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Introduction. In apaper on geometry in an n—dimensional space with
1
arc length s = [[A2” + B]™ = dt, Prof. A. Kawacuour introduced a line

element space with C’-connection. The structure of this space with C’—
connection is determined by the a prior: given functions I'*(x,2’), Ci,.(x,x")
and this space has similar properties to those of a Finsler space. At
first §1, the out line of known results in this space is explained. Intro-
ducing an infinitesimal transformation, then Lie derivatives of various
geometric objects are obtained in §2. Next, §3 is devoted to define in-
finitesimal motions and to find the conditions for which the space admits
the infinitesimal motions. And §4 gives an application of the above
stated results to an inﬁnitesimal transformation in a space with arec

length s = j[A x4+ B]» v — =dt.

The notations and terminology employed here are those of the paper
by A. KawacucHi®® and the book of K. Yano®.

§1. Space with C’-connection. In a manifold of line elements

(z,2’), let us consider the functions I'“(x,x’), Ci.(x,a’) which have the
following properties :

[I] The function I'*(x,2’) are (a) homogeneous of degree 2 in the
1% N\ i EFFi
connection ; ’

[II] The functions Ci.(x,2’) are (¢) homogeneous of degree —1 in
the z’¢ and (b) components of a tensor and (¢) they satisfy the equations
C;;/C :L"j — Cj'/c x,k - 0 .

(1) A. Kawacucui: Geometry in an n-dimensional space with arc length

8= j [As’¢+ Bl /ydt, Trans. AM.S, 44 (1938), 153-167.

(2) K. Yawo: Groups of transformations in generalized spaces, Akademia Press Co. Ltd.,
Tokyo (1949).

are transformed as parameters of an affine
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Then the structure of this space is completely determined by virtue of
these quantities. In order to obtain the connections of the space, we
shall introduce a natural reference R,(x,x’) at the element (z,2’) and
let (P, P’) be the element of support (x,’) considered in the tangent
space, where P is a point and P’ is a vector. Then we define the dis-
placement of the element of support and that of the natural reference
in the following manners;
@) dP = 5x'R,, dP = «'R,, dR = olR;,
where oxf = dxt, o = 0z = dx’* + ridx?, of = I ¢ Aot + Chw® .
- The torsion and curvature tensors which are obtamed from (1) by
exterior differentiations are 4 | Co
Kjlc—[‘j,/c'—‘ k,.7' F?F%kffﬁfij, ) P
ngz - 'Fﬁk,z — I+ F?kl"iz—' ¢ Fmé + 1“2'1"5;,‘@ — F;L['jk,{h) ’
(2) B = I'ira— Cjz,lc + l"?kciz —C3 ;zlc + thr21+ cmgl,(.h) .
o . e = Chiy — C}z,ck) +ka % —szcfm ’ -
Ry = Rjp+ Ci K% '
And Ricor and Brancar's 1dent1t1es are A
Ry =20, Kl =0, Rj[kl/h] + Bj[klm(th] =0,
2* Bl + *Rizuycny + FiumK i + 2* R 3mClia = 0,
2 th[kl(l)l + ijllh + 2 thmc'[kl] + 2 Bjm{/cc\hll] - 0
Fiycan + 2P %mChiy = 0. '
Moreover we can prove the following 1dent1t1es
Kjlc,(h) = R, Rjklx/j Sis *Bi =0, B;Icl = ng,u);
. (4) . *Bﬁkl — Bgu - Cgl/kr lecl - lec/(l) + CkZth. le,(lc)’
Binaye + Ry = 0, ijm + Bj[klleth =0.

@

§2. Infinitesimal transformation. Let us consider an lnﬁnitesimal
transformation '

(5) : at = xt + & (x) ot
then L1k derlvatlve of a geometric object £ on the mamfold of (x,2")
can be defined as usual: o

(6) DR = (XQ) ot = 9 (z,7) — 2 (5,7).

A. For a contravariant vector v*(z,7’),

Xvt = 056" + v/, 8" — &L

which can be written in '

@ CXot = vt -,
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: s ‘ ¢
where we assume there that C%,£* is equal to zero, that is, %: szi
+ I't&¢7 and put |

R . sh "
(8)  vf= UhE vl ) g = g+ OO = &, wi(),

dt dt

wi(d) s+ Ci,

/c
dt
B. For a scalar field S (z,2), putting 92(x,2") = £,6"* + 2 ,£" , then
we have XS = ¢S. This expression for XS can be written in
9) XS =4S where S,=S8,—TI% S, Siuw==Sw -
‘We have for the operation 4, even if P-Q means inner or outer product,
4(F-Q) = 4P-Q+ P-4Q . From this we have for a covariant vector w,
and a tensor 1% ‘ : .
(10) Xwi—dw¢+5jw,‘, XT?¢, = 4T {-‘i,,T + &% T%,
- C. Lie derivative of a connection «? is, form the deﬁnltlon (‘6),vgive'n
by

ij = dwf - Eihwj + E jwh + d-
On the other hand, it follows from (8) that
g = &, —wi(d), dif; = d&—doi(d) = 684 — wiE?+ e, —dwi(d)
which gives us o
(11) X! =&, + dw (d)'.—— dewt(4) + ol (D) ol (d) — b (d)w?(d) .
The four terms on the right hand member of the last equation have

just the same forms dividing by &t as those giving curvature tensors.
Hence (11) offers us- .

(12)  Xof = o¢%, + *R} ,cldx’”’+ “Bjudat 21— *Blutnt + Pt 2
Next we have from (7), Xo® = do* — &40, which can be written in
another form from another aspect. In faet, since X dx’* =0 and Xz =0,
an application of Lie derivative to the both members of « —dx”+ wix"?
gives X(o ijx” and hence ‘ :

o .
Xof = 5t +*RY, x”‘dx"gl+*Bh ,x”‘d:ck ‘Z Bk + Pf,ux"‘(u“zlgt

which reduces .
]
(13 Xot = ‘L)dxum,dxw,
) (dt e k <

because of (4) and the assumption C%£/ =0.
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Defining a deformed object £:
(14) 2 (x,2) = 2 (x,x")+ DL (x,x"),

we can see that the deformed vector. of a covariant derivative of a
vector with respect to the original connection is equal to the covariant
derivative of the deformed vector with respect to the deformed con-
nection, that is to say,

vt = ov® + Dévt = d (v’ + Dv¥) + (o + Dol) (v + Dv?), or

(15) Dovt — sDv* = Dolv?, Xov' —6Xv' = X’ .
Since X’ = XI'idx’, hence ' . 3

(16) Xv}, —(Xv'),;, = XI'i* — XTI} ”i,.cm y X0y — (X% =XCL"
Consider an arbitrary vector v*, then we see from (7) and (15)
Xow? = Xovt — 6Xv* = 6807 + dov* — o’ '

from which we get (12), too.
On the other hand, we see easily ffom (1)

1N . Xo® = XI'ida?, Xoj = (XI'}, + XT'CL)da* + XC% o
Comparing the last equations with (12) and (13), we know

(18) XTIt = ) T KLe,
=2
| X%, = £, + *Riu8 + *Biy, ‘ZL — CLXT:,
(19) — g
XC;‘,‘ = E?j/(/’c) Bjuc&l + ngl dt
Moreover the expressions (19) can be rewritﬁen without difficulty into
A ‘ :
XTf = &+ Ryl + Bl o,
(20) ' '

XC = AC5,— &G + CLEly + Chfly

D. In order to find Lie derivatives of various curvature tensors,
let us consider the deformed curvature tensors constructed with the
deformed parameters of connections:

/cl - Rj/cl+DRj/cZ! -Kj]c —_— K;:/c“l"DKjk, *F;kl frnd *Rjkfl-}_.D*R;kl!
*ngl == Bj/cl+D Bjkl y ijz —_ ijz"}" DPj/cl ’

where we must remember (6) for operation D, that is,
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XK, =(XI')).—(XT}),;, X*R},, = XR,,+ XC,,K:+ CHLXK?,,
(21) XB;K‘Z - (X '.;;76 .y’l——(XF.;"l)f'/c_}_XF;LLF.?I,U&)—XP?F;?,(M ’ )
X)FB;I{'Z - (XP.;A>/(Z) (Xle>/L +XI‘L7&C Z+XFzZC_’;Iz+XI‘zC;l,(_h) ’
XFj = (XCh)y — (XC i +2XCHC,
then we obtain the following expressions of Lir derivatives of curvature
tensors, in virtue of Ricor and Biancur’s 1dent1t1es (8) and (4) and the
equations (17) and (19);
a. XKj, = 4K}, — &KL, +KLE,+ KiE,,
b. -XR;.'IZ = AR;/::Z ' hR iez Riué"“ + thl +Rj/ch§
(22) c'» X\){ ;/cl - A*Bj/cl SZ >k-Bj7cl + *Blzkls j jll,l*- + Bjkhe <y
d' XPJZ:Z - AP;:/cl E-kpjkl + Phkla -7 + P izls /c + Fjlché
€. X*R;:kz = A*Réu — &! h*Rj/cl + ¥R}, AT -J + * ;hl:hk + *lechf-hl .
To find the expressions (22) it must be used

for b. ( ) ( ) = hj/c d: ( )
131% 1%13 l(k)
a.nd Kj/c/l + Kkl/j + Kljlk =0,
) for a. Elsirie— E e = R} 5l — Ry sl — K250 :
’ and R;:kllh + leh//c + thkll + Bjka% + lem hic + B_iffcm 7/?1 - B;kh!l
+ Bz + Ry = 0, A
for c. fij/;c/(z) — Eij/(l)/k - B%/cthy *'B;l/czfih - CZlSij/h ’
7e
), (), 5 —u((),
HERD 1% th
and *leh//’c — Bj/ckll + 'Rjku(n) + Pﬁth’}Zz + *Rﬁmc?i Jlmcich -
*Bienws — *Biruw + Fiaye + 2¥B3,Cly + * B, CT, jmleh =
for d. 5%/(@/@) — 55;/(1)/(@ = Pliz/cls:-j j/cleih — 2CtLl]s ICOR)

and Pj/el/(h) + lek/(m + Pﬁhk/<z) + ZP;/cmC[MJ + zpimcmk} + 2P§hm ‘f';cz] =0 ’
and e. can be verified immediately.

§ 3. Infinitesimal motion. Consider an infinitesimal transformation
x* = @' + &'(x) 6t «in the space with connections («?, wj), then we have a
deformed space with connections (o + Dwf, w?+ Dw?).

The infinitesimal transformation which lets vanish Lie derivative of
the base connection, that is Dw® =0, is called an infinitesimal affine col-
lineation. The infinitesimal affine collineation for which Dw?= 0 is called
an infinitesimal C'-motion. - The geometrical meaning of an infinitesimal

‘-motion is clearly that the original space and the deformed one obey
to the same law of displacement, that is, the both spaces have the same
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connections.
Moreover, Xo’ = XI'idx’ = 0 gives XI'; = 0 and Xwj = 0 leads us to
Xr: =0, XCi =0 in use of (17). Thus we have the

Theorem 1. In order that an infinitesimal transformation be an in-
finitesimal C’'-motion, it is necessary and sufficient that Lir derivatives of
connection parameters I'%;, Ci. of the space vanish at thz same time.

And from (15) it can be concluded that if the operator of Lir de-
rivative is commutable, the infinitesimal transformation must be an
infinitesimal C’-motion. '

Now we shall proceed to consider the 1ntegrab111ty conditions of the
differential equations X! = 0. "For convenience’s sake, ‘we put the
somewhat restrictive condition &%;, = &/,;, = 0. To find suitable forms,
we shall deform the equation X«® = 0 into ' '

23)  Xo' = a( )+ K ,tide? — (sz — 2Ct,, 2 i )a;,; _o,
and, according to the condition &/, = 0, the equa.tlon X dxt = 0 into
(24) Xdat = 62* — (51 —0.

Regarding (23), (24) and the equatlon that (12) is equal to zero as a

system of compatible differential equatlons in &¢, %?- and 5?3, we get

its integrability conditions: (X«'Y =0, (X )’ =0 and (Xdz* )’ = 0 whose
tensor forms are

(25) (X k) + L(U%Xa);‘] + [(U?th] =0,

(X + [w? Xo®] =0, and (Xdz’) + [(qu de"] =0.
Calcu]atmg the first equation of the. above, we have from (17) and (21)

(26) + X*Rjkz—X['].:*thz —= O X*Bjkl "‘I"‘ .XF Pjhl — 0 Xlecl _— 0
From the second,

(27) : XK;]G:O XI‘jk‘*‘XITj hk'——. . c
And the third gives no condition, for it holds identically.

(26) and (27) are moreover not independent of each others, that is,
Xw* = 0 follows from X} = 0. (26) and (27) are therefore reduced to
X*R:, = 0,X*Bi;,=0and XFj,,=0. But these are still not independent.
On the reason of XRj,x'* = XK ¢, and (21), - X*Ri,, = 0 is reduced to
XR},;=0 and XK!, = 0 is neglegible. From (16) it follows that

XC Jllk (chl)lk — XFI’:LLCjZ T XF?kC XF;L/C §h _"‘XFZC;z,(h) .
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‘and then XC%,,=0. And also since X*B%,, = XB},—XC},,, then
X*B%,, = 0 is neglegible®. Therefore, instead of (26) and (27), the
integrability conditions of X} = 0 and (23) and (24) can be stated by

(28) XR:,, =0, XPi,=0. ' ’
Followingly, we have from (16) ‘

| (29) XR;HM =0, .XP;kllh =0, Xngz/(h) =0, XPj/clth) =0.
‘Repeating this process, we can see that Lie derivatives of all curvature
tensors and their covariant derivatives of two kinds must be all equal
to zero. Hence we have the _ -

" Theorem II. In order that this space admits an infinitesimal C'-motion,

it ts mecessary and sufficient that there exists a positive integer N such that

=%
the first N sets of the equations (28), (29), ------ be compatible in &°, ‘Z and

&% of which all solutions satisfy the (N+1)-st set of equations.

Under any infinitesimal affine collineation, the law of displacement of
P, F’ in the deformed space'is the same as that of the original, but that
of a natural reference R, is dR;= (v} + Dw}) R;, where Xw}=XC}0".
Hence an infinitesimal affine collineation which satisfies the equation
XC%, == 0 becomes an infinitesimal C’-motion.

For the admittability of an infinitesimal affine collineation, since
XB:, = (XTIi),q , the equations (23), (24) and the: following relation
must be compatible; Xwi = XC%»*. Then the integrability conditions
are expressible evidently from the above stated results by

: %‘ X*Rékl— XP;cL*thz = %chhK/]Ell ’ X*B§u+ Xfﬁpﬁu == - chllky

XPi, = XPi, and XK:, =0, XI';,+XI''Ci,=0." |

It can bee seen that the independent conditions of the last are only

(30) XKS, = 0.
From (4) and (16) it follows that
(31) . XK?,H; - O » and X.ng,(é) - XR;_;/‘ — O .

Repeating this process, we can see that Liz derivatives of tensor K3,
and its covariant derivatives by 2’ and its partial derivatives by '
must be all equal to zero. Hence we have the

(3) X B} = (XI'}), > can be verified. Although this must require some difficult calcu-
lation, lemma 1II in §4 gives to this easily proof. ’
(4) It can be seen from (4) and lemma II in §4 that XK, = 0 is equivalent to XRj;,=0.
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Theorem III. In order that this space admits an infinitesimal affiine
collineation, it is necessary and sufficient that there exists a positive integer N,
such that the first N sets of the equations (30), (81), ------ be compatible tn &7,
5&° |

dt

and &; of which all solutions satisfy the (N+1)-st set of the equations.

§4. Infinitesimal motion in the space with arc lehgth s =
) . R .
([47 + B]r @t. As the arc length should remain unaltered by a

transformation of parameter ¢, 4, must be a vector and homogeneous
of degree p-2in the 2’* and B is homogeneous of degree » in the z’ and
2xt  ox®
0% 9r’9r*

is transformed as B (&%) = B (vz’) — A, x”’z’* under a point

transformation.

By means of these A4, and B, Prof. A. Kawacucnr defines I'* and Cs,
as follows ; ’

2I" = (2Azkx”c — B(i)) Gil’ ’

: . G% | ]
Cir = —— 14w T Aroiy +(0—38)A s ¢
: p—3 | ‘ J R
+ G wa) + (p—2) Ad(l)“ ' for p# 3 ’
—3pl"" J ,
= Gl {4 + A0} ' for p=3,
Where G,”' = 2A,5_rj) - Aj(i) ’ G.i/c.Gil = 5/{; , Aik = ———OAi .B = oB

ot @D = o/ .

We can easily verify that these I'* and Ci, satisfy our conditions
[1], [II]. . We shall hence consider the space with the connections o, o’
defined as (1). » '

In this space the infinitesimal transformation which satisfies the
equation XF = 0, where F = A" + B, does not change an arc length.
Next, we shall show that the infinitesimal transformation which satisfies
XF = 0 becomes an infinifesimal C’-motion defined in §3. In order to
show this, we must verify the following two lemmas.

Lemma I. If &(x) is a functz’«m of «* only, then Xx‘** =90,
et |
dta b 2 H

Proof. Definition (6) gives Xa‘** = (&) — (&%), But we have on
the other hand

(ﬁi)(a) — (xz + Ez(x) (%)(a) = %% Ez’(a) ot ,

where x'? =
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— e -1 9 (2@ . pa=1) :
@) = DT e - DT ECT) s (gmg+ 6468 20 e 260
Sz E-DI oz =D

== x(a)t + E‘(G)ﬁt
consequently we have Xz@* =0,

Lemma II. If 4(x) is a function of x* only, the operator of Lie de-
rivative with respect to the mﬁmteszmal transformation and that of portial
derivative with respect to x‘** are commutative.

FProof. For example, we take an extensor 7'** of type (1, 0, m,m)“’
Then we have from definition (6), X7 = T"%¢.,,£¥" — ¢48, T**, Differen-
tiating partially the last equation with respect to 2@/,

(XT"),01 = T¥ors8™ ™+ T 553 — P ran T — ERT 1S5 -
Since 1%, is transformed as T7,, = X {,):,, Xy + IO X (83 i XS »
then

XT%%0s = T¥os.cont™™ =TT 6580 + T2 %) — 6 T'7*
Therefore we find (X77%) ,; = XT%,, .

Now, since Xz’ = 0 follows from lemma I, it is seen that XF =
XAx" + XB = 0 which leads to

33) XA,=0, XB =0,
because XA, and XB do not contain z”%. Since from definition (32) of
C4» Ci: is made of A, and its derivatives only, we must have XC%, =
0 from lemma II. On the other hand, since I'* is made of A4, and B

L 4

2
and their derivatives, we see XI"* = 0, and obviously XI'}, =X OIJP 7
22X 9x
=2 xri—o. These results lead to the following, by sake of
ox'’ox'* '
theorem 1,

Theorem IV. The infinitesimal transformation which preserves an arc
length is an infinitesimal C’-motion: _

In §3, an infinitesimal affine collineation Xw*® = 0 gives Lik derivative
of connection wj as Xw$ = XC!,0*, while in §4, we obtain XC% =0
from XA, = 0 only. Hence we have the

Theorem V. The infinitesimal affine collineation which satisfies the
equation XA, = 0 becomes an infinitesimal C’-motion.

Since we can easily verify B = 2I"A,, it must be XB=2XI"A, +
2I'X A, 'Then we obtain the

(6) Lemma II holds good for any quantity 2.
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‘Theorem VI. The mﬁmtesz’mal affine collineation 'whwh satwfws the
equation X A,=0 preserves an arc length.

In this space there exists a system of paths defined by the dif-
ferertial equations z”¢ 4 2I'* = 0. We can easily verify the following

Theorem VII. - The necessary and sufficient condition for that anm in-
finitesimial transformation carries paths of this space into those of the same
space and preserves the base connmegtion s that the transformation s an in-
ﬁmteszmal aﬁine collineation of thes space

B!



