A GENERALIZATION OF MAZUR-ORLICZ THEOREM
ON FUNCTION SPACES ’

By

Takashi ITO =

1. Introduction. Let Q(B, 1) be a locally finite® measure space. By
many investigators various function spaces consisting of locally almost
finite B-measurable functions® on 2 have been considered as a generaliza-
tion of the so-called L,-spaces on £ (1=<p=-+.o0). One of them is Lacu,q
space (Musielak-Orlicz-[3], [4]).

Let M(u,®) be a function on [0, +oo]X 2 with the following pro-
perties (it will be called (M)-function); .

1) 0=Mu,w)<+x for all (u, w)c[0, +°0]><Q
2) lim M(u, w)=0 for all we,

2%w>0
: 3) M(u,w) is a non-decreasing and left continuous® function of u
(M) for all we 2,
4) lim M(u, w)>0 for all we 2,

5) M(u,®) is locally 'B-measurable® as a function of » for all
ue[O, +°°] -
Using this function M(u, ») we can define a functional p,(x) on locally
almost finite B-measurable functions z(w) (we2) by the formula

(1) pu@= [ ML|a(@)], wJd”

If Ly.., denotes the set of all x(w) such that p,(ax)<+ o for a positive
‘number a=a(x) depending on 2, L., 1S a vector space.
As special cases, Ly, ., coincides with four typical spaces respectively :

1) Qs covered by the family of measurable sets of finite measure.

2) Correctly speaking, we shall consider only the functions which are almost ﬁnlte
real valued and B-measurable in every measurable set of finite measure. And two functions
#(w) and y(w) are identified if x(w)=y(w) except on a set of measure zero in every measur-
able set of finite measure. ‘

3) Since M(u, w) can be replaced by M(x—0, ®), the left side continuity is not essential
for the definition of the space La(u,o).

4) It is unnecessary for M(u, ®) to be almost finite valued.

5) (M)-2) and 38) imply the measurability of a function M[|x(w) |, ®]. The integration

on 2 means the supremum of integrations on every finite measured set.
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1) L,space (0<p=-+ o), when M (u, w)=u?®
2) ' Lywy-space (Orlicz [7]), when M(u, w)=N(u) and N(u) is a convex
‘ function of wu,
8) Lauy-space (Mazur- Orhcz [2]), When M(u, w)= M(u),
4) Lxe,.-space” (Nakano [5]), when M(u, w)=N(u, w), and N(u, ») is
a convex function of u for all we .
In view of generalization of a constructive method, the relation between
above four spaces is shown with the following schema,

L,1=p=<+ )
(2) Lyey—Lncu,q

L, (0<p<1)—Luywy—Lacu,s

In the spaces Ly, and Lye,.), if we put
(3) ||z ||y=inf {e>0; px(x/e) <1},
we have a complete norm (B-norm) on Ly, and Ly, . respectlvely ([17],
[51). In the spaces Ly, and Lue,.), putting

(4) || 2 || x=1inf {e>0; o, (x/e)<¢},

we have a complete quasi-norm (F-norm) on Ly, and L., respectively
([2],[3]). We can see easily lim ||, |y=0 (lim ||z, ||,=0) if and only if
7> - n->0 .

lim py(az,)=0 (lim py(ax,)=0) for all a=0.

- Mazur-Orlicz has shown in [2] the following result® :
Given Lauey-space, the necessary and sufficient condition for to exist
a convex (M)-function N(u) such as Lyw,= Ly, s that the linear topology
induced by the quasi-norm |||, 1s locally convex. _
- The purpose of this paper is to generalize this result to the problem
of the relation between L,y and Lyg,.,. In §2 we shall define the
abstract Lu.,.,-space, and in §3 the problem will be studied in an
abstract form. If Q(B, ¢) is non-atomic, we obtain a similar result to the
above - Mazur-Orlicz theorem (Theorem 2). Although in general it does
not hold in an atomic case, under some assumption it ecan be proved also
(Theorem 3)

6) If p +oo then we put u+>*=0 (0=u=1) and =+ (u>1).

7) H. Nakano calls Lyu,0) a modulared function space in [5] (appendix).

8) It has been proved under an additional condition: M(2u)<KM(u) for all u=u,>0
(non-atomic case) or M(2u)<KM(u) for all 0=<u=<wu, (atomic case). '
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2. Modulared vector lattice. First of all, we shall define a modulared
vector latice R(o) as the abstraction of Luc..,-spaces. Let R be a condi-
tionally complete® vector lattice. A functional on R with values 0=p(x)
=< + oo will be called a modular'® ([4], [5], [6]) when the following condi-
tions are satisfied ;

1) plax)=0 for all a=0 if and only if =0,
2) inf p(ax)=0 for all zc R,
a>0

8) |z|=|y| implies p(x)=p(y),
(p) 4) x_y=0 implies o(x+y)=p(x)+o(¥),
5) O=whic, 2V implies sup ;)= p(x),

6) for any orthogonal system x,=>0 (1eA) such as Zp(x2)<+°°

we can find zc R and 2= 3] z,'® (orthogonal completeness).
=V

Moreover, if p satisfies the following condition (C), e will be called a
convexr modular ;

(C) o(ax) is a convex function of a for all xcR.

We shall call R where a (convex) modular is defined a (convex) modulared
vector lattice. A convex modulared vector lattice will be said briefly the
Nakano space’. We can see easily that Lac.,.(0x) is a modulared vector
lattice and Ly...(0y) is the Nakano space.

The (p)-condition implies some properties;
(5) p(x™~"y)+p(x ~y)=p(x)+p(y) for z, y=0,
(6) olax+ py)=p(x)+o(y) for x,yeR, a, =0, a+B=1.
It has been shown in [8] and [4] that the property (6) defines a ordered'®
quasi-norm ||z||, on B by the formula |

(7) |z |l,=inf {e>0; p(x/c) =€} (weR)
‘We can see easily hm |2, |/,=0 if and only if lim p(ax,)=0 for all a=0.

n-»co

9) Every upper-bounded system of elements has a supremum in E.

10) For the first time the name ‘modular’ was used by H. Nakano, when (p)*1)~5)
and (C) were satisfied. The convex modular defined in this paper coincides with the monotone-
complete modular in Nakano’s terminology ([5]). The orthogonal completeness ((p)-6))
implies the monotone completeness (cf. Remark of Lemma 1). The condition (o) is stronger
than that in [4] and of the quasi-modular in {8].

11) For any 2A;, 2:€/ there exists As€/4 such as 2, Uz, <%, and U zi=2w.

€4
12) S ai= U ) xi, where A’ is a finite subset of /.
g4 A7CA4 24’

13) In [5] it is called a monotone-complete modulared semi-ordered linear space.
14) |z|=|y| implies [[@|[e=]|¥|lo.
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In this section we shall prove that Hxll,, 1s a complete qua31 norm
on R.

Lemma 1. The mnecessary and sufficient condition for a directed
system of positive elements 0=x},c, to be order-bounded is that the fol—
lowing two conditions are satisfied ;

(i) sup plax;,)< + oo for some a>0,

(ii) f0fr any peR (p30) we can find two posztwe numbers ,82>/31>0
such that sup (B,Lp]x:) < p(f:p)™. \

Proof, Supposmg 0<w,}:cs 2, then (0)-2) and 3) imply (i). Since
sup o(ap)>0 (p=0) and 1nf o(a[p]x)=0, .we have easily -(ii).

Sufficiency : First, (11) implies the fact that for a given »p>0 we
can find 0<[q]=[»]'® such that [¢Jx; (1¢4) is order-bounded. Because ;
in the contrary case, we can obtain the decomposition of [p],[»]
=[¢,]1D---®[¢,]'"", and 2,64 (1=i=n) such that ‘Bz[‘Ii]p<181EQi]xzi A=q
=mn), hence ﬂzpF~§ﬂ2EQi]p§_§ 131[(11']33%: 'L—J1 131[q1']xzi§/31[p]xzu for some

A,€4. This implies the contradiction: o(8,p)=<p(B,[p]x;,)< 0(B:D).
Therefore, if we put [p,] (r¢I’) a maximal orthogonal system of
projectors such as [ p,]x, (1€ 4) is order-bounded, then we have > [p,]=11®
rer
Putting [p,]x:tes ¥, since p(ay,)=§g}) o(al[p,]Jx;), we see %‘1 o(ay,)
re
=sup > p(a[p,]%;)=sup p(ax,) <+ ((i)). Hence the orthogonal complete-
€4 rer =Y :
ness ((p)—6)) implies the existence ze¢ R such as z=3 ayr=2UA ax;, that is
[

rer
szzeA x/a.

Remark. When sup ,o(ap) + oo (p=0) is satlsﬁed (ii) follows from
(i). :
Theorem 1. ||z]|, (xeR) 'is a complete quasi-norm on R(p).

Proof. Let z, (v=1,2,---) be a Cauchy sequence, and we assume
21—, |[,=1/2" (»=1,2, - - -). Putting [w,—a, |+ - +|0,— 2,y |=2, (n=2)

anlexm T|=Y, (n=1,m=n), We see ¥, ,=Z,+Yn,m ||Yn,mll,=<1/271 that

15) [p] is a projection operator and defined as follows [pJax= O_GI (x~v|»]) for all z=0,

it is called a projector ([5]).
16) [q]x<[p]x for all x==0.

17) [p]x— [q,,]x for all zeR and [q:1[g;1=0 (z#:g)
18) X0 [p,]:v x for all x==0.
‘er
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is, o(2"" 'Y, .)=1/2""', and ¥, . m=n- The non-decreasing sequence Y1, m mz1
satisfies (i) and (ii) in the provious Lemma 1. First, sg? oY =1

follows from ||¥,,.|/,<1 (m=1). Next for any p=0 we can find a posi-
tive number B,>0 and an integer n=>1 such as 1/2" %< p(8;p), and further
B,>0 such as 2B,<2"! and p(2B,2,)<1/2""'." Hence o(8,[P]¥1,.)=0(2B:%,)
+0(2B,Y 0, m)=1/2" - p(2" 'Y, ) =1/2 7 +1/27 7 =1/2""2 < p(Bzp). By Lemma

1 we can put ﬁlx,ﬂ—o‘c,lzu Ynm=Y, (n=1). This implies also that the
man

V=70

sequence z,(r=1,2, ---) coverges to an element x, in order'”, that is,

m
o-limz,=x,, We see |x,—z,|=]|o0-lim Z(xu+1—x)|§u Yn.m="Y., hence

y->oo m-yoo y=mn

| 2o—2, || =|| Yn llo= 2"’supllyn,,L||,9£1/2" ! that is, hml|9c0 z,|l,=0. Q.E.D.

3. Local convexity of the linear topology in modulared vector
Iattices. ‘ '

‘A. Non-atomic case. Let R(p) be a non-atomic®” modulared vector
lattlce we have the following main theorem.

Theorem 2. In a non-atomic modulared vector lattice R(p) the fol-
lowing four conditions are equivalent each other ;

a) the metric linear topology induced by ||x||, is normable,

b) the metric linear topology induced by | x||, is locally convex,

c) there exists a comvex modular m(x) on R(p) (R is the Nakano
space), ’ b

d) there exists a complete ordered morm |||xz]||| on R(p) (R is a
Banach lattice).

Proof. (b)—>(c). First, we shall prove the following fact:
For any >0 we can find a positve number 5:,5(5)>0 such that

. : z .
(%) p(x/e)>¢ implies > o(nx,/0)[n,>d,
=1
where {r,;1=<7=<I} is an arbitrary orthogonal decomposition of ,

Z -
x=>1® x,;*®, and n, (1=<7=<l[) are arbitrary positive integers.
=1 . . ' .

Uxv= U N «» and it is denoted by o-lim x.=uw,.

n=1 v=2n n=1 v=n ¥ >0

o8

19) o=
20) (p)—5) implies §161§ Halle=||z |l for all 0=a3tica x.

21) For every asR, a>0 we can find b,¢>0 such as a=b+c and b/\c_=0.
22) x:igxi and | ;]| ~] 2 |=0 (E*7). -
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Because, from the local convexity . of [|x||., for any e>0 we can find

a positive number d=4d(¢)>0 such that ||z, |,<¢ (1<’b<l) imply HZx/lH,,
=g, that is,

(8) o(z,/8)<é (1=i<l) imply p(é o jel) <e.

Hence, if Ep(n x,/0)/n,= 5 rx= Z@ x; and n, (1=1=1) are positive 1ntegers,

then in view of the assumption that R is non-atomic, we can find an
orthogonal decomposition of x, such that :

s
(9) {xzzg@ z;,, 1=t=10)
o(nx; ,/0)=po(n, xz/5)/n (1<D<ni; 1<),
If we put ¥,,.,,...,., —Z@)nxi o’ (1<y1 n,), then the total number of ele-

ments ¥, ..., is mmy -+ m, and the sum of them equals to nm, ---nu,

because the multlphclty of n,; in the summation is nn, ---n,/n, we
have

Z 3
v v, kg n n
(10) lééﬂiy T LR "Z:l = 1 lxz 7
1si<t :
]
ZZ NX, =N Ny nx

On the other hand
(11) OYsprrgseee s 0)= Zp(n X;,,,/0)= Zp(n :/0)/ 1=
Therefore from (8), (10) and (11) we see

p< > Yopogeeoesn [EM Mg - - - )zp(w/s)ée .

1§ui§mi
R 1=sis?
Thus (x) has been proved.
And the following fact is a direct consequence of (),

(12) sup plax) < + oo if and only if x=0.

az0

Since sup p(ax)'=-7'<—!—oo implies ngfp(nx/é)/n:() for all 6>0, by (x)
az=0 ) na1

p(oé/s)§s for all ¢>0, hence }|z||,=0, that is, 2=0.
Putting, for ¢,=d(1)>0,

23) This is a method used oftenly in non-atomic cases. Confer [4] or [5].
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(13) | p(x):x—lgefax 12 o(2n,2./6,)[6.7; (xeR),
7,21
the functional p(x) (x¢R) has the following properties;
1) p(x)<1/6,-p(2x/s,) for all xeR,
2) p(x)=1 implies p(x)=1,
8) |x|=|y| implies p(x)=p(y),
@ 4 =,-y=0 implies p(@-+y)=p(x)+5),
5) p(tx)/t (t>0) is a non-decreasing function of ¢>0 for all
ze R,

+ 6)  [pJties [#1* and p()<+co imply sup o([p:]2)=p(w).
(p)-1) is obvious from the definition of p. (p)-2) is a simple consequence
of (+); if p(@)>1, 2= z@x and 7,>1 (1=i=D), then we see ip(zmx 18/,
>Z o(2nx,/0,)/26,m; where n, (1=<¢<l) are positive integers such as

z=771<'n,1—l—1 (1§z§l). (0)-8) and 4) are easily implied from (p)-3) and
4) respectively. Next we shall check (p)-5); for t,>¢,>0 we have

p(t.x)/t :xiéle)fxlz P(ztﬁixi/‘si)/tﬂhai: inf Z 0(282,/6,)/§:0;

75 =1 ezztl

= lrzlfx > p(28704/0,)/6:0,=p(t:2)/t -
. e =7,
(p)-6) is shown as follows : o(x)< + oo if and only if - p(2x/5,)< + . Hence
0=p(x)— p([ p.Jx)=p(x— [p,]2) = p(2(x— [9:]%)/6,)/0, < + o,

and inf o(2(x—[p,]%)/3,)=0 is effected by (o)-5).
ig
Next we put o(x) (xe R) as follows;

_ sup p([p;]x), if there exists [p:]ties [*] and
(14) ol '"{ o([p,]x)<+ oo for all 2e4,

+ oo, elsewhere.
We see obviously p(x)=<p(x) (xe¢R) and p(z)=p(x), if o(x)<+o. The
functional p(x) (x€R) has the same properties as (p) and moreover has
the stronger property than 6) of (p):

(15) If [p]tses [2], then sup p([p.]x)=p(2) .
Now we can construct a convex modular m(x) (zcR):
(16) B m(a)= f Sta)/t dt (zeR)

24) [pilylieq [a:‘];z} for all y=0.



228 T. Ité

Evidently we see »

(17) o(z/2)=m(x)=p(x) (xcR).

It is obvious also that this functional m(x) on R satisfies (C) from the
fact that -p(tr)/t is a non-decreasing function of ¢>0.

We shall check the modular condition (o) about m(x) (xeR). (p)-1);

sup m(ax)=0 1mp11es sup p(ax)=0, hence from the definition of 7 and
a0

(p)-2) we can see sup p(aoc)<1 therefore x=0 follows from (12). (0)-2)

is evident from (17) and (p)-1): 0=m(x)=<p(2x/5,)/d,. (p) 3) and 4) are
almost evident. (p)-5) ; from (15) we see sup m([p:]o)=m(x) for [ p;]tieq [2],

and since m(ax)= f o(tx)/t dt, m(ax) is a left continuous functlon of a>0

therefore ng,me,, x implies sup m(x;)=m(x). (p)-8); for the orthogonal
system x,=>0 (1¢ 4) such as z%m?x;)< + o0 we see Eﬁ(w;/Z)gzeZA' m(x;) < -+ oo,
hence Z?)(xz/2)_<_1 for some A'CA such as A—A" is a finite set. (p)-2)
and 4) 1mply Z p(x2/2)<1 whence >z, exists by the orthogonal complete-

IV
ness of p.
c)—d). Let m(x) (xc¢R) be a convex modular on R(p), then we have

an ordered norm [{|z||| on R by the formula ([5]):

(18) Il ¢ |l|=inf {e>0 ; m(a/e)=<1} .
We can see easily hmlllxn l||=0 if and only if lim m(ax,)=0 for all «=>0.

Hence hmle HI—O"’hm]lx [ln=0. Therefore the completeness of

]2 ]| (xeR) follows from Theorem 1.

d)—a). Let |||z]||| (xeR) be a complete ordered norm on R(p). It is
sufficient to show the fact ||z ||, is equivalent to HIxHI In general we
can prove the following lemma. |

Lemma 2. If R is a o-complete®> wvector lattice and || x|, |||,
(xe R) are two complete ordered quasi-norm on R, then they are equival-
lent each other.

Proof. For any ¢>0 we can find positive numbers 4, and 7, such that
(19) | @|;=6. implies || 7.2 ||.<

Because; in the contrary case, there exist' >0 -and 0=z,eR
(»=1,2, ---) ‘such as =1/2° and ||a,/v|:=e, (v=1,2,---). Since

25) Every upper-bounded sequence of elements has a supremum in R,
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ﬁ}”x,“l§l, from the completeness of ||z]|l;, we can find xz,¢ R and
v=1

111;9”%—;%“1:0. And

' 26> n
Oé” Lo ~L,— X, “1 Lo ~T, <Z x> X, . é Lo— lei ll-_>0 (n_>oo) ’
i=1
hence %, x,=z,, that is, z,=>z, (v=1,2, ---). - Therefore we have a con-

tradiction : || z,/v ||s=]| x./v||.=¢, and 1im||x0/UII2260>O.
Thus, given lim||y,|;=0, for any ¢>0 we have | v,/r.|[,=d. for

almost all n, hence [|7.4./7.|le=I|¥.|.<¢e. for almost all n, that is,
lim || ¥, ||.=0. v Q.E.D.

Remark. Under the assumption sup p(azx)= -+ o (x=F0), the condition
_ e

b) in the above Theorem 2 may be replaced with the following.
b’) for some &,>0{x;| z|/,<s,} contains a convex neighbourhead of 0.
The application to function spaces. The detailed proof will be omit-
ed. Let m(x) be a convex modular L,..,, By Radon-Nikodym’s theorem
we can find a convex (M)-function N(u, w) and m(x) dan be represented as

follows
m(z)= f NT|a(w) |, ]dp (#(@) € Lcu) -

The orthogonal completeness of m implies Lyw,oy=Luew,s» Thus by
Theorem 2 Mazur-Orlicz’s result in §1 can be generalized ;-

Given L. .,-space on non-atomic measure space 2(B, (), the necessary
and sufficient condition to exist a convexr (M)-function N(u,w) such as
Lyc,oy=Lyw,.y s that the linear topology induced by ||x||, on LM(,, 0 18
locally convex.

B. Atomic case. In an atomic modulared vector lattice R(p) the
_.abeve Theorem 2 does not hold in general. The so-called S-space is a
counter example. Putting 2={w;, ws,- -}, t{w,)=1 and M(«, w,)=u/2"(1+u)
(n=1,2,--.), then Lyg.., is S-space on 2. It is easily proved that ||z ||,
on S(R2) is locally convex, but not normable.

Now we shall consider the following assumption :

(%) . R=3®R and R()=R(0)™ (»=1),

26) Since |z~"z—y "z |+|x~2—y~2l=|2—y| ([6]), we have || x~2—y~z2|ls=||x—y|lo.
" 27) Every R, is a normal subspace of R, that is, R, is a 11near subspaceand if Rvox and |2 ]

<|y| then yeR, and 0<z:€R, (i), 2:f2e4 @ imply xRy ([5]). R= ?‘@R» means that [«| ~|y]

=0 for all zeR,, yeR, (v+4) and every =0 can be represented in x= va for some
0sz.€R, (v=1). , =}
28) There exists an isomorphism I, from R onto R. such as p(x)= p(I.,x) for all zsR.
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where R, (v=1,2, ---) are normal subspaces®” and orthogonal each other.
For instance, if 2(27, ¢) is an atomic measure space and for any w, €82
Que={w ; M(u, wo)tw,)=M(u, w)(w) for all u=0} is an infinite set, then
Ly.,., satisfies (xx). As a special case, Ly., on an atomic measure space
(29, 1), where #(w)=1 (we2) and £ is infinite, satisfies (**)

Theorem 3. In the modulared vector lattice R(p) satisfying the
assumption (xx), four condetwns wn Theorem 2 are equivalent each other.
Moreover the condition b) can be replaced by the weaker condition ;

b') for some >0 {x;]|lx|,<e} contains a convex neighbourhood
of 0. ,
- Proof. It is sufficient to show b’)—>c). It follows from]b’) that there
is d,>0 such that

(20) o o) =0, (1=i=1) imply p(Zx/soz)<so
Using the assumption (xx) we shall show
2
() o(x/8,) =3, implies Z 1,0(%;/esM) =&, ,

Where {x“1<i<l} is an arbltrary orthogonal decomposition of =z,

= 26990“ and n, (1<z<l) are arbltrary positive integers.

=
Because ; from (#%) we can find x,,¢ R, (1=v=mn,;, 1=7=<I[) such that

(21) frre 20, =0 (G930, 1)

olax, )= p(ax) for all a=0. A1=v=mn,;, 1=<7<I).

If we put yyl ..... —Z@xz ., then the total number of elements y, ,,....,.,
is n,n, --- n, and we have :
X z 7 :
(22) ]§2 Yoprvgee vl/nmz nlzizl@zl@xi,,/ni.
V= . = y= o .

Istz

On the other hand
.
(28) OWygnean )= 2 0(4,,/5)

: , Z?:jll o(2,/8,) = P.(x/ao)é% ’
therefore (20) and (22) imply

 Sinelaan)=; zz ol sfogn)
>y

3

II/\

vours [T Mg+ - - 'nz)ésb .

g
éé

=
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Next, we put '
@y @)= sup X e(Ewi/e)/Es (weR).
' 0<¢,;<1
The functional G(x) (x<R) has the following propertles ;
1) p(x/e)=<p(x) for all zecR, _ -
2)  o(x/3,)=0, implies p(x)=2s,, |
(® 3) |z|=|y| implies px)=p(y),
~4) 2 y=0 implies p(x+y)=p(x)+5(¥),
5) p(tx)/t (t>0) is a non-decreasing function of ¢>0 for all xecR.
' 6)  [p:]tes [#] implies sup p([p;]x)=p(x) . :
(p)-2) is a direct consequence of (**), and other properties are obvious

from the definition of . _
Now we can construct a convex modular m(x) on R:

(25) | m(x)= f S(tx)/t dt (xeR).

Evidently we see

(26) - p(x/2e)=p(2/2)=m(x)=p(x) (xeR).

It is easy to check the convex modular condition: (o) and (C). (C) fol-

lows from (@)-5). (p)-1) and 6) are implied by (26). (p)-3), 4) and 5)

are almost obvious. (p)-2): It is sufficient to see m(ax)<<+4 oo for some

a=a(x)>0. For xz we can find a>0 such as p(ax/d,)=d,, hence from (p)-2)

and (26) we have m(ax)<p(ax)<2s< + oo. Q.E.D.
Finally we remark that in an atomic modulared vector lattice R(o)

it can be proved that ||x||, is normable if and only if there is a convex

modular on R(p) (cf. [8]). It will be studied in another paper.
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