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Introduction. The extensor introduced first by H.V. Craie [1®
appears as an extension of the tensor concept and holds tensor member
as a part of its components, for example, let T3¢ be the components of
a second order mixed extensor of range G, then the quantities 7% are
components of its tensor member. From this fact it has seemed to the
present author to be desirable to find Such an operation of an extensor
that it applied to tensor member of the extensor just coincides with
the similar well-known tensor operation. As the first step towards the
desire, the principal purpose of the present paper is to establish an
excovariant derivation, in the above stated sense, of an extensor in a
space with an affine connection as well as in a RiemAnw~ian space, using
‘the extended connection parameter I'pzte formed by the affine connection
‘parameter I'¢ and CHRISTOFFEL symbol by means of the metric extensor
94q8» induced by the metric tensor g,, respectively. .

In the present paper we use certain of the ideas, notations and
results given in the previous paper [2] without explanation. The present
author wishes to express to Prof. A. Kawacucuar her appreciation. for
his helpful guidance.

§1. The connection of extensor in the space with an affine con-
nection. We shall proceed to find what is so called the extended con-
nection parameter and to build up such the excovariant differential
that contains the covariant differential of a tensor as a part of it, in
the space with a symmetric affine connection :

At each point on a parameterized arc of class M: x* = z* (£), where
t is a fixed essential parameter, the quantities defined by differentiating
the connection parameter I'g (t) successively by ¢:

(1) Numbers in brackets refer to the references at the end of the paper.



18 Y. Katsurada

Ly rgg=(g)raerm for B+7<a
o =0 for B+7>a
are considered along the are, where a is an integer not exceeding M, and
a ! : ’
= for Tz a,
(ﬁ7> Blrl(a—pB—7)! ' Frisa
=0 - for B+7>a.

We can then state the following theorems:

Theorem 1.1. The quantities I" ;3. are changed by
a-~Ba—§ 0+9 . . B+T

(1.2) rgio= % 3 2T X XHX+ X  Xalee X50

§=TP=B y¥=a

. A2l 8
under o transformation of the expoint ([11, p.765), where X 37, = Txc—:w?—'—r)_ .
. 2, ’\x\ c

Proof. Differentiating the transformation equation of the affine con-
nection parameter : -

re=rasexixse xixe (xe=-32)
| ox’ ox°
(a—B—7) times by Lmmnrrz rule and multiplying the ‘generalized bi-
nomlal coefficient (? r)’ the left-hand member is equal to I";%%,, and
the first and second terms of the right-hand member become as follows :

(‘3,«)(1 X-"'ch)(a B~ 'r) (ﬂT)( )([” an)m B=0>X %0~
— 3t (a—ﬂ) (;) (I'}. Xj)(a 8- a)Xa/c |
= a-i: Z( 0 )(‘3>(a¢ )(F L X o)a-0-X§@-B X8k

Ba 9
— rg Xa (a-8- ?)XPJXBk
8= r? B(ﬁ‘P)( )
— GEB: Bﬂqcp(ﬁ(f)(“aa ‘f)['v:(# 0= Xg¢a- (P)XMXM
- B¥=a

e S Y-8 - X" Z k
=TSR (L) rae o X XX

f=7TP=B ¢=a
a—-Ba—4§ g+

=TS I X XpX

f=rP=By=a
and
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(ﬁ?’ (X Xe)e-8-1 — (ﬁ?’)(a Xjco-8- T)Xa(a 8>
— B+T(ﬁT)X $G0-B-1) Xaa — B+T(0 ﬁ)( )Xi(a- -1 X aa

= 2 XBbT‘c X:g

respectively, accordmg]y (1.2) is obtained.

Theorem 1.2. 17,3¢, is symmetric with respect to the doublet indices
pb and 7c.

Theorem 1.3. When the index a of I'g%¢, is equal to zero, both the
tndices 3 and 1 are also equal to zero and I" 3%, coincides with I'g, .

- The two theorems are self-evident from (1.1).

Such the quantities I",3%, are called the exiended connection parameter
in the space with an affine connection.

Now we shall suppose such a continuous family of curves that one
and only one curve belonging to it passes through every one point in
the considered domain of the space. In order to define the excovariant
differential of an extensor field defined on each curve belonging to it,
for example, let us consider an extensor 7'*%,° of the type indicated
by the indices (range with respect to « and 3 being G, and G, respec-
tively, and of functional order M; G,, G, < M), then the quantities
given by
(L.8) TRy =dTes + 3 85T % dode

,5=0

— 3 P, Ten o dude 4 e To0 e o

Tro=0
are the components of an extensor of the same kind as the original
extensor 7'%%,°, where the displacement dx‘’** means difference of the
line elements at any two infinitesimally near points lying on any two
infinitesimally near curves belonging to the family respectively. Such
the quantities B*T““Bb" and the quantities 7'*%,°,, defined by

(14) Tea,0 ., = T%,e (W+z [38,T7e e

—_ Z [‘Bbad T?aafec_*_ _1".-, Tlaa eao
(0% : Kronecker delta)

are called the excovariant differential and the excovariant derivative of the
extensor 7'*%,” respectively and when 6*7'*%,° =0, we say that the
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extensor T%%,° is displaced parallelly. From the definition we can get the
following theorems. :

Theorem 1.4. The excovariont derivative of T %%, : T'%%° 54 8 an
extensor of the type indicated by the indices, of ranges wzth respect to a, fB
and & being Gy, G, and M respectively, and of f un‘ctz'onal' order M.

Theorem 1.5. Let v*® be an excontravariant extensor of characteristic
(1+0,0, R, R) R=M, then the following relations are observed
et = dv™ + I v dae (= sv™) |
for the tensor member of v**, and S being an integer mot exce,edifng. R,
. 5¥via — dv?a+ i Eb évﬁb dx(r)c (..— BS fxa)
BsT=0
for the member v** (@ =0, ---,S) of range S which is a part of the extensor
v** (e =0,---, R).
The theorems are verified without difficulty by virtue of (1.1) and
(1.3). A
Theorem 1.6. If v* is a contravariant vector, then it follows that
(B*va)(a) — 5*,0((1)(1
Proof. From Theorem 1.5, there exists the relatlon
St = ov® = dv® + 17200 dxe .
Differentiating the above equation a times, we have
(5*0*)® = dv‘® + (I v* dage)

« .
= dv'®* + X (;7) I3 (=B =1 (B2 Tk
. L . B ,T=0 i

and
(84<,va)(a) i 5* Ca)da
in consequence of (1.1) and (1.3).

Corollary. If a vector v* s displaced parallelly, that s, ov® = 0, then
the extensor v'*¢ induced by differentiating v* by t is displaced parallelly too.

These facts state that the components of the excovariant differential
o*v**(a = 0, ---, R) hold as a part those of the excovariant differential
o5vi* (@ =0, ---,S) of the subextensor v** whose components are a part
of those of the extensor v**, particularly the excovariant differential
of the tensor member becomes the covariant differential of the tensor
in the space with an affine connection, and when an extensor »*® is dis-
placed parallelly, that is, 6*v** = 0, the tensor member ™ is displaced-
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parallelly by means of usual sense. It should be specially noticed that
the connection theory of extensors by means of the above-stated ex-
covariant differential contains the theory referred to tensors in the

space of the affine connection as a part.
The similar statements for general extensors of higher order will

be 1nd1cated also.

§ 2. The metric extensor of a RIEMANNian space. Let us suppose
a one-parameter system of the metric tensors g, (¢) along a para-
meterized arc of class M: x® = x° (?) in an n-dimensional RIEMANNian

space, dlﬁ‘erentlate successwely by ¢, and constract the-quantities ga,,s,,

(2 1) » gaaBb - (a‘B) ga(M—a 8> a;‘B = 0) Ty M’
’ b4

then, as proved by Crarc ([38], p. 336), the quantities g,,3, are the com-

ponents of an extensor of characteristic (0 +2,0, M, M). We shall call

such the quantities gaaBb the components of the metric extensor in the
Rieman~ian space of M-th order line-elements: R“’. The properties

M .
of g,.p» are stated by the following theorems.

M
Theorem 2. 1.  The metric extensor ¢,,g, is symmetric.
8
M

M
Proof. From g, = g,, and (2.1), we have aars = Jgsaa-
Theorem 2.2, If G is (M + 1 ) n—rowed determinant constructed of

g,w g» With respect to the pairs (aa) and (jb), then

v— IgaaBbl = g "' 0.
Proof The statement follows from the fact that gM gs = 0 for B >
M—a and gM_BaBb = 9w for 3=0,1,---, M in consequence of (2. 1).

Here we can define such the umque reczpfrocal excontravariant metric

extensor g*¢*f® of the excovariant metric extensor gaa g» that satisfies the
M
following equation:
' M
(2.2) , Gaa 5o 9" 7° = 0 3%,
where symbol ¢ denotes KhONECKER delta. The structure of g*<#? is given
M X

by the next theorem :

Theorem 2.3. The quantities [%] gt *EB=I that are the components
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of an extensor ([3),- p. 335) are equal to g"‘“” , where

58] = o250 DO s ave-mizo
=0 Sfor a+B—M<Q.

Proof. Putting a““’“’ = %‘] groetE-n - we get

ﬁ aaaBbg — % . ,B—T (B) gab:a+B—M) g M-a=-T)
. u.»—il.}f ®a e a+ﬁ‘—M R ac .

w =0

— (B) (ﬁ T) guE g B=T=

(putting ¢ =a+8—M)
— (ﬁ) (g9 )8~ = (3) SKB-T — 5258

'onsequently gea Bt — g““ 8> since ¢g*°B? is determined uniquely by equa-
M M . M
tion (2.2).

If we look for the relations between the metric- extensor gaa g (Or
g**8?) defined by (2.1) in the space of R-th order line-elements and

R

M

Jaags (Or g**8?) of R?”, R being any fixed integer not exceeding M, we
M

can find the following theorem :

Theorem. 2.4. The following relation holds good :

M+a>gmu—n+ab = (M+”)glaab a,A=0,1,---, R.

-1R"

Froof. From (2.1), we obtain that gl,,M-.R,,,,b —<M+ a)(M'H’ O1a00

from »"Which the statement follows at once.
Theorem 2.5. There exists the relation

__L”.'! gaaM—R-o-ob: R! g"’-‘wb a,a':=0,1, '-",‘R-‘
M—R+o!ln al =

Iy A

We define the quantities v;, = gaass» ¥** determined by components
of an extensor v*® of characteristic (1+ 0,0, M, G) as the excovariant
components of the extensor, then we have

Theorem 2.6. If v, are covariant components of a contravariant vector
Ve, Q.e., U, = GpV", then the excovariant components of the extemsor V"% are

equal to the quantities (zg ) v, M8 that are the components of an excovariant
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extensor in virtue of the theorem of Kawaguchi ([4], p. 22), that is,

o M
—_ (M~
Vgs = Gaags v = (.B)Ub >

Proof. - Differentiating the equation: g,,v* = v, (M—g) times by
Lemsnrrz rule and multiplying the binomial coefficient (Zl;) to the both

members of the resulting equation, we get Oaa gV = (?g) M B

Corollary 1. The following relation consists: vz,g*° 8% = v*a,
M

Corollary 2. It follows that é! (M) VM B gra Bd — gfada
/ i\ B b7 .

- Let v** be the components of an excon.travariant extensor in RYD
and consider the quantity qaa,;bv w% then gaag,,v”v“ is a scalar.” The
square root of the scalar (gM,5,,v°“'v‘f”’)7 is called the length of the ex-
contravarlant extensor v**, and the scalar: ga,,“v, 7k (ga(,,;,,v s pf?) -
X (gaa gp VI VE?) % formed by any two excontravariant extensors vi® and
v#% of the same kind is called the cosine of the angle between the two
extensors. Further we define the length T' of a general extensor
I'®rar-®4%4y o ...5mp With the different ranges G, and Gs for the indices
. and fsand the angle 6 between two extensors 7'fr%r %ty , BB,,; and
T'gro®a%ay o 3.0, Of the same kind as follows:

.G, Gy ’
: e — .. B,b,5,2,...rB BB BA
(2° 4) 1 —‘ga,a,’r‘,c,' g“A“A'r.AC.Ag 1%192%1, g BB BB
- @, @5
& @, & 4@ 1 eyt T 2
XI v 4 AB,bln‘BBbBT 103 4 Aaldl ‘3 5dR
and -
» 1 & G4
2.5 COS Y = ——— 8.5,3,d B 5d53 gd
) ( ) 0 IV]TY‘, g a;a.’r,c,"'gaAaA'rAc,,Gg’ ARt g B°B> B%E
2 . )
T A.,-"v 1G4 "t'c T cq -
x 71 T “Mg BEbBT 4 3.2, 8 5dp

respectively. By means of this deﬁnition, the following theorem is
stated :

Theorem 2.7. If v is the length of an excontravariant extensor v*e,
then we get: v* = q"“‘“vaav“ ‘

Theorem 2.8. When v s the length of a contmva,rwmt vector v*®, the
relation :
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dM',vz M
gt Jease vy

holds good.
~ Proof. Differentiating the equation v* = g,,v%* M times by LriB~ITZ
rule, the above equation is obtained.

§3. Extended CHRISTOFFEL symbol in the RIEMANNian space.
Denoting CHRISTOFFEL symbol of the first kind and of the second kind

by means of gM s> and g“‘”’" by

1 u ¥
(3- 1) . FBch,aa = —2— (gaarc;ct§>b + 9ssaacrye — ng‘r‘c;(a)as)
and
. . M
(3- 2) L%, = %g{mae FBb'r'c Se

respectively, we have the following theorems:

Theorem 3.1. CHRISTOFFEL symbol of the second kind F 85 %o coincides
just with the extended connection parameter : ( ﬁ?> rgfe=8=-0_ qwhere F,,,, in-

dicates CHRISIOFFEL symbol of the second kind by means of ¢., and g*°.

Proof. At first let us calculate the first term in the rlght hand
‘member of (8.2), that is, '
: 1 1 X ) M M ' o
I Bore = —2— %20 grede (gae“('c,’ﬁ)b + Jsazecrre _ng‘(‘c,(o)e) ’

then we have

M 0| e (M _
Z gaaa goerc,(B)b ‘_ Z ]g (a+8 W)(ar gec,(B,b(u 3=

3= M
_ 3T M\ (M—8—7\ nciass-ar,, =518
_SE—T—B[M]<5T>( B )g Yec:o .

and putting g=a+6—M,
¥, aazet iy a— ac(y g (@=T-B=p
29 Osete;c8 = E <B’ ( g Gec;

S=0M =0
= (57)(9”" Ge;p)* 8-

from the reaéon that[ ](%)(M 0— T) ( ﬁ/)(a p— T) Slmﬂarly

the second and third terms in the right-hand member of (3,2) become
as follows:
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s
M

a o M “ “ _ _
82-‘0 g“ > IBo5e5¢Tye = (T‘B) (g e gbe;c)(f‘ T—-8)
and - . |
M

> ghace ngn,(ae = (ﬁr)(gaegbc TR

d3=0M

respectlvely Consequently we get

s1om (5) Gryreo.

’ AY4 R
Theorem 3.2. If R is an integer not exceeding M and &f I sups 6. 8
.CHRISZOFFLL symbol of the first Icmd by means of gaa gsr then we see that

(M+a FaaBb ge = (M+a Iaapo,u-rsao @,p,0=0,:,R.
Proof... In virtue of Theorem 2.4, we can find
ZaaM—R+dc;(B)b = (M}-{a) (M]‘-;a —jsmac;(s)b for | B=R
et =0 B for B>R,
ZM-Rwdb;;am = (Mga) MM+0 —ISQcBb;(a)a for e« =R

=0 : ' for a >R
and '

M N
: = — M-~
GeaaBt; M-R+ 63 = (aﬂ) 9a b( B),(M—R+o)c

- (M—-a~B8-M-R+06)

. M—ac— R—oc =B\ (Rea-8>
_(a,B M—'R-l-d')( ) Gav )a.)c,

== M+a M+0 - R (R-a&— 3)
o ( M apB) 9= i(ode
-1 R B
- (MI;_ 6) (Mﬁa ~ Gaaps;ade for o< R
=0 , ; Vfor‘ s> R,

consequently, it kfollows that
. : R M .
(Ml_el_a F.ade;dc - (Ml‘-}-a) IvaaBb, M-—R-I»dc‘ .

A'I"heorem‘ 3.3. There ewists the relation
' 'R M M S
Paa’r%b = Z grc ael'aaSb,oe a, .8: 7= Or tte ,R’

G=M-R
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R R .
*o X%, being CHRISTOFFEL symbol by means of Gaq s aNd g“”“ .

The theorem is verified without difficulty from Theorem 2.5 and
Theorem 3.2. '

.Corollary 1. If I'% is CHRISIOFFEL symbol by means of the metric

tensor ¢.,, then
M M

ry, =g FaaBbMe " a, 3,7 =0, (M: not summing) .
M
In virtue of the theorem, we know that the quantities S greoe
c=M-R M
X I‘M 53,6 being a part of CHRISTOFFEL symbol by means of gM g» and g“““
may be adopted as connection parameter for a member of range R of
an extensor and especially g"””ePMBb Me (M not summing) as that for
a tensor member Such a set of (M + 1) Curistorrer symbols in B9, i.e.,
M

”""I’MBI, ge (= Fa,‘{"gb) R=0,---, Mis called extended CHRISIOFFEL

g=M- R M
symbol.
§4. The excovariant ‘differentiation of the RIEMANNian space.
We shall adopt the definition of excovariant differential of an extensor
given by (1.1) in §1. Then we have the following theorems:

. R .
Theorem 4.1. The extensor gaqss, 9*“*° (B =0,---,M) and 8333
. R
behave as constants in excovariant di ﬁ'erentiation.

Theorem 4,2. If T'*:% %%y, . g,5, 18 an extensor of range R, ils

excovariant differential §7T'*1%v*4%4y o g0, by means of IR‘,”,“‘;.c is equal
to 3*1"‘1‘4"““/‘“’13lb]...gbbB» . . * V -

Corollary. When T'% %, ., 13 a tensor, the well known covariant dif-
Ferential 8T+ "%/, ..., in the RIEM ANNian space ts nothing but 6*1'* "%y . .pp-

Theorem 4.3. If v*® and v¢® are two extensors of range R satisfying
o*vre = 0 and o*vE® = 0, that is, the extensors are displaced parallelly to
themselves, then it follows that 8*v = 0 and 6%6¢ = 0, where v and ¢ mean
the length of v2e and the angle between vi® and vi® respectively.

Theorem 4.4. If v is the length of a vector v* and if v is displaced
parallelly, then the extensor v*** (@ =0, - R) formed by differentiating the

vector v* R times is displaced parallelly and the scalar (x@=0,-, R

%
dt*
does not change.
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The theorem is proved by virtue of Theorem 1.6, Theorem 2.8 and
Theorem 3.1. :

Theorem 4.5. If T'*:=euta, o, is any general extensor with dif-
Serent range for each Greek index, 5*1'* = 0 follows from XTI 2’ 2avay
=90.

Corollary. The length of a vector and the angle befween two vectors
are invariant under the parallel displacement of the vectors.

In consequence of the above-mentioned result, our excovariant dif-
ferential is the operation with the geometrical meaning such that the
scalar d* resp. dFcosf (R=0,---,M) obtained by differentiating

dt” dt® .
the square of the length of a vector v” resp. cosine of the angle between
two unit vectors v{ and vf R times becomes invariant under the parallel
displacement of the extensors »{*>* and v{** of range R and that the-
operation coincides with the ordinary covariant differential in the Rig-
MANNian space for tensor members. Thus it will be very interesting
that the connection theory of extensor which holds the already known
tensor - theory in the RIF’\IANNlan space as a part of it has been es-
tablished. .

§5. The connection of extensor in an EUCLIDean space. Considet
an KEucripean space that.is a special one of the Riemannian space, then
the space has the rectangular cartesian coordinate system z* in which

the metric tensor ¢,, becomes equal to 0., and the metric extensor
M
Jaass and g°*P® are equal to 4, ba g and 6"”6“5 respectively, putting

1**8B0p

aB'—( )5,‘,_” and 6"“* = (JW)—1 o*-*8,  Evidently, we have the fol-
lowing theorems :
Theorem. 5.1. The following relation holds good :

M M
> Oag 0%T = 6.{3‘ .
a =) M

Theorem 5.2. In the cartesian coordinate system, 'the extended

R .
CHRISIOFFEL symbol I'g3%, (R =0, --,M) vanishes identically and the
excovariant differential becomes the ordinary differential. -
(July 1951)
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