Serles I (1950),
§22. This book vull be denoted by MSLS in this paper. S S : :
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for every VE®B . The absolute weak topology of R is reflexive. ~We
shall prove that if the strong topology of R is sequential, then it is
reflexive. This result is a generalization of the theorem: if there is
a complete norm on R, then there exists a complete reflexive norm on R.
We shall make use of notations in MSLS and the following notations:

A ={x*:x€ A}, A ={x:x€d}, |Al={|r]:xe€A},
Aé__ {~y: xEA YyEB}, A_B= {x,\y x€A,yeEB}.
‘ AxB—.{x+y xCA y € B}
for manifolds A Bof R.

§1. Linear topologies

‘Let R be a universally continuous semi-ordered linear space. A
set of positive elements V is said to be a positive. vicinity, if
- 1) for any a=0 we can find & >0 such that ea€ V,
2) 0=b=acV implies eV,
" 8) V>3a;11640 implies a€ V.
A positive vicinity V ‘is said to be c(mvex, 1f x,ye V,2+pu=1,

A, p =0 implies ix+puye V.

- With this definition, we see easily that if' Vis a p031t1ve vieinity
(convex), then &V also is a.positive vicinity (convex) for & >0, and for
two positive vicinity U, V(convex) both UV and Ux V are positive
vicinities (convex).

A collection B of positive vicinities is called a linear topology, if
1) UCVe implies Ue B,
2y U,Ve® implies UVe R,
-8, Ve B implies éVEPB for every £>0, t :
4" for anyVe QB 'We can find UC% such that U<xUCV.
For a linear topology B on R, a subset BCP is called ‘a basis of
B, if for any Vel we can find U€ B ane a>0 such that" aUC V With
th1s definition, we can prove easily
Theorem 1.1 If a collection of positive vicinities %satzsﬁes
1”7) for any U, V€ we can find WePB and a>0 such that aWC UV,
2”) for any Ve B we can find U€PB and a>0 such that Ux UC aV,
then there exists uniquely a linear topology B of which B is a basis.
A linear topology 8 is said to be convex, if I has a basis composed
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only of convex positive vicinities. A linear topology % is said to be
sequential, if B has a basis composed of at most countable positive vi-
cinities. A sequence of positive vicinities V, (v=1,2,---) is said to be
decreasing, if '

V,DVyu X Vi ' for every v=1,2,.

If a linear topology % is sequential, then we can find obviously by de-
finition a decreasing sequence V,€B(v=1,2,---) as a basisof 3. Such
a basis is called a decreasing basis of B. If V, € %(uzl,z‘;ﬁﬁ is a de-
creasing basis of 3, then for any V€L we can find v such that V,CV.
Because we can find by definition # and >0 such that eV,C V. For

such € >0, we can find »> ¢ such that —2—,}_T < &, and then we have
V,C o 1 _v.cev.cv,

because we have V,,D2V,,+; for every v=1,2,---.

A -decreasing basis V,€e B (v=1,2, ---) is said to be convex, if every
V,(»=1,2,--) is convex. With this definition, we see at once by de-
finition -

“Theorem 1.2. If a linear topology B is sequential and conver, then EB
has a convex decreasing basts.

A linear topology B is said to be of single vicinity if B has a basis
composed only of a single positive vicinity. With this definition we
have obviously

Theorem 1.3. If a linear topology B is of single vicinity and convex,
then there is a convex positive vicinity which is a basis of B.

§ 2. Pseudo-norms

A functional x|l (x€ R) on R is said to be a pseudo-norm on R, if

1) 0= ]|zll< + o0 for every z€R,
2) |zl <yl implies |z[=|lyll,
3) lléx||=1&l{l=]] - for every real number g,

4) 0=x3laesxr implies lle sup ||z .
A pseudo—norm [| 2] (a:eR) is said to be convex, if

lz+yll Szl +]1lyll for every x,yCR
For a pseudo-norm |/ z|| (x € R), putting
V={x: llx]|£1, =0},
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we se’e easily that V is a positive vicinity. Furthermore, if [lz||(x€ R)
is convex, then this positive vicinity V is convex. .

Conversely, for a positive vicinity V, putting

1 = inf & ,

(1) (E21E nf
we obtain a pseudo-norm [|z||y(x€R), which will be called the pseudo-
norm of V. With this definition, we see easily

2) V={z:(z|y=1, v=0}.

Furthermore we can prove easily

3) uxnw=%nx.nv for £>0,
(4) - VCU implies ||z|l,=||zll; for every z€R,
(5) Vx VCU implies ||z +y|ly < Max {l|z]ly, |[¥llr} -

By virtue of Theorem 1.1, we can prove easily

“Theorem 2.1. For a system of pseudo-nm‘ms [lel (A€ A) on R, if for
any A€ A we can find o€ A such that

lz+ylla =llzlls +1ylls for every w yeR,
then there exists uniquely a linear topology B on R such that the totality of
Vs, = (@1 [zlly, £1E=1,2,-, ), 220}

for every finite number of elements 1, € A(v=1,2, -, k) is a basis of B.

A pseudo-norm [|z|| (x€R) is said to be proper, if ||x|| =0 implies
=0. A pseudo-norm is called a norm, if it is convex and proper.

Theorem 2.2. For a convex pseudo-norm | z|| (x€R) there exists uniquely
a normal manifold N of R such that ||| (wCN) is proper in N and ||z||
=0 for every x€ N*.

Proof. Putting N = {z: ||z]|=0}, we see easily that N is a normal
manifold of R. For such N, it is evident that ||x||=0 for every z€N.
Conversely, if [[x||=0, then we have mnaturally €N, and hence [N!]
2=0. Thus ||z| is proper in N*. If |z|| is proper in a normal manifold
M and ||z||=0 for every x&eM?', then it is evident that M '=N.

A system of pseudo-norms |jz||, (A€ 4) is' said to be proper, if [z,
=0 for all 1€ 4 implies x=0. With this definition, we have °

Theorem 2.3. For a system of pseudo- “norms || 2 (26 A) on R, of for
any A€ A we can Jfind o€ 4 such that

let+ylla = llzlle+Ilylls Sfor every x,y€R,
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then there emsts uniquely o normal manifold N of R such that the system
|| (A€ A) is proper- in N and ||lz||,=0 for every 1€ 4 and x€N*«

- Proof. Putting M = {x: ||lz||,=0 for all 2€4}, we see easily that
M is a normal manifold of R and M* satisfies our requirement. Furthe-
rmore the uniqueness is obvious. '

We shall say that R is separated by a hnear tOpology %, or that. B
is sepamtwe if II V={0}. With this definition, we see at once

Theorem 2. 4 A linear topology B is separative, tf and only ¢ f for a
basis B of B, the system of pseudo-norms ||x||, (VEB) is proper. ~

§ 3. Completeness

" Let &5 be a linear tOpology on R. A system of manifolds A, (A€ 1)
is said to be a CAUCHY system by N, if II A, , =0 for every finite

y=1
number of elements 1,€4(r=1,2,--, r), and for any Ve we can find
A€ A such that

le—yleV for every x,y€A;.

A Cavucny system A, (1€ 4) is said to be convergent to a limit a€R,
if for any V€ we can find 1€ 4 such that

z—aleV for every xz€ 4,

If B is separative, then we see easily that the limit of a Cauvcay system
is uniquely determined, if it is convergent:.
 We see easily by definition that for a basis $ of B, a system of

manifolds 4, (A€ 4) is a Cavcny system by 8, if and only if H Aa ,3x0

for every finite number of elements 1,€4(»=1,2, -, &) and for any
VeP and >0 we can find 1€ 4 such that

Je—yllr<e for every z,y€A,;.

Furthermore we see that a Cauvcay system A, (A€ A) is convergent to
a limit a€ R, if and only if for any V€ B and ¢ >O we can find /IE A4
such that

lx—ally < e fer every melfgluav.e

By virtue of the formula §2(5), we can prove easily

Theorem 3.1. For two CAUCHY system A, and B, (A€ A), all AlvBa‘,
A, B, and A, xB, A€ A) are CAUCHY systems, furthermore, if A, and
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B, (A€ A) are convergent respectively to limits a and b, then A~ B, Ay ~ B,
and A, x B, (1€ A) are convergent to a~'b, a_b, and a+b respectzvely
We see further easily

- Theorem 3.2. For a CAUCHY system A, (AeA) all A%, A7,\A,l, aA,,
and [N]A, (A€ A) are CAUCHY systems for every real number a and projection
operator [N). If a CAUCHY system A, (A€ 4) is convergent to a limit a, then
A%, Az, |ALl, ad,, and [N] A, (26 /1) are convergent toa*,a, |al, an, and [N ]a
respectively.

A manifold 4 of R is said to be complete by a lmear topology B,
if every Cavucny system A,C A (A€A) is convergent to a limit a€ A.
With this definition we have

Theorem 3.3. For every positive element a€R, {x |z| < a} is complete
by 8.

Proof. We shall cons1der firstly the case where 3 is sequential and
separative. Let V,€ B (»=1,2,--) be a decreasing basis of 5. We set

A={z:]|z|Za}

and assume that 4, C A (1€4) is a CAUCHY system by 8. Then we can
find 1,€4(»=1,1,---) such that

1 —
.wgg‘gyﬂx yHV,,_—y— (*=1,2,-).
For such 1,€4(v=1,2, ---) 'we can find
| a};EH Aau - (’1——1 2,"')- 

As V,,“ x V,.2.CV,, we conclude by the formula §2(5)
. 1
l (2 la, i1 aul}

= max [[a,,;—a,llp, §7 .
On the other hand we have

FTE | rEVYv=oG

ygpa au*‘ U (@y—ay) = 2 |au+1 @y,

and hence Yoy —au | -é_/lf' This relation yields by 4) in §2
= 1 _
NS a—a) <X (1=2,3, ).
v=p Pp-i 7]
We obtain likewise
f a.—Nal <L (1=2,3, ).
v=i  [iWp—a H :
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Consequently we have by the formula §2 (5)

é_l; (1=3,4, ).

Vi-a #

U ay— N ay
Y=g

W=l

Thus, putting L= () ay— (1 a,, I= (3 I,, we obtain ||l||,,_ < L for
oY= y= r=1 ) 24

everv p=3,4,---. As |lzlly, Sllzl,, < - by §2 (4), we conclude hence
lILllp,, =0 for every p=1,2, -, and hecce 1 =0, as B is separative by
assumption. ‘Therefore there exists a€ B such that lima, =a, and

Y Poo
naturally a€ A. Furthermore we have
la—ayllp, _, gi for every px=3,4, -,
, T om ,

because G a, =a= yﬂ a, . This relation shows that A, (A€4) is con-
vergent xjcop‘a by 5. " ~ .‘ .
~ Now we congider the general case. Let A, C A(1€ ) be an arbitrary
Cauvcuy system by B and V,eB(»=1,2, ) an arbitrary decreasing
sequence. By virtue of Theorem 2.3, we can find a normal manifold
Ny, v, of R such that the system |z||,,(v=1,2,---) is proper in Ny, v, .
and |lz||,,=0 for every € Ny, . and v=1,2,.--. Recalling Theorem
2.1, we can find then a linear topology %,y . on Ny, s, .. such that
[Ny, v,..1V, (v=1,2,---) is a basis of By, y,,... This linear topology By, v,...
is obviously sequential and separative by Theorem 2.4. Furthermore,
as [Ny, 5,,..] Aa (A€ 1) is a Cavony system by %V]\,Vg,.v.., there exists uniquely
a limit a€ [Ny, r,,.] A of [Ny, v, .]As (A€4), as proved just above.
Corresponding to every decreasing sequence V, €% (»r=1,2, ---), we
obtain thus uniquely a normal manifold Ny, y . and a limit a, ;. €
[Ny, 1A of [Ny, y, .JA, (A€4). We see further by Theorem 8.2 that

for every two decreasing sequences V, and U,€B(»=1,2,---), we have
[NV] Vs ,] [NU,,UB ,] a'V,,n NS [NVx Va ,-_‘ [NU] U, ,_l Ay, Dy

Therefore we can find a€ A such that

[NV] V. ,] a':aV;-,V2 yoe

for every decreasing sequence V, €8 (v=1,2,---). Such a€A is a limit
of A, (A€4). Because, for any V€T we can find a decreasing sequence
" V,€B (v=1,2.---) such that VO V,x V;, and 1€ 4 such that

sup Hw_aV],V._,,"'HV] é 1 })
€Ny, p. .42

PR
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and hence sup LNy, ., ) (@—a)|y, =1. As

N, @)y, = 0,
we obtain by §2(5)

sup lz—ally,<1,

that is, |[z—a| €V for every z€A4,. Therefore A is complete by 8.
 Theorem 8.4. {r:asx<0b} is complete by every linear topology B for
every two elements a <b.

- Proof. Putting A={x:|z|<|a|+ 0|}, B={x: a_s_x§b} , we have
obviously BC A and A is complete by B on account of Theorem 3.3.
For a Cavcny system A,C B (1€ 4) there exists hence a limit c€A of
A, (A€ 1), and then we obtain by Theorem 3.1 that (c~a). b is a limit of

(A,~a) b=A4, (€4a),
and it is evident that (¢~a), b€B. Therefore B is complete by B.

§ 4. Topoloqmally bounded manifolds

A mamfold. A of R is said to be topologically bound by a llnear to-
pology %, if

sup x|y < + oo for every VeR..

With this definition, it is obvious by the formula §2(4) that a manifold
A is topologically bounded by a linear topology %, if and only if for
a basis B of B we have :

sup l'leV< + oo for every VeESB.
xEA

We can prove easily by definition

Theorem 4.1. If a manifold A is topologically bounded by a linear
topology B, then all A+, A-, |A|, a4, [N]A are topologically bound by B for
every real mumber a and projection operator [N]. If both manifolds A and
B are topologically bounded by B, then all AVB, A_B, and Ax B are topolo-
gically bounded by B.

A manifold A of R is said to be order bound or merely bounded, if
we can find a positive element a € R such that x| = a for every x€A,
Every bounded manifold is obviously topologically bounded by every
linear topology.

A linear topology 0B on R is said to be monotone complete, if for any
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topologically bounded manifold of positive elements #212e4, We can find
a € R such that a;{;c.0.

Theorem 4.2. If a linear topology 57% on R %8 monotone complete, then
R is complete by L. '

Proof. Let A, (A€ 4) be a Caucuy system by B. We suppose ﬁrstly
that B is separative. As A;(A1€4) also is by Theorem 3.2 a Caucry
system, corresponding to every =0, we obtain uniquely by Theorem
3.3 a limit a, of a Cavcny system A x (A€4d). For this limit a,, we
have obviously by Theorem 3.1 0 =<a.].z0. Furthermore the system
a, (x=0) is topologically bounded by 9. Bécause for any V€D we can
find by definition U€®B such that UxU x UxUCYV, and 4,€4 such that’

lly—2|ly<1 for every y, 2€ A;,, and hence by §2(5) sup IyHU,<0<—|—oo
_/GAI1 .

For any £=0 wel|yxr can find by deﬁmtlon, A€ A such that

|| & —ZHU,<0<1 for every zEA
For an element b€ A} ,A7,, we have then by §2 (5)

la.lly < Max {1, [[b-allor} <Max {1, [|blloxo} »

and hence ||a.|ly < Max {1, sup lylloxw} for every z=0.
yCAa,

Therefore there exists by assumption a € R such that al.z0t. As
we have by Theorem 8.1 :

Oy ~Y = Ganyy for every z,y=0,

we obtain a _z =a, for every x=0. For any V€V we can find UEP
such that Ux UC V, and further A€ 4 such that

sup Hy—zHUS 1.

yzeAl)
Thus, for any y€A;, puttmg r=y"a, we can find 1,€4 such that

sup ||z ~2— ally = sup (|2 z— %llo =
264y _ seAy

and for z€Aj} A}, we have
ly—z~2lly = lly~x—2-2lls = lly—2llv =1 .
Consequently we obtain by §2 (5)
lly—ally =1 for every yEA .
Therefore « is a limit of A} (1€ 4). We obtain likewise a 11m1t b of A,L
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(1€ 4). Thus we see by Theorem 3.1 that a —b is a limit- of A, (2€ ).

In general, we can find by Theorem 2.3 a normal manifold N of
R, such that the system of pseudo-norms [|z||,(VEDB) is proper in N
and |lz|l,=0 for every z€N' and Ve€®. Then there exists a limit
a€N of [N]A, (A€ 1), as proved just above. This limit a also is a limit
of A, (A€ /), because for any V€L we can find U€DB such that Ux ch v,
and we have by §2(5) for every v €R

lz—ally =[[IN]z—alls .

A linear topology B8 on R is said to be complete, if R is complete
by B. We can state then by Theorem 4.2 that every monotone com-
plete linear topology is complete.

Theorem 4.3. If a linear topology B on R is separative, convex, and
complete and a manifold A of R is topologwally bounded by 5, then we have
for every positive vwzmty W :

sup Hxllw< + oo .

Proof If sup llz|lp= + oo, then we can find z,€A(»=1,2,---) such
that e, [|w=1r2" for every v=1,2,.--, As A is by assumption t0polog1ca11y
bounded by %, we have obv1ously Z‘ 7 zylly < oo for every VeL.

V=1

As 3 is convex and complete by assumptlon, we can find ¢ € R such that

lim

preo

S LU Ixul—“H,ZO for every VEB.
ve1 2V - 14 ’

As B is separative by assumption, we conclude easily that a = i _21; |z, ,

V=1

and hence we have

lally = 5 12, [y = » for every v=1,2,,

contradicting ||a|ly < + .

§5. Equivalence

A linear topology 23 on R is said to be equivalent to a linear topology
1 on R, if B has the same topologically bounded manifolds with 1,
that is, a manifold 4 is topologically bounded by B if and only if A
is so by . With this definition, we have obviously

- Theorem 5.1. If a linear topology 5 is moniotone complete, then every
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linear topology equivalent to B is also monotone complete.

‘We shall say that a linear topology T on R is stronger than a linear
topology 1t on R, or that 1l is weaker than %, if BDOU. With this de-
finition we have obviously by Theorem 4.3. ~

Theorem 5.2. If a linear topology B is separative, convex, and complete,
then every linear topology stronger than B is equivalent to R.

By virtue of Theorem 1.1, we see easily that there exists uniquely
a linear topology ¥ of which the totality of convex vicinity in R is
a basis. This linear topology B is called the strong topology of R. With
this definition, we have obviously that the strong topology of R is the
strongest convex linear topology on R, that is, the strong topology of
R is stronger than every other convex linear topology on R.

Recalling Theorem 5.2, we obtain at once

Theorem 5.3. If a linear topology B on R is separative, convex, and
complete, then B3 is equivalent to the strong topology of R. :

Theorem 5.4. If a linear topology B on R is sequential and eqmvalent
to a linear topology Wt on R, then B is stronger than 1N

Proof. Let V,€B(+r=1,2,-:) be a decreasing basis of 6. If B is
not stronger than 11, then we can find U€ Nl such that U€WB. For such
U, there is a sequence a¢,€R (v=1,2,---) such that

vU3a,€V, . for every v=1,2,..-,
and hence we havh by the formulas (2), (3) in §2 ‘
k la,lly, =1, lla,llz=»  for every »=1,2,---.

Theh {ay, as,--} is a bounded by 5 but not by U, contradicting assumption.
On account of this Theorem 5.4, we conclude by Theorem 5.3

Theorem 5.5. If a linear topology 5 on R is sequential, separative, con-
vex, and complete, then L is the strong topology of R. ‘

§6. Continuous linear topologies .

A pseudo-norm [lz|| on R is said to be continuous, if Rax,ly-lo
implies lim ||z,|| =0. A linear topology & on R is said to be continuous,

Y oo

if the preudo -norm |||y is continuous for every Ve€®B. With this de-
finition, we see at once by the formulas (8), (4) in §2 that % is con-
tinuous if and only if for a basis B of B, the pseudo-norm []xHV is
continuous for every VeESB.

Theorem 6.1. If a linear topology B on R is sequential, sepamtwe and
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continuous, then R is superuniversally continuous, that is, for any system of
positz've elements a, € R (A € A) we can find countable 2,€ 4 (v=1, 2,---) such that

ﬂaay— N a,.

acA .
Proof. Let V,€B(v=1,2,---) be a decreasing basis of L.
0=x;]l1¢4 implies then

inf {sup (|xs —25lly,} =0 for every v=1,2,---.
€4 zg=2p

Because, if 0 éxm“ and

inf {sup ||, —x,lly,} =e>0
rcA wGle

for some », then we can find 1,€4(x=1,2,---) such that
0,200,200 [0, =Tl Z 8 (#=1,2,-).

Then, puttlng Ty = ﬂ “"M»’ we have x,,—x!,Z,0, but

”xap,_‘xo”Vy []xa,,, xﬁ.p,-‘-)”Vy €

for every /1.—1 2,---, contrad1ct1ng the assumptlon that 9§ is continuous.
Therefore for 0 <2;]l,c4 We.can find 1,€4(»=1,2,---) such that
x;,1,2: and
sup ’Hxay_xo”Vué-‘%; for every v=1,2,---

ma_zlu
‘Then, putting z, = ﬂ %, we have for every o€
Yy =1 .

Hvlu“%r\xo”mé —% (p:l, 2,-...),

o 1
because Z,,—%a, ~Tolp2i®a, —%o ~Tor |[Ta, —%a, ~Tslly, = for p=v.
Thus we obtain naturally for every o€ 4

oo —0 ~Tolly, < 5 (v=1,2,:").
As B is separative by assumption, we obtain hence. x,—x, 2, =0, and
consequently x, <, for every. c€ 4. Therefore x;|aca%-
Theorem 6.2. If a linear topology B on R is continuous, then a, }zec,0
implies inf |ja,|l,= 0 for every VeL.
rcAa

Proof. For any V€L we can find a decreasing sequence V, €B
(v=1,2,---) such that V;x V,CcV. For such V,€6(»=1,2,--), we can
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find by Theorem 2.8 a normal manifold N of R such that the system
of pseudo-norms [|x|ly‘u (v»=1,2,--) is proper in N and. lz|ly, =0 for every -
€N and v=1, 2, Then the linear topology on N, of which {z:
x|y, £1, 0Sz€EN} (u-l 2,--+) is a basis, is obviously sequential, separa-
tive, and continuous. Thus N is superuniversally continuous by Theorem
6.1. Therefore, if R3¢, l1¢40, then we can find 1,€4(x=1,2,--) such
that : '

\ _ [Naa, 1,20, | /
and hence lim IlN]eas ,llr,=0, because B is continuous by assumption.
As H[NL]aMHV,_-O we obtain hence by §2(5) '
' N Iy < Il[N]amlv, | for every p=1,2,
Consequently we have hm e, ,,,”VZO' Thus we have naturally
| mf lally=0.

Theorem 6. 3. If a lmea/r topology B on R s sequentzal separative, con- -
tinuous, and complete, then R s regularly complete, that s, for any double

sequence a,., |,2,0 (u=1,2,--), we can find v, (p=1,2,--) such that 3 a,,
- ) ' ' . ’ - N }L-l
28 convergent. ‘ ‘ ‘

Proof. Let V, €8 (»=1,2,---) be a decreasing basisof &. If a, ,|,2.0
(#x=1,2,.--), then we have o 4

lyl_fgllau B Iy, = 0

because % is continuous by assumption. Thus we can find v, (=12, ")
such that a,, ., €V (x=1,2,--). Then we have obviously

for every - nu=1,2,.--,

0
uﬁaam,»EV@q v for p=>o.

As  is complete and separative, we see easily that X a,,,, is con-
p=1 '

vergent. Therefore R is regularly complete.

§7. Linear functionals

Let ?13 be a linear topology on R. A linear functlonal ¢ on R is
said to be fopologically bounded by B, if sup l¢ (x)l< + oo for every topo-

logically bounded manifold A.
For any positive element a €R, {x : 0=x=<a} is obviously topologmally
bounded by B. Thus we have .
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'Thebrem 7.1. If a linear functional ¢ on R s topologically bounded by
BB, then ¢ ts bounded, that is,
| sup ](o (@)] < + o0 | for evéry a=0.

0Lx=a

Conversely we have

. Theorem 7.2, I f a linear }topolo‘gyy B on R is separative, convex, and
complete, then every bounded linear functional ¢ on R is topologically bounded
by B. ,
Proof. Let ¢ be a positive linear functmnal on R. If ¢ is not
topologically bounded by %, then we can find a sequence a,=0(r=1,
2,---) such that {a, a,---} is topologically bounded, but
¢(a;>>»2" (»=1,2,-).

Then we have obviously 21 57
yn
separatlve, convex, and complete by assumption, we obtain hence that
Zw} ia, is convergent, and putting a = ZDE ——1—
y=1 2U R y=l 2,,
= @ ( éu a >__v for every v=1 2,--+, contradicting ¢(a)<+°°

A linear functional ¢ on R is sald to be topologwally conlinuous by
a linear topology B, if we can find Ve such that :

Ila,,lly<+oo for every Ve, As 8 is

a,, we have that ¢ (a)

le@ =lizlly for every z€R.

W1th this definition, we see at once by the formulas (3), (4) in §2 that
a linear functional ¢ on R is topologically continuous by %, if and only
if for a basis B of B we can find VEPB and a>0 such that

le@)| = allzlly for every w€R.

If a linear functional ¢ on R is topologically continuous by £, then ¢
is obviously by definition topologically bounded by .

If a linear functional ¢ on R is wuniversally co'ntmuous, that is, if
Tz laea0 1mp11es 1nf le(x)] =0, then, putting :

V= {z:sup le@)| =1, 2=0},

we see eas11y that V is a convex positive v1cm1ty Thus we have

Theorem 7.3. If a linear functional ¢ on R s universolly contmuous,
then ¢ s topologzcally continuous by the strong topology of RE.
Recalling Theorem 6.2, we obtain immediately
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Theorem T7.4. If a linear topology ‘B on R 1is continuous, then every
topologically continuous linear functional on R s universally continuous.
If a convex pseudo-norm [|z|| on R is not continuous, then we can

find a linear functional ¢ on R such that

sup | ¢ (4)| < + oo,

[zf =1

but there is a sequence a,},2,0 for which we have 11m ¢(a,)> 0. (c.f.

MSLS Theorem 31. 10) Therefore we have

Theorem 7.5. For a convex linear topology B on R, if every topologically
continuous linear functional on R is continuous, then B is continuous.

§8. Reflexive linear topologies

Let R be a reflexive semi-ordered linear space and E the conjugate
space of R. For any positive a€ &, putting

(1) V., ={x: a(x) 1, =0},

we obtain obv1ously a convex posmve vicinity V,. For this V, we have
‘obviously . -

(2) ’ lzlly, =a (Jz]) " for every z€R,
because [lz]ly, = inf 1 = inf 1 _ = a(|z|) .
glzie v, § ace jzh=1 €

Recalling Theorem 1.1, we see easily that there exists unlquely
a linear topology #® on R such teat the system V,(0 <a@€R) is a basis
of 9. This linear topology ¥ is called the absolute weak topology of R.
With this definition we have

Theorem 8.1. The absolute weak topology ISB of R is separative, convex,
continuous, and monotone complete.

Proof. 1t is evident by definition that ¥ is separative, convex, and
continuous. If a system of positive elements «; | 1e4 is topologically
bounded by 8, then we have by the formula (2)

SUD @ (1) = 8UD |14 [ly, < + o0
for every positive @ €ER. Therefore there exists a € R such that x, Tae 4G,
(c.f. MSLS. Theorem 24.4)

‘Theorem 8.2. A manifold A of R is topologwally bounded by the absolute
weak topology W if and only +f A is weakly bounded, that is,

nglw(%)l<+“ for every meR.
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Proof. If A 'is weakly bounded, then we have
supa(l:cl)<+oo for 0<ageR-

(MSLS. Theorem 24.15). Thus we obtaln by (2)

suplIxHV@/+oo for 0<a€ekR,

and hence A is topologically bounded by 3®. Conversely, if A is topo-
logically bounded by ¥, then we have by (2)

sup |@ (x)| <sup |a@| (|z]) = sup ||z |ly, <+,
xC A xC A xzC A

and hence 4. is weakly bounded.
- Recalling Theorem 5.3, we obtain by Theorem 8.1 ,
Theorem 8.3. The strong topology of R is separative and equivalent to

the absolute weak topology of R.
A pseudo-norm ||z|| on R is said to be reflexive, if for -

A= {=z: sup B (@) =1},

we have lell = sup |% (x)] for every x€R. Wlth this definition, we see

at once _that every reﬂexwe pseudo-norm is convex.
Let &% be the absolute weak topology of the conjugate space L.
For every topologically bounded manifold A of ‘B by %, putting

V={x:|z](x) =1 for every €A, 2= 0},

we see easily that V is a positive vicinity in R and.the pseudo-norm
|||y is reflexive.
. Theorem 8.4. If a pseudo-norm | x| (xeR) is convex and contmuous,

then it is reﬂexzve
-Proof. By virtue of BaxAcH’s extension theorem, for any a€ R we
can find a linear functjonal ¢ on R such that -

Ce(a) = llall, Je(x)] = x| for every z€R.

As llxi](xeR)' is convex and continuous by assumption, we see by
Theorem 6.2 that ¢ is universally continuous, and hence ¢ ER Further-
more, putting

A= {=m: sup |@ (z)| =1},

we have obviously ¢ €A, and hence
sup |z(a)| = ¢(a) = |la]| .
. Fc A4
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On the other hand, it is evident that [lal]. \sup |%(a)]. Thus we con-
clude |la]| = sup l@(a)] for every a € R, that is, the pseudo-norm Hxll (x € R)

is reflexive by definition.

A linear topology & on R is said to be 'reflemve, if there is a basis
B of B suck that [lz]], is reflexive for every Ve€B. With this deﬁn1t1on
we have obviously by Theorem 8.4

Theorem 8.5. If a linear topology B on R is convex and contmuous, then
B s reflexive.
Consequently we obtain by Theorem 8.1
Theorem 8.6. The absolute weak topology of R s reﬁexive
Theorem 8. 7 If the strong topology of R s sequential, then 4t is re-
Slexive. ‘
Proof. Let V,(»=1,2,---) be the convex decreasmg bas1s of the
strong tOpology of R. Putting
—{.')c supoo(ac)<1 ogo*ceie'}
xe Vy
we see easily that every A,(v=1,2,--)) is topologleally bounded by the
absolute weak tOpologv %3 of E. Thus, putting
U, = ={x:supz(@) =1, 0=x€ER},
zedy
we obtain a convex posttlve vicinity U, in R such that lzlly, is reflexive.
For any positive @ € B, putting

V, = (z:a(@)<1, 0<z€R},

we obtain a convex vicinity V, and hence we ean find v such that V,OV,,
because V, (+=1,2,---) is a basis of the strong topology of R. For such
v, we have obviously @€ A4,, and ‘consequently U,C V.. Therefore the
convex linear topology B, of which U, (v=1,2,---) is a basis, is stronger
than the absolute weak topology of R. Recalling Theorem 5.2, we see
that § is monotone complete, and hence coincides by Theorem 7.5
with the strong topology of R. Furthermore 83 is obvmusly reflexive.
Consequently the strong topology of R is reflexive. ,

If a niorm |jz|| on R is complete, that is, if the linear t0pology B,
of which {z:||z[|=1, 0 S«x€R} is a basis, is complete, then L is by
Theorem 5.5 the strong topology of R, and hence reﬂexwe by Theorem
8.7. Therefore we obtain. :

Theorem 8.8. If there is a complete norm on R then there exists a
complete reflexive norm on R. :



