PARTIALLY ORDERED ABELIAN SEMIGROUPS. IV ON THE EXTENTION OF THE CERTAIN NORMAL PARTIAL ORDER DEFINED ON ABELIAN SEMIGROUPS

By

Osamu NAKADA

In Part I¹⁾ of this series, I noted that for any two elements x and y non-comparable in the strong partial order P defined on an abelian semigroup S there exists an extension Q of P such x > y in Q if and only if P is normal. In this Part IV, I shall discuss the extension of the partial order under the weak condition than strongness.

Definition 1. A set S is said to be a partially ordered abelian semigroup (p.o. semigroup), when S is (I) an abelian semigroup (not necessarily contains the unit element), (II) a partially ordered set, and satisfies (III) the homogeneity: $a \ge b$ implies $ac \ge bc$ for any c of S.

A partial order which satisfies the condition (III) is called a *partial* order defined on an abelian semigroup.

Moreover, if a partial order defined on an abelian semigroup S is a linear order, then S is said to be a *linearly ordered abelian semigroup* (l.o. semigroup).

We write a //b in P for a and b are non-comparable in P.

Definition 2. Let P be a partial order defined on an abelian semigroup S. We consider the following conditions for the partial order P:

(E): ac > bc in P implies a > b in P. (order cancellation law)

(G): Let x and y be any two elements non-comparable in P. Then there exists an extension of P in which x > y.

(H): If a//b in P, then $ua \neq ub$ for any u in S.

(K): If a/b in P, then ua/b in P for any u in S.

(L): Let a //b and u //v in P respectively. If $au \neq bv$, then au //bv in P.

¹⁾ Partically ordered abelian semigroup. I. On the extension of the strong partial order defined on abelian semigroups. Journ. Fac. Sci., Hokkaido University, Series I, vol. XI (1951), pp. 181-189.

Strongness: $ac \ge bc$ in P implies $a \ge b$ in P.

Normality: $a^n \ge b^n$ in P for some positive integer n implies $a \ge b$ in P.

Theorem 1. Let P be a partial order defined on an abelian semigroup S. Then P satisfies the condition (K) if and only if P satisfies the conditions (E) and (H).

Proof. Clearly the condition (K) implies the condition (H). If P satisfies the condition (K) and ac > bc in P, then a and b are comparable in P. And hence we have a > b in P.

Conversely, let P satisfy the conditions (H) and (E) and let a//b in P. Then we have $ua \neq ub$ for any u in S by the condition (H). If ac and bc are comparable in P for some c in S, say that ac > bc in P, then we have a > b in P by the condition (E), this is impossible.

Theorem 2. Let P be a normal partial order defined on abelian semigroup S which satisfies the condition (K). If a //b in P, then $u^i a^j //u^i b^j$ in P for any u in S and any integers $i (\geq 0)$ and j (>0), where if i=0, $u^i a^j //u^i b^j$ means that $a^j //b^j$.

Proof. By the normality, a //b in P implies $a^j //b^j$ in P for any positive integer j. And hence we have $u^i a^j //u^i b^j$ in P by the condition (K).

Theorem 3. Let P be a normal partial order defined on an abelian semigroup S which satisfies the condition (K) and x and y be any two elements non-comparable in P. Then there exists a normal extension Q of P such that x > y in Q.

Proof. Let P be a normal partial order defined on S and the elements x and y are not comparable in P. Let us define a relation Q as follows:

We put a > b in Q if and only if $a \neq b$ and there exist two nonnegative integers n and m, such that not both zero and

 $a^n y^m \ge b^n x^m \quad \text{in } P,$

where if m=0 or n=0 (§) means that $a^n \ge b^n$ or $y^m \ge x^m$ in Prespectively. First we note that n is never zero, for otherwise we should have $y^m \ge x^m$ in P, whence by the normality we have $y \ge x$ in P against the hypothesis.

(i) We being with verifying that a > b and b > a in Q are contradictory. Suppose that a > b and b > a in Q, namely $a^n y^m \ge b^n x^m$ and $b^i y^j \ge a^i x^j$ in P for some non-negative integers n, m, i, j. By multiplying i times the first, n times the second inequality, we obtain $(ab)^{ni} y^{mi+nj} \ge (ab)^{ni} x^{mi+nj}$ in P, which contradicts the condition (K). If m=j=0, then we have a > b and b > a in P, which is impossible. (ii) We show the transitivity of Q. Assume that a > b and b > c in Q, i.e., for some non-negative integers $n, m, i, j, a^n y^m \ge b^n x^m$ and $b^i y^j \ge c^i x^j$ in P. By multiplying as in (i) we get $a^{ni}y^{mi+nj} \ge c^{ni}x^{mi+nj}$ in P. Here ni is not zero, and a=c is impossible by the condition (K), so that a>c in Q. If m=j=0, then we have a>b, b>c in P, and hence a>c in P(Q).

(iii) We prove next the homogeneity of Q. Suppose that a > b in Q. If $ac \neq bc$, from $(ac)^n y^m \ge (bc)^n x^m$ in P we have ac > bc in Q. Therefore a > b in Q implies $ac \ge bc$ in Q for any c of S.

(iv) Q is an extension of P, for if a > b in P, then $ay^0 > bx^0$ in P, therefore a > b in Q.

(v) It is clear that x > y in Q. In fact, $xy \ge yx$ in P.

(vi) We may prove the normality of Q. Indeed, supposing $a^n > b^n$ in Q for some positive integer n, i.e., $(a^n)^i y^j \ge (b^n)^i x^j$ in P, we see at once that a > b in Q.

(vii) If a//b in Q, then a//b in P, and hence $ua \neq ub$ for any u in S. Therefore, Q satisfies the condition (H).

Theorem 4. Let P be a partial order defined on an abelian semigroup S which satisfies the condition (G) and let a//b, u//v in P. If $au \neq bv$ and av = bu, then au//bv in P.

Proof. Suppose that au and bv are comparable in P, say that au > bv in P. There exists an extension Q of P such that v > u in Q. Then we have $bv \ge bu = av \ge au$ in Q, that is, we have $bv \ge au$ in Q. This contradicts the assumption.

Theorem 5. Let P be a partial order defined on an abelian semigroup S which satisfies the condition (G) and let a//b, u//v in P. If $au \neq bv$ and $av \neq bu$, then au//bv or av//bu in P.

Proof. Suppose that au and bv are comparable in P, say that au > bvin P. If bu > av in P, then we consider an extension Q of P such that v > u in Q. Then we have $bv \ge bu > av \ge au$ in Q, that is, bv > au in Q, this is absurd. If av > bu in P, then we consider an extension Q of Psuch that b > a in Q. Then we have $bv \ge av > bu \ge au$ in Q, that is, bv > auin Q, which leads the contradiction also. Therefore, bu //av in P.

Theorem 6. Let P be a normal partial order defined on an abelian semigroup S which satisfies the condition (K). If a > b and x//y in P, then $a^n y^m > b^n x^m$ or $a^n y^m // b^n x^m$ in $P(a^n x^m > b^n y^m$ or $a^n x^m // b^n y^m$ in P) for any integers $m (\geq 0)$ and n (> 0).

Proof. If $a^n y^m = b^n x^m$ for some positive integeas m and n, then we

have $a^n x^m \ge b^n x^m = a^n y^m \ge b^n y^m$ in P, that is, $b^n x^m \ge b^n y^m$ in P which contradicts the condition (K).

By the existence of the extension Q of P such that y>x in Q, we have $a^ny^m \ge b^nx^m$ in Q. Hence, if a^ny^m and b^nx^m are comparable in P, then we have $a^ny^m > b^nx^m$ in P.

Theorem 7. Let P be a normal partial order defined on an abelian semigroup S which satisfies the conditions (K) and (L) and let x//y in P. For two distinct elements a and b, the following two properties are equivalent to each other:

(1) a > b in P or $a^n y^m = b^n x^m$

 $(2) \quad a^n y^m \ge b^n x^m \quad in P$

for some integers $m (\geq 0)$ and n (>0), where if m=0, $a^n y^m$ and $b^n x^m$ means that a^n and b^n respectively.

Proof. (1) implies (2): If a > b in P, then we can write $ay^{\circ} \ge bx^{\circ}$ in P.

(2) implies (1): If a //b in P, then by the normality we have m > 0 and $a^n //b^n$, $y^m //x^m$ in P. Therefore, $a^n y^m = b^n x^m$ by the condition (L).

If m=0, then $a^n \ge b^n$, and hence a > b in P.

If m>0 and b>a in P, then $b^n>a^n$, and hence we have $b^nx^m \ge b^nx^m$, $b^ny^m \ge a^ny^m$ in P. Therefore, we have $b^ny^m \ge a^ny^m \ge b^nx^m \ge a^nx^m$ in P, that is, $b^ny^m \ge b^nx^m$ in P which contradicts the condition (K). Therefore, we have a>b in P.

Moreover, in this case, a > b in P if and only if $a^n y^m > b^n x^m$ in P for some integers $m (\geq 0)$ and n (> 0).

Theorem 8. Let P be a normal partial order defined on an abelian semigroup S which satisfies the conditions (K) and (L) and x and y be any two elements non-comparable in P. Then there exists a normal extension Q, which satisfies the condition (K), of P such that x > yin Q.

Proof. By Theorem 3, there exists the normal extension Q of P which satisfies the condition (H) such that x > y in Q.

The order-relation Q is as follows:

a > b in Q if and only if a > b in P, or a //b in P and $a^n y^m = b^n x^m$ for some positive integers m and n.

(viii) Suppose that ac > bc in Q. If ac > bc in P, then we have a > bin P(Q). If ac //bc in P, then a //b in P and $(ac)^n y^m = (bc)^n x^m$, i.e., $c^n (a^n y^m) = c^n (b^n x^m)$ for some positive integers m and n. By the condition (K) of P, $a^n y^m$ and $b^n x^m$ are comparable in P. And hence we have $a^n y^m = b^n x^m$ by the condition (L) of P. Therefore, we have a > b in Q. Thus Q satisfies the conditions (H) and (E), that is, the condition (K).

Mathematical Institute, Hokkaido University

-

(Received December 10, 1960)