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Introduction The concept of the non-holonomic system in the higher
order space has been already given by the present author [1]®, and
many operations in the system has been studied too [2].- It is purpose
of the present paper to treat the theory of extensors in a subspace of
the higher order space under such the concept of the non-holonomic
system. That is, we study, in §2 the operations introduced by A.
Kawaguchr [3] in the exsurface and the expseudonormal defined in §1
and give the D-symbols of these operations. The same discussion is
made for the excovariant differentiation in the space of the connection
in §§8-4. In this paper we use certain of the ideas, notations and results
given in the previous paper [1] without explanation. , o

‘The present author. wishes to offer to Prof. A. KAwAGucHT her thanks

fbr his guidance. } | _

-~ §1 The exsurface and the -expseudonormal. Let us give an m-
dimensional subspace in the n-dimensional space by the parameter form
(1.1) - - xt = o' (u'") Soa=1,-,m; =1, , m; m=<n
and differentiate (1.1) in succession along parameterized arc of class
P in the subspace, then we have the following results:

: 7 . ‘ 'gxt : : (€]

z ’ ] ‘ .
2@ — 955 Uy ?'xi _ iy’
(1. 2) : ouw’ ouou’ '

(1) Numbers in brackets refer to the references at the end of the paper. - _

(2) Throughout this paper, repeated lower case Latin indices call for summation 1 to =,
while the ‘summations indicated by repeated lower case Latin indices with prime are from
1 to m.
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l Mot — ;Zj’ und (M._ 1) —gi'%u_J USOTM-DF L for M P.
u’ : ’

Indicating any integer not exceeding P with a Greek letter, (1.2) give
rise to the following relations:® .

(1. 3) ’ gx(“(‘:’i _ ( o (T;B\,i )(8)—: (__QE;_)(T) ,

U LU ou
ry, - (3) 2 ' for aZp20,
1.5) ‘;’;BM - 9:;: | for a =8,
o Zmodente o weapai
an  EL =0 for g>a.

= B%%)) = A =Q,---  M;t1=1, - s =1, ,m)
(=B3Y) =~y @B =0, M3 4= 1oy mi J= L n o)

Let us consider the space of line-elements of order M: K@, then
the set of expoints expressed by the right members of (1.1) and (1.2)
will be called the parameterized (M+ 1)m~-dimensional subspace in K
or briefly exsurface of order M and u®, w?, -, u™* may be considered
- ag the extended parameters (or exparameters). Then we have the theorem :

Theorem 1.1. The quantities B3% are components of the extensor of the
type indicated by the indices, that is, excontravariant in K 0 and excovariant
in K20 | . '

Froof. By the reason that the quantities By, are changed as follows:

- o8 w g
Bie = > ¥ XL UMBY
. aAM B=pR -
under any extended coordinate and exparameter transformation: = =
2 , Crae . i . ,
‘ ® (xq,)’ -.,J—C~(A+1,a — 2 Xégx(a+1,~i and Z—tb — Z_tb (uj)’ ”(p.;-])b . BZOU}:;S"“(BH” ,

a =0

70! ) :
putting U%% = —%%@7 , the theorem follows. :

Further let us associate with each expoint on the exsurface: K9P
(M+1)(n+m) excontravariant extensors: A%, (B=0,---,M; p' =m+1,

(3) These relations can be verified by the same manner as that of Kawaeucu ({3}, pp.
17-19). ' '
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---,n) of the range M in K¢”, then at each expoint on the exsurface
(M + 1) n excontravariant extensors, that is, 1% and Bj% are endowed.
In addition, we take over the assumptions that (M + 1)n extensors are
mutually independent (i.e., the determinant constructed from i3:. and
B3 does not vanish) and A4, =0 for 3>«. A field of (M +1)(n—m)
extensors 435 having such the. properties is called the expseudonormal
and indicated by X¢7-= ., Of course, it will be understood that 1%:..
<and Bj$ are the functions of exparameters w’,w”,---,u??. Hence
we can introduce the reciprocal excovariant extensors BI! and R‘“’"
satisfying the following equations

M M
S BLBi =ofef, 3 A8b.BL =0;
(1 8) Q=0 a =0
) M re M 7 ”
v BB»,;rsz - O, E Rap',j’fq 57’8%:1.
a.-O a=0

Consequently, it will be found that such the excovariant extensors are
the functions of ”, ---,u?”. From (1.8), we may state without proof
the following theorem :
Theorem 1.2. The following relation consists
- :
3 (Bag B3y +ilynisy’) = 0505

a3

Similarly as the case of the ordinary point space, an extensor:

T*'ssatay 5 5, Of characteristic (A+ B,0,R,D)(REM,M<DZXP)

in K and an extensor: T'*:?"»es”a, ., o ... of the same charac-

teristic in K‘2*~™ have the components referred to the x coordinate
system in KX : :

B )
i ST T _ LI LY W . ‘ A 2 3 3
1 1% 8,-71"'3BjB_T 1 A Aﬁ,l';"'BBJ'B]{] }{I]B It ABo‘ﬁj}}:
and
V¥ 8y Tyt _ V& yp’?, e ‘p;’ 142 B 0
Tt Ta ‘3.0, 5pip — T oarmta 8., BBQ"B[[I }1171/{ FEA /taﬁj

respectively. Conversely, if an extensor in K resp. K'2"-™ have the
components: T'"% T4, , o, referred to the x coordinate system in
K, its components referred to the u coordinate system in K2 resp.
to the expseudonormal should be expressed by
i SRR Y . C,tye T4t @z Al
T e ay AB:)';"‘BBj'B—T 13 /Aalj Bajaluu‘le Bg j.;”

(4) Repeated lower case Latin indices with doublet primes call for summation m +1 to n.
(6) The summations indicated by repeated lower case Greek indices are from zero to
R (ranze).
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resp.

: . 0 A B .
” ’ g PRYTL oY 3 1 : : .
1 B A g = T T{‘-r”a,il---sajs,\-j p-,ﬁ.*i”e,-iigﬁi'it
fFor example, if we adopt w* (« =1, , M) as an extensor in K0

then ‘its components referred to the coordlnate system in the K“") w1ll
'be glven by - : : ‘

£ T : . : :‘.
@t = - Babufnr a=0,,M=1. .
. . . B=0 ] s : ‘ - ‘ )
If we consider a general extensor in K2’ associated with an expoint
on the exsurface, for example, if we take up an excontravariant extensor
v*¢ of order one, then it is possible to’iexpress it in the form

[/ 9
vt = 3 BisvRs + 3 agsoT

T=0

consequently it follows that

. o . '
v“ = EBﬁi v, VP = ALY v,

a =0 a& =0
that mean the projectio'ns’ of the extensor v*¢ upon K» and K@-m
respectively. Such the representatlon is likely possible for any general
extensor .of higher order. :

§2 The €”-operation. We shall state the followmg theorem as
the ﬁrst step to the study on the @”—operatlon of excontravarlant ex-
tensors v‘” belonglng to K,

" Theorem 2.1. Let 7
(2 1) ' R Avri — E Bm VB

be an excontravariant extensor of charcwterzstw (1,0, R, M) in K3 , then the
extensoy, € v ([3], p. 29) belongs to K™ © and its components referred to

H
the u exparameters are €S = 2 (—1)*-4 (H> prHATEH=D (r-—O R—H).

..~ - Proof. . The method of proof is same as that of KAWAGUCHT ([3] p.
29). That is, from (2.1) it follows that

Ti 2 (_ 1)11_;, (If) (Br+ 1_1;0311)(17_,1')
( l)H 2 (H) (H '{) Br+ Ai(}l)vﬁi H=-2-M

(6) Afterward M-+ H denotes an integer not exceedmg P,

A
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§:H§x -r}+:x( 1)11- (flI)(H;ﬂ)(r_*_z)( gxi.')w”'"§+'Mv8i’(H-l—}l)
Ha0 F=0 =0 :

ou”
o O (I
(putting : v=2+ )
= ZE: z( )( axt )(T 5)( 1)1;_ (H)vawuﬂ y)_Bf,i cﬂvai,

Ym0 3 =0

(putting: 6 =p5—v).
Multiplying the last result by B2J' and summing with respect to 7 and
. . B o .
t, we have €%vbY = Y B EHp"¢
. T=0 »

Next let us consider the €7-operation of an excontravariant extensor

belonging to K% associated with each expoint on a curve in the ex-

suface, and use the symbol €%»*?” for the extensor in. K¥+D=-= which

is obtalned by applying the €~ operatlon to an extensor v*?’ and has

T T+
the structure 31 :2 (—1y%-» (H) Y3 IO Cose (&) ([1], p197) and the
0=0 §=0
symbol ‘CH ¥ for Z }:( 1)%-# (H)v“”a"mcp”i.(@) where C”a“;;i,(@)
Q=0 3=0

C27(€), C"B“g, (€) and C%f (= 6;%,6%) are the €-operation coefficients
of excontravariant: extensm in the non-holonomic system : B3Z and i3%..
([1], p. 197), then we get the following statement. -

Theorem 2.2. When we write an extensor of characteristic (1,0, R, M)
in the Jorm . .°

(2.2) ’ v” = 2 B{ﬁ v 2 ALt ver” r=0,-,R,
& =0 a =0 .

the followmg relatz(ms Cconsist

CH T — 2 B‘f‘i CHvBi' + 2 E ( 1)0({)1) @H—D ngnvap"(p) ,

Z B%' @Hvﬁ = CHyrd — g Hyat
and

3t 289" GEyTE = @ya” =0, R—H.
; T=0 .
The proof of this statement is essentially the same to the ex-
planation of the €%-operation of an excontravariant extensor in the
non-holonomic system ([1], p. 197). That is, from the definition of €*™*

and Theorem 2.1, the first relation in this theorem follows and multi-
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~ plying the beth-hand members of this relation by B of 142" and sum-
ming with respect to 7 and ¢, the secohd relation of the third relation

is obtained. : .

Corollary. If an extensor of characteristic (1,0, R, M) is given by
. v- ZZBI'J az’ zzT‘i'vapr | TZ‘O,---,R,

. a&=0. . ' & =0

then the difference between the projection of the extensm* EmpTt upon KMHD
and the extensor CM*? s equa,l to ~CTy*¥ (: O( 1)#-° (H) P3P E-0>
p-'O -

x C%2, (C)) and the progectwn of the extensm' C‘Zv” upori, KU+ n=-m g
- nothing but CFp*d’ ; v

We get the followmg theorems for excovarxant extensors.
‘Theorem 2.3. Let

(2 3) | ’ Wyy = g: B% wai'

a=0

be an eicovariant extensor of characteristic (1,0, R, M) belﬂngmg to Kb
then the extensor in K ,*" obtained by dpplying € 2-operation to the emtensor
wai ’ A

L\ R d— 1 ' ';‘“"_:

C Wayr = H' 2 ( l)y (a;_b) gg-_H__;)wa-!-M'(y) a:01 Tty R"“Hl

is equal to the projection of the extensor €Zw,., ([8], p. 81) upon K+,

and the projection of the éxtensor G wy, tipon KX D= jg 8@ w; i, where

I R . e P :

“Cway = 28 HU1 (D) (HZ5) wai? €0 (@) and €24 (&)

‘ 0=05§=0 .

7=0,ym; p/'=m+1,---,n) are a part of € -operation coeflicients df

excontravariant extensor in the non-holonomic sy‘stém ([1]}, p. 197).

.Proof. By v1rtue of (2.3), we have w,, = 2 Biw,,; then it follows
T=a
that

@wa———H!yé(—l)”(“’“)(ﬁ“}‘;:;)wmw -
- o () (E D26
()Y e
w(w) 2 “—m (.8.64)

(T=a-b (@D}
" ( :mi’) | Wre
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(putting: =y — )
=H!E 2 (- 1>”(°‘+”) (ﬁ‘éié)

‘8+/I Oxi (B-a) ‘(“
/B~ a+u a\e+v)\ gy Wpaaa ™ -

T . (-puttmg‘ PR =72
wE E o O (o)
(R R%—iﬁ a;— (R H— T)" (ﬁ)( Qw )(B -mwBH_g“

ll

o , (putting: p=H—»)
_ Aem 93;‘” i, ﬁ+x) v—z I = LI
= sﬁogu(“i Z.-( i) ( (R JWei = ‘Z_«‘OWC e

Using the same method as that of the proof of Theorem 11 in the
previous paper ([1], p. 200-201), we get the result

2 Rap 'ng” = Z 2,H L(— 1)9(g}(g:ﬁ)waj’m)@paapj:(@g) ,

Whe I-;; a p=05- |
cupen={a—o (O EN S (" F) s e B.2,7 (1] pa2oy).

. Consider the C™operation of an exeovariant extensor in K20 as-
sociated with each expoint on a curve in the exsurface, then we can
see the following theorem, where the symbol €*w,,., denotes the extensor
in KI+#@-m which is obtained by applymg the &™-operation to an ex-

tensor w.,.and has the structure E Z H-',(_l)" R 5 sC 3L (CH)

p=05=0 e,

and C237(€%), CPL'(€"), CRr(EH) and C°F (CH) form a complete set
of the €%-operation coefficients of excovariant extensor in the non-
holonomic system: B%%, 3%, ([1], p. 201).

Theorem 2. 4. If an excovariant extensor of charaeteristic (1,0, R, M)
in K9 associated with each expomt on a curve in the exsurface is given by

(2‘ 4) 'wri - (Brz Wagr + 2#7157”7’011)") ’

a-’r‘

then the fellowing relations hold good ,
‘:@.eri — Z {Bdi f~ waz +]¢§3” '(“@’H@qap" =+ G’:E?I{Uap" )} ,.

Q=7
R-E
. R " e
12 ai’ @ Wry = @_gwgi'

&
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and
2 AL CFWey=2C W,y + €EFWayp .

T=a

Proof. By consequence of (2 4) we have the relation:
S, = €™ (£ B war) + €(F 187 wey ),
the first term of thé right hand member of the above expression is
equal to R';,_]H (B3 € Wap + As2”a@Hy, ..) according to Theorem 2.3, and

a="7
R-H

the second term becomes aZ‘T A2 'CPw, ., as we see in the same way

as the explanation of the €%operation of an excovariant extensor in the
non-holonomic system ([1], p. 201). Further multiplying the both-hand
members of the resulting expression by B&¥ or 124" and summing with
respect to 7 and i, the second expression or the thlrd expression in the
theorem is obtained.

Corollary. When an excovariant extensor of characteristic (1,0, R, M)
in KO associated with each expoint of a curve on the exsu'rface 18 expressed
by (2.4), the projection of the extensor € w., upon K, M+H-copncides with
CFw,,, and the difference between the projection of € wy, upon K L+ FD(n~m)
and the extensor S wq,» 18 *CFwaypr . .

'There are the corresponding theorems for the 87, ‘Z) -operations of
extensors, and these theorems are given by the same statement as those
for the €Z-operation. .

At last, let us express any one of C 8 and ‘Z)-operatlons by a symbol
R, then we may define D”-symbols referred to the R*-operation of an
excontravariant extensor and of an excovarlant extensor of characterlstxc
(1,0, R, M) by ,

D™ = ERHT” o - for T :ithC,‘{"" ,
DT = ?‘, BIY R (= S%HT”') for T7" in K,
DRI = f_.‘oi‘pfﬁ’" RET¢ (=RET>" ) for TP” in K=

and ,
DT, = S}HTﬁ ' for T';, in K-,
DT, = ;_: BoLNET,, (=R"Tv,)  for Tys in K9 |

DHTTpu——- 2 A'rpu Stﬂjlpi (:RHY'T‘p" ) fOI‘ T"rp"b in K(,):{)("_-’”)
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respéctively, where G is the range of |7T',,.

§3. The exsurface in a space CY” with an affine connection. We
shall suppose such a continuous family of curves that one and only one
curve of it passes through every one point in the considered domain
of the space -and confine ourselves to consider only the space C* with
affine connectlon, of which parameters I',}%;; are defined on every curve
in the space. Then, for example, the excovariant differential of an
excontravariant extensor field »**(x‘**) of characterlotlc (1,0, R, M)
R < M 1s introduced in the form ~

vt = dvt* + §]0 a);:,) I.i%,; vdz®? t=0,-,R
Where the displacement dz‘?>» means difference of the line element at
any two infinitesimally near points lying on any two infinitesimally near
curves of the familly respectively. - Then, supposing a similar continuous
family of curves in the exsurface C?, the connection parameter 'I"; 7%
induced upon C% from such the connection parameter I',°% %; at the
expoint on a curve in CZ is given by

5.1 .t n & _ B QBI:_’ . r.e Ti'l_‘
( . ) ) BT ek — 2 Z oA’ ) Z az Bj ¥ 3
o ‘ =93 B-g gx\B)J 0= J
r M ,
= 2 2 — B§; BwBafsfaf
a=3 B=¢g

‘where B, %;; means the excovariant derivative of B:¥ regarded as an
excovariant extensor of CY", and the excovariant differential and the
excovariant derivative of an extensor field v™* (u***") of characteristic
1,0, R, M) in C¥», along the exsurface: C?0, are defined by '

T
SvTY = dv‘r"i + 026 20 ['anM, 37 g 0% T = o, ,R,
= S
and
. , o v ' ,
' ”w,ak':“—(aw + E’Faa 02
D ’"u

respectively. Further the connectin parameter ”I" 0ot s that offers the

excovariant differential (or derivative) 1n K‘Mx”"”" along the exsurface
is glven by

" ,,[. — %ﬁ i — B&¢, 187 [ 9458 iw .0k A7

ﬂq" az‘ Sz' 8a” VYT ias = B ai’tok

a=3 B-0 | oxte>

N, et

- az:a BZ Ba M"'IBJ az ’
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such as the connection parameter in
previous paper ([2], p.64).

Y. Katsurada

the non-holonomic system of the

We cannow define D-symols referred to the excovariant. dlfferentla-

tion of an extensor of characteristic

(1,0, R, M) as follows.:

oP
[DaiP =P oiFP = PP for a sgealar P
o/
{Dat® = 7 aig® = g% 4, for an extensor g® in.CJ°
' T
(5. 8) ?JwDMv”' = Z‘B”'VMvB = 3 BI¥v?J,, for an extensor v** in cw
3 =0
r
Daiw ' Zx'ranaiw —‘O/{.gg w ’¢¢ .
for .an extensor wT?” in CUP¢-m
LDMIE'ﬁV = 5& 3‘5 ’
(Dacd = 2_; DX ;re — W 40r @ JCAls ¥ ]
Daz'q Bl = 2 BM'quBJ— '}: ,Ti :fOI' a1 eXtﬁnSQr q“ in ,6'(4!()
~r=a T=a
Do = % B BUBYT Y = 5 BB =00
o T=a3=0 =& 3=0
(5.4) for an extensor v*/ in CY0
B
Dai'wgp T2=‘a 6§)Ba‘i' ﬁﬂ VTszj — T'"‘a 62 'Baz”{%g a‘f‘ri = wrp,a't'
| for an extensor w*#” in C~m
\Deew® = 33 Bihotol = BE :
. T A
and
M )
D, P = 3 18P,y for a scalar P
Bn
D, ,q¥ = Z RM,”q*f“ for an extensor ¢"/ in C9P
5.5 £ & e By ‘ v v
AD,,wf" = 20 2 A% B 2 s for an extensor v** in C90
_ ol =, in extens n -G
E ’ el B x4 rye o .
D, »wke >3 Ati.a89v¥ ., for an extensor wt?’ jn C\P¢-™
T=a =0 o

ngxp"xB'j = 332"

We can now introduce the extended Euler-Schouten curvature extensor

of C:
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- - OB ; -+ : .
DSJ'BI.Z‘ _ u(ga\.;l + Eﬁ .E 1-' Bg;r u%-:)/[‘ ngJ'B 3 —113.7 ‘1@

Since it follows that 3B H,,.7? = 0 according to (5.1); the quantitics
¥=0 :

Hg;,,77 are regardéd as thé eoinpotnients of an excontravariant extengor
in K¥®-m_ and are expressed

T ., .
(5.6) DBJ Bl =Hgpad? = ﬂE_OHBj'atgq Ao r=0, --,M.
Further if we considér

ATh % b2 g " 3¢ AT — )
DBJ’RGp” —_— ou(aﬁfj' + 2 0% allzzp str: 2»20 I‘apql BJ’RBQ" = Lleap'l »

0=03=0

then the gtidntitiss L“. J aré rewritten in the form
€

(So 7) LBj’ap"~ pz Lﬁj;apu zjr ] 7 — 0: t !M

0
in consequence of (5.2). |
Theorem 5.1. If v** = i BiL5%% is an excontrabaridnt extensor of
range M in CP, then the proje‘;czgons of the excovariant diﬁerential ov*? along
C¥ upon C¥ and upoin CIHE-75 gpg equal to sv% and 2 2_. Hpp o

8 =0 p=0
x pI*dut* respeetively.

Provf. Diffetentiating v*‘ = 3] B3Lv®¢ (4 =0, .-, M) bxcovafiantly
B =0
éi(mg‘ C‘ﬁ?, we Eaﬁe |

ov*t =

M‘ﬁ-
f——\-;

0B3S v*7 + Bai o8 |

w
]
<

Il
M=
M;a TMx

Dak,B“,.ij'du(a)/c +2 B“,gvsr

=0

>
B=0 5=
Multiplying the both hand mémbers of the above equation by B{Y or A%¥’

and summinhg With respeet to a and 7, we get

3 BIYovet = o
a =0 :

=0

-

l

H k’BJ?i ij'du(S)k 2 st,ﬁ?)‘”' .

or
v
=

in consequence of (5.6).

T M
AL l”é xs . 2 ?: HBLB Udu(o)/

0 B =0 0
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- Theorem 5.2. If v% is an excom‘ravamant extensor . of range M in
CY gssociated with each expoint on each curve of the curve family in the
exsurface, that is denoted by (2.2), then the projections of the excovariant
differential ov** along CIP upon C9P and upon CIO"~™ are ov*7 + L, ,,,,,3'
x v dut®* and 61)’“"+H,,,c,gh3~”"v“du<”>" respectively.

-
Proof Dxfferentlatlng vl = Z v ,?;'zuvap’ }excovarlantly,
a.=0 i
st =013 Brtvew | 4 a{z xw,vw"‘- |
& =0 j a-o J _‘ o .
T M , )
.= 2 2 Hakraz.ri ol du(a)k + 2 B 5'0”
a=0 3 =0 a=0

T T M
+ X ATLov + 3 Lak,a;’,?v“” dut®* .

a=0 A=03 =0
Multiplying the both-hand menibers of the resulting equatlon by B&Y
2“ ’ and summing with respect to 7 and )
EB%'&U” = JvB¥ + 2 }: LWM, ¥ “p”du<5>"’
T.=0 . R G20 F=0 :
or
B ”
A o™ =

¥ =0

ﬁMm

M
S Hypol?” 0" du® + 5057
3=

=093 =0

Corbllary. If v ¢s an excontravariont extensor of range M m cun
assoctated with each expoint on each curve of the curve family in the exsurface,
that is denoted by (2.2), then the difference between the progectcons of the

»

M
excovamant differential sv** upon CIP and jv*” is equal to 2: Low %
§=00=0

x I duter and the dzﬂ'erence between the progectwn of ov** upon C“”‘"“""
and ovBI” is 2 }'_,‘ Hppp 27700 du % .

=00=0

§4. The exsurface in a space RY) with a metric extensor. Let us
assume that our space K90 is a space RY? with a symmetric excovariant
extensor g..;;; of characteristic (2,0, M, M) which is so called metric
extensor, at each expoint in the considered domain of R?", where (M+1)
xn-rowed determinant g constructed of g,;z; with respect to the doublet
indices a¢ and j3j does not vanish in the domain, and suppose a continu-
ous family of curves as stated in the previous section, in R’ too. Then
following Cratc ([4], p. 797), the connection parameter of an extensor
in R is given by Curistorrer. symbol of the second kind by means. of
Jasp; and g*¥7, i e., '
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l' [ gg r gg z agﬂ ‘fk]
as J— 1 aig? 8 k 878 — J
B Th — __g + - C S‘k“ —( 5 ‘ .

In this case, the metric extensor of the exsurface: RY? is offered by

Ove 55 = gaszBgfi'ng’A
and the induced connection parameter of R coincides with CHRISTOFFEL
symbol of the second kind I';%%.,. by means of ¢,. s, and g"*'3". The
connection theory of extensors referred to such the exsurface will be
established parallelly that of tensors in the subspace of Riemannian
space.  (August, 1951).
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