PARTIALLY ORDERED ABELIAN SEMIGROUPS. IV

ON THE EXTENTION OF THE CERTAIN NORMAL PARTIAL ORDER DEFINED ON ABELIAN SEMIGROUPS

By
Osamu NAKADA

In Part $\mathrm{I}^{1)}$ of this series, I noted that for any two elements x and y non-comparable in the strong partial order P defined on an abelian semigroup S there exists an extension Q of P such $x>y$ in Q if and only if P is normal. In this Part IV, I shall discuss the extension of the partial order under the weak condition than strongness.

Definition 1. A set S is said to be a partially ordered abelian semigroup (p.o. semigroup), when S is (I) an abelian semigroup (not necessarily contains the unit element), (II) a partially ordered set, and satisfies (III) the homogeneity : $a \geqq b$ implies $a c \geqq b c$ for any c of S.

A partial order which satisfies the condition (III) is called a partial order defined on an abelian semigroup.

Moreover, if a partial order defined on an abelian semigroup S is a linear order, then S is said to be a linearly ordered abelian semigroup (l.o. semigroup).

We write $a / / b$ in P for a and b, are non-comparable in P.

Definition 2. Let P be a partial order defined on an abelian semigroup S. We consider the following conditions for the partial order P :
(E) : $a c>b c$ in P implies $a>b$ in P. (order cancellation law)
(G) : Let x and y be any two elements non-comparable in P. Then there exists an extension of P in which $x>y$.
(H): If $a / / b$ in P, then $u a \neq u b$ for any u in S.
(K): If $a / / b$ in P, then $u a / / u b$ in P for any u in S.
(L) : Let $a / / b$ and $u / / v$ in P respectively. If $a u \neq b v$, then $a u / / b v$ in P.

1) Partically ordered abelian semigroup. I. On the extension of the strong partial order defined on abelian semigroups. Journ. Fac. Sci., Hokkaido University, Series I, vol. XI (1951), pp. 181-189.

Strongness : $a c \geqq b c$ in P implies $a \geqq b$ in P.
Normality : $a^{n} \geqq b^{n}$ in P for some positive integer n implies $a \geqq b$ in P.
Theorem 1. Let P be a partial order defined on an abelian semigroup S. Then P satisfies the condition (K) if and only if P satisfies the conditions (E) and (H).

Proof. Clearly the condition (K) implies the condition (H). If P satisfies the condition (K) and $a c>b c$ in P, then a and b are comparable in P. And hence we have $a>b$ in P.

Conversely, let P satisfy the conditions (H) and (E) and let $a / / b$ in P. Then we have $u a \neq u b$ for any u in S by the condition (H). If $a c$ and $b c$ are comparable in P for some c in S, say that $a c>b c$ in P, then we have $a>b$ in P by the condition (E), this is impossible.

Theorem 2. Let P be a normal partial order defined on abelian semigroup S which satisfies the condition (K). If a//b in P, then $u^{i} a^{j} / / u^{i} b^{j}$ in P for any u in S and any integers $i(\geqq 0)$ and $j(>0)$, where if $i=0$, $u^{i} a^{j} / / u^{i} b^{j}$ means that $a^{j} / / b^{j}$.

Proof. By the normality, $a / / b$ in P implies $\mathrm{a}^{j} / / \mathrm{b}^{j}$ in P for any positive integer j. And hence we have $u^{i} a^{j} / / u^{i} b^{j}$ in P by the condition (K).

Theorem 3. Let P be a normal partial order defined on an abelian semigroup S which satisfies the condition (K) and x and y be any two elements non-comparable in P. Then there exists a normal extension Q of P such that $x>y$ in Q.

Proof. Let P be a normal partial order defined on S and the elements x and y are not comparable in P. Let us define a relation Q as follows:

We put $a>b$ in Q if and only if $a \neq b$ and there exist two nonnegative integers n and m, such that not both zero and

$$
\begin{equation*}
a^{n} y^{m} \geqq b^{n} x^{m} \quad \text { in } P, \tag{§}
\end{equation*}
$$

where if $m=0$ or $n=0$ (§) means that $a^{n} \geqq b^{n}$ or $y^{m} \geqq x^{m}$ in Prespectively.
First we note that n is never zero, for otherwise we should have $y^{m} \geqq x^{m}$ in P, whence by the normality we have $y \geqq x$ in P against the hypothesis.
(i) We being with verifying that $a>b$ and $b>a$ in Q are contradictory. Suppose that $a>b$ and $b>a$ in Q, namely $a^{n} y^{m} \geqq b^{n} x^{m}$ and $b^{i} y^{j}$ $\geqq a^{i} x^{j}$ in P for some non-negative integers n, m, i, j. By multiplying i times the first, n times the second inequality, we obtain $(a b)^{n i} y^{m i+n j}$ $\geqq(a b)^{n i} x^{m i+n j}$ in P, which contradicts the condition (K). If $m=j=0$, then we have $a>b$ and $b>a$ in P, which is impossible.
(ii) We show the transitivity of Q. Assume that $a>b$ and $b>c$ in Q, i.e., for some non-negative integers $n, m, i, j, a^{n} y^{m} \geqq b^{n} x^{m}$ and $b^{i} y^{j} \geqq c^{i} x^{j}$ in P. By multiplying as in (i) we get $a^{n i} y^{m i+n j} \geqq c^{n i} x^{m i+n j}$ in P. Here $n i$ is not zero, and $a=c$ is impossible by the condition (K), so that $a>c$ in Q. If $m=j=0$, then we have $a>b, b>c$ in P, and hence $a>c$ in $P(Q)$.
(iii) We prove next the homogeneity of Q. Suppose that $a>b$ in Q. If $a c \neq b c$, from $(a c)^{n} y^{m} \geqq(b c)^{n} x^{m}$ in P we have $a c>b c$ in Q. Therefore $a>b$ in Q implies $a c \geqq b c$ in Q for any c of S.
(iv) Q is an extension of P, for if $a>b$ in P, then $a y^{0}>b x^{0}$ in P, therefore $a>b$ in Q.
(v) It is clear that $x>y$ in Q. In fact, $x y \geqq y x$ in P.
(vi) We may prove the normality of Q. Indeed, supposing $a^{n}>b^{n}$ in Q fer some positive integer n, i.e., $\left(a^{n}\right)^{i} y^{j} \geqq\left(b^{n}\right)^{i} x^{j}$ in P, we see at once that $a>b$ in Q.
(vii) If $a / / b$ in Q, then $a / / b$ in P, and hence $u a \neq u b$ for any u in S. Therefore, Q satisfies the condition (H).

Theorem 4. Let P be a partial order defined on an abelian semigroup S which satisfies the condition (G) and let $a / / b, u / / v$ in P. If $a u \neq b v$ and $a v=b u$, then $a u / / b v$ in P.

Proof. Suppose that $a u$ and $b v$ are comparable in P, say that $a u>b v$ in P. There exists an extension Q of P such that $v>u$ in Q. Then we have $b v \geqq b u=a v \geqq a u$ in Q, that is, we have $b v \geqq a u$ in Q. This contradicts the assumption.

Theorem 5. Let P be a partial order defined on an abelian semigroup S which satisfies the condition (G) and let $a / / b, u / / v$ in P. If $a u \neq b v$ and $a v \neq b u$, then $a u / / b v$ or $a v / / b u$ in P.

Proof. Suppose that $a u$ and $b v$ are comparable in P, say that $a u>b v$ in P. If $b u>a v$ in P, then we consider an extension Q of P such that $v>u$ in Q. Then we have $b v \geqq b u>a v \geqq a u$ in Q, that is, $b v>a u$ in Q, this is absurd. If $a v>b u$ in P, then we consider an extension Q of P such that $b>a$ in Q. Then we have $b v \geqq a v>b u \geqq a u$ in Q, that is, $b v>a u$ in Q, which leads the contradiction also. Therefore, $b u / / a v$ in P.

Theorem 6. Let P be a normal partial order defined on an abelian semigroup S which satisfies the condition (K). If $a>b$ and $x / / y$ in P, then $a^{n} y^{m}>b^{n} x^{m}$ or $a^{n} y^{m} / / b^{n} x^{m}$ in $P\left(a^{n} x^{m}>b^{n} y^{m}\right.$ or $a^{n} x^{m} / / b^{n} y^{m}$ in P) for any integers $m(\geqq 0)$ and $n(>0)$.

Proof. If $a^{n} y^{m}=b^{n} x^{m}$ for some positive integeas m and n, then we
have $a^{n} x^{m} \geqq b^{n} x^{m}=a^{n} y^{m} \geqq b^{n} y^{m}$ in P, that is, $b^{n} x^{m} \geqq b^{n} y^{m}$ in P which contradicts the condition (K).

By the existence of the extension Q of P such that $y>x$ in Q, we have $a^{n} y^{m} \geqq b^{n} x^{m}$ in Q. Hence, if $a^{n} y^{m}$ and $b^{n} x^{m}$ are comparable in P, then we have $a^{n} y^{m}>b^{n} x^{m}$ in P.

Theorem 7. Let P be a normal partial order defined on an abelian semigroup S which satisfies the conditions (K) and (L) and let $x / / y$ in P. For two distinct elements a and b, the following two properties are equivalent to each other :
(1) $a>b$ in P or $a^{n} y^{m}=b^{n} x^{m}$
(2) $a^{n} y^{m} \geqq b^{n} x^{m}$ in P
for some integers $m(\geqq 0)$ and $n(>0)$, where if $m=0, a^{n} y^{m}$ and $b^{n} x^{m}$ means that a^{n} and b^{n} respectively.

Proof. (1) implies (2): If $a>b$ in P, then we can write $a y^{o} \geqq b x^{o}$ in P.
(2) implies (1): If $a / / b$ in P, then by the normality we have $m>0$ and $a^{n} / / b^{n}, y^{m} / / x^{m}$ in P. Therefore, $a^{n} y^{m}=b^{n} x^{m}$ by the condition (L).

If $m=0$, then $a^{n} \geqq b^{n}$, and hence $a>b$ in P.
If $m>0$ and $b>a$ in P, then $b^{n}>a^{n}$, and hence we have $b^{n} x^{m} \geqq b^{n} x^{m}$, $b^{n} y^{m} \geqq a^{n} y^{m}$ in P. Therefore, we have $b^{n} y^{m} \geqq \alpha^{n} y^{m} \geqq b^{n} x^{m} \geqq a^{n} x^{m}$ in P, that is, $b^{n} y^{m} \geqq b^{n} x^{m}$ in P which contradicts the condition (K). Therefore, we have $a>b$ in P.

Moreover, in this case, $a>b$ in P if and only if $a^{n} y^{m}>b^{n} x^{m}$ in P for some integers $m(\geqq 0)$ and $n(>0)$.

Theorem 8. Let P be a normal partial order defined on an abelian semigroup S which satisfies the conditions (K) and (L) and x and y be any two elements non-comparable in P. Then there exists a normal extension Q, which satisfies the condition (K), of P such that $x>y$ in Q.

Proof. By Theorem 3, there exists the normal extension Q of P which satisfies the condition (H) such that $x>y$ in Q.

The order-relation Q is as follows:
$a>b$ in Q if and only if $a>b$ in P, or $a / / b$ in P and $a^{n} y^{m}=b^{n} x^{m}$ for some positive integers m and n.
(viii) Suppose that $a c>b c$ in Q. If $a c>b c$ in P, then we have $a>b$ in $P(Q)$. If $a c / / b c$ in P, then $a / / b$ in P and $(a c)^{n} y^{m}=(b c)^{n} x^{m}$, i.e., $c^{n}\left(a^{n} y^{m}\right)$ $=c^{n}\left(b^{n} x^{m}\right)$ for some positive integers m and n. By the condition (K) of $P, a^{n} y^{m}$ and $b^{n} x^{m}$ are comparable in P. And hence we have $a^{n} y^{m}=b^{n} x^{m}$
by the condition (L) of P. Therefore, we have $a>b$ in Q. Thus Q satisfies the conditions (H) and (E), that is, the condition (K).

Mathematical Institute, Hokkaido University

(Received December 10, 1960)

