- ON THE THEORY OF A RHEONOMIC CARTAN SPACE
By N

Michiaki KAWAGUCHI, ]Jr.

Introduction.

A Cartax space having its origin in the CARTAN’S paper * Les
espace dz métrigues fondés sur la mnotion d’aire” was developed by
many people, especially, L. Berwarp.®” In the present paper we
attempt to build up the geometry in this space from standpoint of the
rheonomic theory. In this space, its (n—1)-dimensional area is assumed
to be given a priori in such a way that it depends on a variation of
time. The geometrical quantities of this space depend on z*%,{, u,, %,.
If the time-area is independent of u,, then in every moment this space
reduces to a CARTAN space in ordinary sense, i.e. then this area is
nothing but that of a CArTaN space. Since %, may be interpreted as
a velocity of a small piece of hypersurface-element, we shall call u, a
velocity of the hypersurface-clement. As 4, is not invariant under a
rheonomic transformation, we introduce a invariant parameter v in
place of %,. This parameter v plays an important rdle in our theory.
The form of fundamental function L(x%,¢, u., %,) is rewritten in G(z*,
t, us, v) which is homogenous of degree one in wu, and lets us decide
the base connection, the connection-parameters, the curvature tensors
and identities of BiancHI in our space.

§ 1. Fundamental function.

In an n-dimensional rheonomic manifold X, with coordinates z*, ¢,
we consider a rheonomic hypersurface X,_; given by

(1.1) x“=x“(v‘jv?,---,v"-’,t) a=1 --+, n

and suppose that its measure of (n—1)-dimensional time-area in a

(1) L. Berwarp: Uber die #z-dimensionalen Carranschen Réume und eine Normalform der
zweiten Variation eines (2 — 1)-fachen Oberflichenintegrals, Acta Mathematica, 71 (1939), 191-248.
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certain region and time interval is defined by the integral

(1.2) 0= S Sgp(w“,—?v—:—, A ) t)dv‘ dy* ... dom'dt, 1 =1, .-, n—1
@ oV oL
extended over the region and time interval. Then we shall call the
manifold a rheonomic Carran space. Since (1.2) must be invariant
under the rheonomic transformation of parameters o =0, -, 0" D),
by using of Rapon’s® and Vivantr's® theorem, ¢ may be written in
the form L (z*,t, U, %), Which is positive and homogenous of degree
_221—— Oba-l 9z¢+1 - gxn

o o o | 20

one in ., 4, where u,=(—1)**
ox*
A

Under a rheonomic transformation #=% (v,?¢), 4. and %, vary in
the rule

_ | o= QV.UF _ __\ 9% ‘( ork )
(1. 3) Uy = o5 | 0%* Ug » Uy .. QB Uy + o Ug) »

Uq -

u():_

that is, u, is a vector density of weight —1 and u, is not a invariant.
We consider therefore the quantities #, and u, which depend on a
rheonomic hypersurface element but not necessarily on the hypersurface
(1. 1) itself, and which vary in the rule (1. 3) under a rheonomic
transformation. L must be there a scalar under a rheonomic
transformation and analytic in a certain region ¢#. L is called the
Surdamental function.

§ 2. Metric functions a®.

Since under a rheonomic transformation 39%—, gi‘ vary in the rule
[ 3 0
oL _(oL oz* . oL 955“)]9:: oL | ox | oL
Oitga  \Ouy 0XF 24y 9 0% o8, | 9@ | ou,

then

B 0@ or®
@ =% (a3+ 95)’

(1) J.Rapox: Uber einige Fragen betreffend die Theorie der Maxima und Minima mehr-
facher Integrale, Monatsh. f. Math. u. Phys, 22 (1911), 53-63. ‘

(2) G. ViwaxsT: Sull’equatione di Eulero per gli integrali multipli, Rend. Circ. Mat. Palermo,
33 (1912, 268 274.
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oL / oL
oug / Sy

putting of = —

§ 3. Parameter ¥ and metric functions g*#

Under a rheonomic transformation, the quantities

1 o oL? :>L" Qx" 2 ol oL ox* )]
ap —— _— —_ —
81 A 2 Loug \9u, ) "t S, (Su,, ou, ot J

vary as a contravariant tensor density of weight 2. Let us put 9[**
—aa*® where a=|a*? |, from which we can find a= 9" where 9l

= |9[*#|. Putting
1 oL

(3. 2) . V= ‘\/’a_ Dtte ’

we have an absolute scalar which is homogenous zero in u,, %. Assume
that u, can be solved from the above equation (3.2) in the form

(3.3) u, = F (z*, t, u,, V) ,

then we see pu,=F(z%,¢, pu,,v), that is, the function F' is homogenous
of degree one in u,. Putting (8.3) into L (z*, ¢, 4a,u,), the obtained
function G (z°,¢,u,,v) is homogenous of degree one in u. . In the
same manner «* can be brought to functions of z*,¢, U4, v, which are
homogenous of degree zero in u, too. Afterwards we shall represent
these functions by the same letters a*

Differentiating G with respect to ug, We have a contravarlant
tensor density of weight 2: G*& = %_’*_u—%_ . Put &*f = gg**
where g=1/|g**?|, from which we can find g:s@ﬁ?, where = |G*#],
then we have a contravariant tensor

3.4) - g ® =@5'ﬁ1‘1@5a3

which are homogenous of degree zero in u, and may take as the
fundamental metric tensor in our space. Then g.;, a, are defined by

9°F Gur = 0%, au = gap a’.
When L does not contain u;, this space reduces to a CARTAN space

for t = const..
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§ 4. Covariant differentiation.

We shall denote the covariant differentiation in the space with the
symbol D. Since the covariant differentiation is necessary to satisfy that
1. Dp = dp, where p is a strong scalar,
2. D(X+Y)=DX + DY, where X, Y are any strong vectors,
3. D(X-Y)=X-DY+ DX.Y,
we define ‘

(4.1) DX*=dX*+4+ 'k, XPdzY + Ch XP dt+ CAY XP du, + Ci X* dv.

In consequence of the geometrical meaning of u,, this differentiation
must be invariant under the transformation #,=pu,. By this reason
we suppose that I'f,, I't, C} are homogenous function of degree zero
in u, and C}iY of degree —1 and that C}Y u, vanish.

Let this connection be a euclidean connection, that is, when a
strong vector is transported parallel to itself, the length of this vector
be invariant. Then it must be that

9- « 'Jg * « A
r(.hv” =gapn TSy + 91T}y, —=AL ;gapcav‘*'gu Cyiv,
ox Ty
(4.2)
99 an

’ﬁﬁ:gappj\"*'glarﬁ’ :g“}’“c‘;_}-glacﬁ'

ot ov

Supposing that C;,.Y, C;. are symmetry with respect to 2, x, we
have

1 9%g 1 99;u
(4.3) Ciny =5 S Cu="3

§ 5. The normal unit vector.

From (3.4) we obtain

"G 2G 9G 2G
U, = G
DUq DUy DU, U Qug

ggGB Ua = (G
Multipling u, and summing with respect to 3, then we get

(5.1) 99*8 ug uy = G°
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‘ _ U, . “/7
(5. 2) l, = Vitua. =G U,

gives therefore a normal unit vector for the hypersurface u,. Putting

(5. 3) | ARV = —%: cL ,
which satisfy the relation

(5. 4) Alvlil, =0,
we obtain

(5. 5) Alvdl, = Ci¥du, .

Thus the covariant differentiation (4.1) becomes

(5.6) DX*= o X*+ I'l, X*dxY + 't XPdt + ALY X*d!, + CL X" dv.
The corresponding equation for the covariant components is - |

(6.7 DX, =dX, — '}, Xpda¥ — ' X dt — AV X, dl, — C% X, dv

and for I, we obtain '

(.7) Dl =dl — I}, de* — Ty dt— A Ldl, — Cydo

where I'%,l, = Iy, 'Sl =TI, ete.. Substituting (6.7) in (6.7)
and using (5.4), the covariant differentiation becomes '

(5. 8) DX, =dX, — X, (%, drY + AV DI, + 18 dt + C% dv)®
where we put ‘

(5.9) Ihy=T%, + Ty A8, T2 =%+ Ao Iy, CL=C% + A4 C%.
For X, =1, we have

(5. 10) DI, (6% + 1, A*) =dly — M dr® — 1% dt — CLdy.

Using (08 + I, A*) (o) — I, A®) = 6}, DI, is represented by

(5.11) Dl, = (6} — 1, AV (dl, — %5 dx® — 1% dt — C dv).

(1) Since (3.4) and (4.-3) give us the relation Ay°* = 2y A*, where A*» = A*% we see
easily ApdV Ay°8 =9,
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§ 6. Other two postulates of the covariant differentiation.
We consider the invariant differential form
6.1) ¢ = 11) (g2 p 0x? ix*‘) + D (g,p 0x* 6z*) — D (g, 6x* 5x*)
2 2 1 3 3 1 2
where the index 1, 2, 3 under the differential symbol D, 5 denote the

directions of the differentiations. They are here supposed to be
interchangeable, that is, deiln‘ = ddr* (a,b =1, 2, 8). If we choose
a ba

dt =dt =0, DI, =0 and dv =0, we have

¢ = 2gly[:<§c§x*+({(j#}+A.g,« ok ARS 1 — Ayt ) doo do®
6.2) : | :
» R a 790 . & 0 « \
({2 + A Pov a2 Po a3 T ) duvdt ] 02,
where we put

{fu}=gly(gtgyw+9way—9yaw), A,‘t_—__—-—__—_’ Ala.:glyA;‘

Since ¢, is the strong tensor of degree 2 and or* is a strong
3

vector, the term held in the bracket of above equation is a strong

contravatiant vector.
In order that we desire that the covariant differentiation does not

change the property “strong” and the order of tensors, we shall define

(6.3) i, = {Gfﬂ} + AR T, + AR T, — Apt TE

(6.4;) | f§,={i}~+ Are T 4 AR TS, — AT .
Then we can verify Dg,;,.=0. Puttihg Qx“:g‘x" in (6.1), we haqu
(6.5) ¢ = 11) (g,mgaz:‘1 gacw) = ];)g',w,(z:c'1 oz + ZgAwID(zx‘ (zxw .
On the other hand (6.2) becomes o
(6.6) ¢=2gw11)c2x“ (wa .

From (é- 5) and (6.6) we obtain
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Dg“,,act:'I ax"’ =0.

Hence arbltrarmess of ax* leads us to

(6. 7) ll)g,w=0.

§ 7. The parameters of connection I'},.

From (4.2) and (5.9) we have immediately

* X% 9
(7. 1) I'ypy + Ipay = gi‘yp + 2Aw Loy -

From this the two following equations are obtained by -cyeclic
permutation of 2, g4, v

(7.2) .f'pyl + .f‘ypl - dag#lv + 2APV I‘wol ’
(7. 8) “'f‘w.n “'f‘lwt = "%‘%“—ZAW«”FWF .

Now we -shall assume that I";., are symmetry with respect to 4, v.
Then summing up (7. 1), (7.2), and (7. 3), we have

f‘uw = rapv + A p® I oy + Apy® I yox — A I yop »

where we put ripy = 9n, {3’;} . Putting

(7 4) i Haﬂ=gu’»+A sz#___g“z_'_A;Ap__ l G_ A .93 Gz |
| ’ 4 Vg T ou dunu,

Under the assumption that the rank of |H*"| be n, We can determine
v by the following relations
Fgu={p] + 42 Gaw — b yew) + A (res — bi 7a0) |
(7.5) — A% (52 — 1° rae) + (A“"" ly + Agel, — A,,* v
— A9F A, *—AY* A““+A”’ Ag*) K2 (7,m+A 708)
where
raw = 9% rep, HiKY{=H{Kf=25{.
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§ 8. The parameters of connection I'}.

Multipling (6.4) by !; and summing with respect to i, we have

8.1) fl:{g}'*'A‘l’It“}-v!-‘A"’f“’“-‘-Agf‘?
or '
(8.2) 0 —ta AP =[O} 4 e, — Az .

Since (3% — I, A*) (3¢ + Iy A%) = 0§, we obtain:
@38 (ag + 1, A%) (f 01 4+ wos rn, — ag i) .

In use of (8.3) and (7.5), we can determine '} from (6.4).

§9. The stretch tensor W’,,.

We consider the invariant differential form ¢=28 (g,‘a,ax‘I ox®) and
ohoose the twe (infinitesimal) variations o, 3 in the following menws‘

5:0‘35‘;0 dt=0, DI, =0, dv=0,
S =0, dtx=o0, DlL,=0, dv=0.

In words, 5 and 6 mean the wariation of time and that of the virtual
space respectively. We suppose that o, 3 are interchangeable. In this
casa ¢ shows us the stretching eof the apace for the time variation dt

Calculating ¢, we have

$=2[wip+ I A" — Ayt gl + A0 T4,) &t owe ds,
where we put ‘ S
DN = = 'L(a‘:vgg‘m a’ 9¢ g“., — 20,4 9,0%), A,* =R(A4,,.%a* — A3).
Using the last quantxty we get a strong tensor
W, —wum"‘f Ao — A3, T a® + 4G e oy s

which is symmetry with respect to 4, » and shall be called the stretch
tensor of our space. :
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§ 10, The cdfvat"ﬂl‘e strovig t’enoors. ;
The curvdture of our space is defined by
(10. 1) (Iz)ll) — 11312)) Xt =0} X’f .
Thén this bilinear form 22 can be decomposed into following form
94 = Rivo du* dze + P}, (de¥ DI, — dz* DL,) + $§** DI, DI,
1.2+ Bl di—du ot + PEDl gDl 0+ B @y di—dod
+ Bho @ do = due i) + Efo (Dl do = Dlyd)

Let f be a field in, our space, we have_ the diﬁermt&al

af = (25 + £1* Faas) dro + £

) ; 57 ‘
(10.3) of -
—_ a 0 3 A a
| + (% +fl!‘1*f¢~)dz+(gv+fll L) do
where f||* = —f_ of . In §5 we have had the covariant differential
g _,Qu,-

for _the‘cbﬁtravariaht vector X*, that is,
(10:4) DX*=dX*+ [}, X*ds¥ + A X*dt + A} X* DIy + CL X dv.
Then we shall rewrite (10.4) in the strong tensor form

DX? +X*[yaab’+ X YDl + X*|,dt + X, dv,

where We put -
Xt C2: SN, XE 4 xhpe f | XAV = X ¥ ARV X*
lV: gxu +FP~U + H av: - » ’
X,= +1ﬂ XE 4 XA & — XH | vd*, Xh},= —~—+6* X* 4 X 0%

and shall ¢all them the dovariant differentiol coufficients. We make dse
of (5 8) and (10.3) to calculate the left-hand member of (10 1) and
compare the obtained result with (10.2), then we get :
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Rive = (A + P10 Fraw) = (ZE=+ Pl T
+ iy Do —Tho Dhy— Aﬁ“‘( gf""" +all® f‘pow)
( 50+ Fanl® P )|
Phe= »ull“f}—A;‘i“’lq—A;‘L“ Peulely

S};i,va) — A%V A”Lw —_— A“‘I“’-A‘”,_v

(10. 5) ofb b -
f‘,‘m = 28 PR Pre—Tke 1"’,;—r I Moo+ TR 00T,
1 S)Af;,“’ -"';l‘w 2 Aa 2 « l‘la
5#"’ ="9t—"—f'#" + I3 Ago — Ako '8 + ARo|= I
R R
pp =20 2T cari—Cift 4 OHI T DI L
ok, 90 7 .
Plo = = & — Wjj +C} Ii‘ﬁwéﬁ-—{ e Faw+ il *Ch

QAIG)
Pjo = = ——Chlo + Cl Afe — Ale Op + Aje|* O

Since these coefficients are not all strong tensors, we deform (10. 2)
as follows: .

2} = Ry, ox” ‘wa + Py (oY la)lw — ’xv le) + Sive Diy, DI,
1 .2 1 1 2
(0.6 + Phoevdi grodt + PRDludt— DL+ P (odt—dodt

+ P}, (62 dv — Sz dv) + Pje (DI, dv — DI, dv) ,
14 1 2 2 1 24 i 2 2 1
where in = in —af R}, Pﬁ“’ = 15%‘*"’ +a” I;}ng and ﬁﬁ =-€:!‘* +a® Plo.
_ 14

Thus we obtain our curvature strong tensors R},,, P}, ¢, Sive, Pi,,
12 13
a3 34 14 24
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§ 11. Properties of the curvature strong tensors.
In virtue of (6.7), we see
(1.1 (DD — DD) g;, =0 .
2 2-

Calculate the left-hand member of (11.1), then we have
(91?—11)1’;)91#'——-"‘(‘Ja;zR:Vw"'gzva ;vw)Qx"azxw-—(anS';Vw+g“S;”w)Zl)l,,Iz)lm

— (9ar Bivo + 92a PEy©) (32 DI, — 32 Dl,)

— (Gap I;:‘"‘"" Jia zfs;w) (31’"“’ oEt — (wa a}t)
(11.2) — (9r P1® + 010 P2*) (Dl dt — DI, dt)

— (gap PS + 914 P2) (dvdt — dv df)

. 34 34" 1 2 2 1
— (Gap E;w + Jia 1:;:0,) ((;;;w cﬂzv —_ (zxm dlv)
— (gap P39 + g, Pi®) (Dl,dv — DI, dv) ,
24 24 1 2 2 1

consequently,

Ripyve + RBuyv, =0, ﬁa»vw*‘ﬁulvw:()n Sype + S§;» =0,

(11. 3) Pipo+ Puyy =0, Puu® + Pu2 =0, Py + P =0,
El#w+5#1w=0’ Ewm"'guiw-_—o-

That is, they are skew-symm‘etry with respect to A, p.
From definition (10. 5), we have evidently

(11.4) Riyy=—Rb, ,» Sive= —Sjov,

§ 12. The identities of RICCI and BIANCHI.

Now we shall proceed to find the identities between the torsion
strong tensors, the curvature strong tensors and their derivatives,
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which correspond to the so-called identities of Ricct and Biancar. The
Prarrian forms

(12.1) % = @'Y + [w}&*]

are components of a covariant strong vector, where w, @ are CARTAX’S
symbols. Consider the external derivative of (12.1), then we have
the relation

(12.2) | TV + [w} T*] = [} &*].

By help of (11.4), this relation offers us the required identities

Rlivoy + Al Rojajvey =0, {:{ln\ww - Ari}f" lvy + ,Arlna lf:omw:“’ =0,

2{;[1}“/] — 20500l va + 214[1&“ ﬁom vi— a&f Roagpvi =0,

Eclnv:; — Clulyy + 44" Emann =0,

Sive + AJV|el - ALYV Aifle) 4 ARe S Ve =,

ﬁﬁ“’ + Aﬁ‘”f: - a&wl"’ + A-a‘s‘” Ayp — a&)a Aﬁ“’ + lA}A*a 5"“0 + “(le?’ln
(12. 3) — alf Poap® =0, |

Pio + Afo|, — Of|o + Ao Of — CL Afe + AL* P = 0,

- ﬁﬁ + adyplo — Chle + abdya O — Claly, + AR® g;oa =~ aly

-+ el an}x =0,
228 |® — 2459 &) + ad] ' Seat? =0,

abf |y — aby|* + Ad* aly — Claf + alf Poa® =0,

where we put

k s R k
o — R a _ Ja fo.;, a“‘f:-—da _ Ja ne
z) & a B -glp. P © Ql',; gl, |

[ Oat o _;_,Qa‘
Ay °© w

R i
Ay —
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The identities corresponding to the identities of Brancri, are
obtained from the coefficients of crotchets [iix" sa® gw“], [I{)l” l’)la, 13)l.],

[6zY 6z« DI,], [Dl, DI, 6x*], [6xY ox® dt], ete. in the relation of Prarrian
1 2 3 1 2 3 1 2 3
forms

(12.4) (L) — [wp 2] + [2rw)] =0

and have the forms:

h —_ v R val}
Rﬁ[ua)l al + ‘IP;}‘J:[U ROlh{wa.] —_ 0 ’ S}i( wial + Sp,scw So, = 0 ’
a 1Ba 1 —
Riy,l* + Rlg, AT + {:ﬁ:vﬂ ﬁomwl — SiP ROBV0+5#{Vlallw]—0 ’
Sﬁ""’la — Sﬁsrw P(,“"] + p;}as SOva + P;‘}[a"l"’] —_ p}lktpw ABVI =0,
12 13 12 12
: 2 2 —
Rivoly + Rfgryalovs + Eﬁ{va ﬁolalml - E}L“ Rygyy — f:ﬂ:vlwl =0,
- 2 —
Riyole + Rige, C8y + ﬁﬁ[uﬁ {'Zomlwl - 1:4;'}“ Roay, — I;MVMJ =0,
S}t}_vwlt + Sﬁﬁ[a) POBVJ — Pﬁtvlw] —_ P}RLa Suvw + P}lLme al(g)’” =0 ,
23 23 23 12
Sﬁvwlv + S}/}LB[w pOBvJ — P,‘}L[VI“’] —_ P;‘L“ SMvw =0 ,
24 24 24
2 - 2 8
(12- 5) Spsw{:ogg -+ ﬁ;‘}g“’d&w + ﬁﬁ.ag Zogw _5}5-350360) _113)}"5 Aﬂw
+ Pﬁawlt_P}ialw + P)iw'la —Rﬁpaa&":O,
12 13 23
Sieo Pygy + Phgo Ck + Pl Py® — PLF Py @ — Phg AR®
14 12 12 24 24 12 14
+P}‘}awlv—Pﬁalw +P}‘}-w|a =0’
12 14 24
R
— Sito Py + PiB Pyy® — PLE Pyg@ + Pio|, + PL|® — PLe],
34 a3 24 24 23 23 34 24
+ Plg®aly + Plgaly =0,
12 14
2 2
Pi,? Py + Plg éf,-l— P}isPOBw—PJ‘-I\Ba&)w_PFBPOBw'FPﬂw'v
12 34 13 3 14 14 24 13 13

Al PrA | PR —
+€}Lw E»wlz Rigpab, =0.



