A GENERALIZATION OF MAZUR-ORLICZ THEOREM ON FUNCTION SPACES

By

Takashi ITÔ

1. Introduction. Let $\Omega(\boldsymbol{B}, \mu)$ be a locally finite¹⁾ measure space. By many investigators various function spaces consisting of locally almost finite \boldsymbol{B} -measurable functions²⁾ on Ω have been considered as a generalization of the so-called \boldsymbol{L}_p -spaces on Ω $(1 \leq p \leq +\infty)$. One of them is $\boldsymbol{L}_{M(u,\omega)}$ -space (Musielak-Orlicz [3], [4]).

Let $M(u, \omega)$ be a function on $[0, +\infty] \times \Omega$ with the following properties (it will be called (M)-function);

- 1) $0 \le M(u, \omega) \le +\infty$ for all $(u, \omega) \in [0, +\infty] \times \Omega$,
- 2) $\lim_{u\to 0} M(u, \omega) = 0$ for all $\omega \in \Omega$,
- 3) $M(u, \omega)$ is a non-decreasing and left continuous³⁾ function of u (M) for all $\omega \in \Omega$,
 - 4) $\lim_{u\to\infty} M(u,\omega) > 0$ for all $\omega \in \Omega$,
 - 5) $M(u, \omega)$ is locally **B**-measurable⁴ as a function of ω for all $u \in [0, +\infty]$.

Using this function $M(u, \omega)$ we can define a functional $\rho_M(x)$ on locally almost finite **B**-measurable functions $x(\omega)$ ($\omega \in \Omega$) by the formula

$$\rho_{M}(x) = \int_{\Omega} M[|x(\omega)|, \omega] d\mu^{5}$$

If $L_{M(u,\omega)}$ denotes the set of all $x(\omega)$ such that $\rho_M(\alpha x) < +\infty$ for a positive number $\alpha = \alpha(x)$ depending on x, $L_{M(u,\omega)}$ is a vector space.

As special cases, $L_{M(u,\omega)}$ coincides with four typical spaces respectively:

¹⁾ Ω is covered by the family of measurable sets of finite measure.

²⁾ Correctly speaking, we shall consider only the functions which are almost finite real valued and B-measurable in every measurable set of finite measure. And two functions $x(\omega)$ and $y(\omega)$ are identified if $x(\omega)=y(\omega)$ except on a set of measure zero in every measurable set of finite measure.

³⁾ Since $M(u, \omega)$ can be replaced by $M(u-0, \omega)$, the left side continuity is not essential for the definition of the space $L_{M(u,\omega)}$.

⁴⁾ It is unnecessary for $M(u, \omega)$ to be almost finite valued.

^{5) (}M)-2) and 3) imply the measurability of a function $M[|x(\omega)|, \omega]$. The integration on Ω means the supremum of integrations on every finite measured set.

- 1) L_p -space $(0 , when <math>M(u, \omega) = u^{p, 6}$
- 2) $L_{N(u)}$ -space (Orlicz [7]), when $M(u, \omega) = N(u)$ and N(u) is a convex function of u,
- 3) $L_{M(u)}$ -space (Mazur-Orlicz [2]), when $M(u, \omega) = M(u)$,
- 4) $L_{N(u,\omega)}$ -space⁷⁾ (Nakano [5]), when $M(u,\omega) = N(u,\omega)$, and $N(u,\omega)$ is a convex function of u for all $\omega \in \Omega$.

In view of generalization of a constructive method, the relation between above four spaces is shown with the following schema.

$$egin{aligned} oldsymbol{L}_p (1 \leq p \leq + \infty) \ oldsymbol{L}_{N(u)} \longrightarrow oldsymbol{L}_{N(u,\omega)} \ oldsymbol{L}_{p} (0$$

In the spaces $L_{N(u)}$ and $L_{N(u,\omega)}$, if we put

(3)
$$||x||_{N} = \inf \{ \varepsilon > 0 ; \rho_{N}(x/\varepsilon) \leq 1 \},$$

we have a complete norm (B-norm) on $L_{N(u)}$ and $L_{N(u,\omega)}$ respectively ([1], [5]). In the spaces $L_{M(u)}$ and $L_{M(u,\omega)}$, putting

$$||x||_{M} = \inf \{ \varepsilon > 0 ; \rho_{M}(x/\varepsilon) \leq \varepsilon \},$$

we have a complete quasi-norm (F-norm) on $L_{M(u)}$ and $L_{M(u,\omega)}$ respectively ([2], [3]). We can see easily $\lim_{n\to\infty}||x_n||_N=0$ ($\lim_{n\to0}||x_n||_M=0$) if and only if $\lim_{n\to\infty}\rho_N(\alpha x_n)=0$ ($\lim_{n\to\infty}\rho_M(\alpha x_n)=0$) for all $\alpha \ge 0$.

Mazur-Orlicz has shown in [2] the following result⁸⁰:

Given $L_{M(u)}$ -space, the necessary and sufficient condition for to exist a convex (M)-function N(u) such as $L_{M(u)} = L_{N(u)}$ is that the linear topology induced by the quasi-norm $||x||_{M}$ is locally convex.

The purpose of this paper is to generalize this result to the problem of the relation between $L_{M(u,\omega)}$ and $L_{N(u,\omega)}$. In §2 we shall define the abstract $L_{M(u,\omega)}$ -space, and in §3 the problem will be studied in an abstract form. If $\Omega(B,\mu)$ is non-atomic, we obtain a similar result to the above Mazur-Orlicz theorem (Theorem 2). Although in general it does not hold in an atomic case, under some assumption it can be proved also (Theorem 3).

⁶⁾ If $p=+\infty$, then we put $u^{+\infty}=0$ $(0 \le u \le 1)$ and $=+\infty$ (u>1).

⁷⁾ H. Nakano calls $L_{N(u,\omega)}$ a modulared function space in [5] (appendix).

⁸⁾ It has been proved under an additional condition: $M(2u) \le KM(u)$ for all $u \ge u_0 > 0$ (non-atomic case) or $M(2u) \le KM(u)$ for all $0 \le u \le u_0$ (atomic case).

- 2. Modulared vector lattice. First of all, we shall define a modulared vector lattice $R(\rho)$ as the abstraction of $L_{M(u,\omega)}$ -spaces. Let R be a conditionally complete⁹⁾ vector lattice. A functional on R with values $0 \le \rho(x) \le +\infty$ will be called a $modular^{10)}$ ([4], [5], [6]) when the following conditions are satisfied;
 - 1) $\rho(\alpha x)=0$ for all $\alpha \ge 0$ if and only if x=0,
 - 2) $\inf_{\alpha>0} \rho(\alpha x) = 0$ for all $x \in R$,
 - 3) $|x| \leq |y|$ implies $\rho(x) \leq \rho(y)$,
- (ρ) 4) x = 0 implies $\rho(x+y) = \rho(x) + \rho(y)$,
 - 5) $0 \le x_{\lambda} \uparrow_{\lambda \in A} x^{11}$ implies $\sup_{\lambda \in A} \rho(x_{\lambda}) = \rho(x)$,
 - 6) for any orthogonal system $x_{\lambda} \ge 0$ ($\lambda \in \Lambda$) such as $\sum_{\lambda \in \Lambda} \rho(x_{\lambda}) < +\infty$ we can find $x \in R$ and $x = \sum_{\lambda \in \Lambda} x_{\lambda}^{(12)}$ (orthogonal completeness).

Moreover, if ρ satisfies the following condition (C), ρ will be called a convex modular;

(C) $\rho(\alpha x)$ is a convex function of α for all $x \in R$.

We shall call R where a (convex) modular is defined a (convex) modulared vector lattice. A convex modulared vector lattice will be said briefly the $Nakano\ space^{13}$. We can see easily that $L_{M(u,\omega)}(\rho_M)$ is a modulared vector lattice and $L_{N(u,\omega)}(\rho_N)$ is the Nakano space.

The (ρ) -condition implies some properties;

(5)
$$\rho(x \smile y) + \rho(x \smile y) = \rho(x) + \rho(y) \text{ for } x, y \ge 0,$$

(6)
$$\rho(\alpha x + \beta y) \leq \rho(x) + \rho(y) \text{ for } x, y \in R, \alpha, \beta \geq 0, \alpha + \beta = 1.$$

It has been shown in [3] and [4] that the property (6) defines a ordered quasi-norm $||\dot{x}||_{\rho}$ on R by the formula

$$||x||_{\rho} = \inf \{ \varepsilon > 0 ; \rho(x/\varepsilon) \leq \varepsilon \} \quad (x \in R).$$

We can see easily $\lim_{n\to\infty}||x_n||_{\rho}=0$ if and only if $\lim_{n\to\infty}\rho(\alpha x_n)=0$ for all $\alpha \ge 0$.

⁹⁾ Every upper-bounded system of elements has a supremum in R.

¹⁰⁾ For the first time the name 'modular' was used by H. Nakano, when (ρ) -1)~5) and (C) were satisfied. The convex modular defined in this paper coincides with the monotone-complete modular in Nakano's terminology ([5]). The orthogonal completeness ((ρ)-6)) implies the monotone completeness (cf. Remark of Lemma 1). The condition (ρ) is stronger than that in [4] and of the quasi-modular in [8].

¹¹⁾ For any $\lambda_1, \lambda_2 \in \Lambda$ there exists $\lambda_3 \in \Lambda$ such as $x_{\lambda_1} \cup x_{\lambda_2} \leq x_{\lambda_3}$ and $\lambda_2 \in \Lambda$ and $\lambda_3 \in \Lambda$

¹²⁾ $\sum_{\lambda \in \Lambda} x_{\lambda} = \bigcup_{\Lambda' \subset \Lambda} \sum_{\lambda \in \Lambda'} x_{\lambda}$, where Λ' is a finite subset of Λ .

¹³⁾ In [5] it is called a monotone-complete modulared semi-ordered linear space.

¹⁴⁾ $|x| \le |y|$ implies $||x||_{\rho} \le ||y||_{\rho}$.

In this section we shall prove that $||x||_{\rho}$ is a *complete* quasi-norm on R.

Lemma 1. The necessary and sufficient condition for a directed system of positive elements $0 \le x_{\lambda} \uparrow_{\lambda \in A}$ to be order-bounded is that the following two conditions are satisfied;

- (i) $\sup_{\lambda \in A} \rho(\alpha x_{\lambda}) < +\infty$ for some $\alpha > 0$,
- (ii) for any $p \in R$ $(p \neq 0)$ we can find two positive numbers $\beta_2 > \beta_1 > 0$ such that $\sup_{\lambda \in A} (\beta_1 [p] x_{\lambda}) < \rho(\beta_2 p)^{15}$.

Proof. Supposing $0 \le x_{\lambda} \uparrow_{\lambda \in A} x$, then $(\rho)-2$ and 3 imply (i). Since $\sup_{\alpha>0} \rho(\alpha p) > 0$ $(p \neq 0)$ and $\inf_{\alpha>0} \rho(\alpha \lceil p \rceil x) = 0$, we have easily (ii).

Sufficiency: First, (ii) implies the fact that for a given p>0 we can find $0<[q]\leq[p]^{16}$ such that $[q]x_{\lambda}$ ($\lambda\in\Lambda$) is order-bounded. Because; in the contrary case, we can obtain the decomposition of [p], $[p]=[q_1]\oplus\cdots\oplus[q_n]^{17}$, and $\lambda_i\in\Lambda$ ($1\leq i\leq n$) such that $\beta_2[q_i]p<\beta_1[q_i]x_{\lambda_i}$ ($1\leq i\leq n$), hence $\beta_2p=\sum_{i=1}^n\beta_2[q_i]p\leq\sum_{i=1}^n\beta_1[q_i]x_{\lambda_i}=\bigcup_{i=1}^n\beta_1[q_i]x_{\lambda_i}\leq\beta_1[p]x_{\lambda_0}$ for some $\lambda_0\in\Lambda$. This implies the contradiction: $\rho(\beta_2p)\leq\rho(\beta_1[p]x_{\lambda_0})<\rho(\beta_2p)$.

Therefore, if we put $[p_r]$ $(\gamma \in \Gamma)$ a maximal orthogonal system of projectors such as $[p_r]x_\lambda$ $(\lambda \in \Lambda)$ is order-bounded, then we have $\sum_{\tau \in \Gamma} [p_\tau] = \mathbf{I}^{180}$. Putting $[p_r]x_\lambda \uparrow_{\lambda \in \Lambda} y_\tau$, since $\rho(\alpha y_\tau) = \sup_{\lambda \in \Lambda} \rho(\alpha [p_\tau] x_\lambda)$, we see $\sum_{\tau \in \Gamma} \rho(\alpha y_\tau) = \sup_{\lambda \in \Lambda} \sum_{\tau \in \Gamma} \rho(\alpha [p_\tau] x_\lambda) = \sup_{\lambda \in \Lambda} \sum_{\lambda \in \Lambda} \rho(\alpha x_\lambda) < +\infty$ ((i)). Hence the orthogonal completeness ((ρ) -6)) implies the existence $x \in R$ such as $x = \sum_{\tau \in \Gamma} \alpha y_\tau = \bigcup_{\lambda \in \Lambda} \alpha x_\lambda$, that is $x_\lambda \uparrow_{\lambda \in \Lambda} x/\alpha$.

Remark. When $\sup_{\alpha>0} \rho(\alpha p) = +\infty$ $(p \neq 0)$ is satisfied, (ii) follows from (i).

Theorem 1. $||x||_{\rho}$ $(x \in R)$ is a complete quasi-norm on $R(\rho)$.

Proof. Let x_{ν} ($\nu=1,2,\cdots$) be a Cauchy sequence, and we assume $||x_{\nu+1}-x_{\nu}||_{\rho} \leq 1/2^{\nu}$ ($\nu=1,2,\cdots$). Putting $|x_2-x_1|+\cdots+|x_n-x_{n-1}|=z_n$ ($n\geq 2$) and $\sum_{\nu=n}^{m}|x_{\nu+1}-x_{\nu}|=y_{n,m}$ ($n\geq 1,m\geq n$), we see $y_{1,m}=z_n+y_{n,m}$, $||y_{n,m}||_{\rho}\leq 1/2^{n-1}$, that

¹⁵⁾ [p] is a projection operator and defined as follows $[p]x = \bigcup_{\nu=1}^{\infty} (x_{\nu} | p|)$ for all $x \ge 0$, it is called a projector ([5]).

¹⁶⁾ $[q]x \leq [p]x$ for all $x \geq 0$.

¹⁷⁾ $[p]x = \sum_{i=1}^{l} [q_i]x$ for all $x \in R$ and $[q_i][q_j] = 0$ $(i \neq j)$.

¹⁸⁾ $\sum_{r \in r} [p_r] x = x$ for all $x \ge 0$.

is, $\rho(2^{n-1}y_{n,m}) \leq 1/2^{n-1}$, and $y_{n,m} \uparrow_{m \geq n}$. The non-decreasing sequence $y_{1,m} \uparrow_{m \geq 1}$ satisfies (i) and (ii) in the provious Lemma 1. First, $\sup_{m\geq 1} \rho(y_{1,m}) \leq 1$ follows from $||y_{1,m}||_{\rho} \le 1$ $(m \ge 1)$. Next for any $p \ne 0$ we can find a positive number $\beta_2 > 0$ and an integer $n \ge 1$ such as $1/2^{n-2} < \rho(\beta_2 p)$, and further $\begin{array}{l} \beta_1 > 0 \text{ such as } 2\beta_1 < 2^{n-1} \text{ and } \rho(2\beta_1 z_n) < 1/2^{n-1}. \text{ Hence } \rho(\beta_1 \llbracket p \rrbracket y_{1,m}) \leq \rho(2\beta_1 z_n) \\ + \rho(2\beta_1 y_{n,m}) \leq 1/2^{n-1} + \rho(2^{n-1} y_{n,m}) \leq 1/2^{n-1} + 1/2^{n-1} = 1/2^{n-2} < \rho(\beta_2 p). \text{ By Lemma} \end{array}$ 1 we can put $\sum_{\nu=n}^{\infty} |x_{\nu+1} - x_{\nu}| = \bigcup_{m \ge n} y_{n,m} = y_n$ ($n \ge 1$). This implies also that the sequence $x_{\nu}(\nu=1,2,\cdots)$ coverges to an element x_0 in order¹⁹⁾, that is,

Local convexity of the linear topology in modulared vector lattices.

Non-atomic case. Let $R(\rho)$ be a non-atomic²¹⁾ modulared vector lattice, we have the following main theorem.

Theorem 2. In a non-atomic modulared vector lattice $R(\rho)$ the following four conditions are equivalent each other;

- a) the metric linear topology induced by $||x||_{\rho}$ is normable,
- b) the metric linear topology induced by $||x||_{\rho}$ is locally convex,
- there exists a convex modular m(x) on $R(\rho)$ (R is the Nakano c) space),
- there exists a complete ordered norm |||x||| on $R(\rho)$ (R is a Banach lattice).

Proof. (b) \rightarrow (c). First, we shall prove the following fact: For any $\varepsilon > 0$ we can find a positive number $\delta = \delta(\varepsilon) > 0$ such that

(*)
$$ho(x/arepsilon) > arepsilon \quad ext{implies} \quad \sum_{i=1}^l
ho(n_i x_i/\delta)/n_i > \delta$$
 ,

where $\{x_i; 1 \leq i \leq l\}$ is an arbitrary orthogonal decomposition of $x=\sum_{i=1}^{i} \oplus x_i^{22}$, and n_i ($1 \le i \le l$) are arbitrary positive integers.

¹⁹⁾ $x_0 = \bigcap_{n=1}^{\infty} \bigcup_{\nu \geq n} x_{\nu} = \bigcup_{n=1}^{\infty} \bigcap_{\nu \geq n} x_{\nu}$ and it is denoted by o- $\lim_{\nu \to \infty} x_{\nu} = x_0$. 20) (ρ) -5) implies $\sup_{\lambda \in \Lambda} ||x_{\lambda}||_{\rho} = ||x||_{\rho}$ for all $0 \leq x_{\lambda} \uparrow_{\lambda \in \Lambda} x$.

²¹⁾ For every $a \in \mathbb{R}$, a > 0 we can find b, c > 0 such as a = b + c and $b \cap c = 0$.

²²⁾ $x = \sum_{i=1}^{l} x_i$ and $|x_i| |x_j| = 0$ $(i \neq j)$.

Because, from the local convexity of $||x||_{\rho}$, for any $\varepsilon > 0$ we can find a positive number $\delta = \delta(\varepsilon) > 0$ such that $||x_i||_{\rho} \le \delta$ $(1 \le i \le l)$ imply $||\sum_{i=1}^{l} x_i/l||_{\rho} \le \varepsilon$, that is,

(8)
$$\rho(x_i/\delta) \leq \delta \ (1 \leq i \leq l) \ \text{imply} \ \rho\left(\sum_{i=1}^{l} x_i/\varepsilon l\right) \leq \varepsilon.$$

Hence, if $\sum_{i=1}^{l} \rho(n_i x_i / \delta) / n_i \leq \delta$, $x = \sum_{i=1}^{l} \oplus x_i$ and n_i $(1 \leq i \leq l)$ are positive integers, then in view of the assumption that R is non-atomic, we can find an orthogonal decomposition of x_i such that

$$\begin{cases} x_i = \sum_{\nu=1}^{n_t} \bigoplus x_{i,\nu} & (1 \leq i \leq l) \\ \rho(n_i x_{i,\nu}/\delta) = \rho(n_i x_i/\delta)/n_i & (1 \leq \nu \leq n_i, 1 \leq i \leq l)^{23}. \end{cases}$$

If we put $y_{\nu_1,\nu_2,\dots,\nu_l} = \sum_{i=1}^l \oplus n_i x_{i,\nu_i}$ $(1 \le \nu_i \le n_i)$, then the total number of elements $y_{\nu_1,\nu_2,\dots,\nu_l}$ is $n_1 n_2 \cdots n_l$ and the sum of them equals to $n_1 n_2 \cdots n_l x$, because the multiplicity of $n_i x_{i,j}$ in the summation is $n_1 n_2 \cdots n_l / n_i$, we have

(10)
$$\sum_{\substack{1 \leq \nu_i \leq n_i \\ 1 \leq i \leq l}} y_{\nu_1, \nu_2, \dots, \nu_l} = \sum_{i=1}^l \sum_{j=1}^{n_i} n_1 n_2 \cdots n_l x_{i,j}$$

$$= \sum_{l=1}^l n_1 n_2 \cdots n_l x_i = n_1 n_2 \cdots n_l x.$$

On the other hand

(11)
$$\rho(y_{\nu_1,\nu_2,\dots,\nu_l}/\delta) = \sum_{i=1}^l \rho(n_i x_{i,\nu_i}/\delta) = \sum_{i=1}^l \rho(n_i x_i/\delta)/n_i \leq \delta.$$

Therefore from (8), (10) and (11) we see

$$\rho\left(\sum_{\substack{1 \leq \nu_l \leq n_l \\ 1 < i < l}} y_{\nu_1,\nu_2,\dots,\nu_l}/\varepsilon n_1 n_2 \cdots n_l\right) = \rho(x/\varepsilon) \leq \varepsilon.$$

Thus (*) has been proved.

And the following fact is a direct consequence of (*),

(12)
$$\sup_{\alpha \ge 0} \rho(\alpha x) < +\infty \text{ if and only if } x = 0.$$

Since $\sup_{\alpha\geq 0} \rho(\alpha x) = \gamma < +\infty$ implies $\inf_{n\geq 1} \rho(nx/\delta)/n = 0$ for all $\delta > 0$, by (*) $\rho(x/\varepsilon) \leq \varepsilon$ for all $\varepsilon > 0$, hence $||x||_{\rho} = 0$, that is, x = 0.

Putting, for $\delta_1 = \delta(1) > 0$,

²³⁾ This is a method used oftenly in non-atomic cases. Confer [4] or [5].

(13)
$$\overline{\rho}(x) = \inf_{\substack{x = \Sigma \oplus x_i \\ \eta_i \ge 1}} \sum_i \rho(2\eta_i x_i/\delta_1)/\delta_1 \eta_i \ (x \in R) ,$$

the functional $\bar{\rho}(x)$ $(x \in R)$ has the following properties;

- 1) $\bar{\rho}(x) \leq 1/\delta_1 \cdot \rho(2x/\delta_1)$ for all $x \in R$,
- 2) $\bar{\rho}(x) \leq 1$ implies $\rho(x) \leq 1$,
- 3) $|x| \leq |y|$ implies $\bar{\rho}(x) \leq \bar{\rho}(y)$,
- $(\bar{\rho})$ 4) x = 0 implies $\bar{\rho}(x+y) = \bar{\rho}(x) + \bar{\rho}(y)$,
 - 5) $\bar{\rho}(tx)/t$ (t>0) is a non-decreasing function of t>0 for all $x \in \mathbb{R}$.
 - 6) $[p_{\lambda}]\uparrow_{\lambda\in\Lambda}[x]^{24}$ and $\bar{\rho}(x)<+\infty$ imply $\sup_{\lambda\in\Lambda}\bar{\rho}([p_{\lambda}]x)=\bar{\rho}(x)$.

 $(\bar{\rho})$ -1) is obvious from the definition of $\bar{\rho}$. $(\bar{\rho})$ -2) is a simple consequence of (*); if $\rho(x)>1$, $x=\sum\limits_{i=1}^{l}\oplus x_{i}$ and $\eta_{i}\ge 1$ $(1\le i\le l)$, then we see $\sum\limits_{i=1}^{l}\rho(2\eta_{i}x_{i}/\delta_{1})/\eta_{i}$ $\ge\sum\limits_{i=1}^{l}\rho(2n_{i}x_{i}/\delta_{1})/2\delta_{1}n_{i}$ where n_{i} $(1\le i\le l)$ are positive integers such as $n_{i}\le \eta_{i}< n_{i}+1$ $(1\le i\le l)$. $(\bar{\rho})$ -3) and 4) are easily implied from (ρ) -3) and 4) respectively. Next we shall check $(\bar{\rho})$ -5); for $t_{2}>t_{1}>0$ we have

$$egin{aligned} ar{
ho}(t_1x)/t_1 = & \inf_{\substack{x = \Sigma \oplus x_i \ \eta_i \geq 1}} \sum_i
ho(2t_1\eta_i x_i/\delta_1)/t_1\eta_i \delta_i = \inf_{\substack{x = \Sigma \oplus x_i \ \xi_i \geq t_1}} \sum_i
ho(2\xi_i x_i/\delta_1)/\xi_i \delta_i \ & \leq \inf_{\substack{x = \Sigma \oplus x_i \ \xi_i \geq t_2}} \sum_i
ho(2\xi_i' x_i/\delta_1)/\xi_i' \delta_1 = ar{
ho}(t_2x)/t_2 \ . \end{aligned}$$

 $(\bar{\rho})$ -6) is shown as follows; $\bar{\rho}(x)<+\infty$ if and only if $\rho(2x/\delta_1)<+\infty$. Hence $0\leq \bar{\rho}(x)-\bar{\rho}(\lfloor p_{\lambda} \rfloor x)=\bar{\rho}(x-\lfloor p_{\lambda} \rfloor x)\leq \rho(2(x-\lfloor p_{\lambda} \rfloor x)/\delta_1)/\delta_1<+\infty$,

and $\inf_{x \in A} \rho(2(x-\lfloor p_{\lambda} \rfloor x)/\delta_1) = 0$ is effected by $(\rho)-5$).

Next we put $\bar{\rho}(x)$ $(x \in R)$ as follows;

(14)
$$\bar{\overline{\rho}}(x) = \begin{cases} \sup \bar{\rho}([p_{\lambda}]x), & \text{if there exists } [p_{\lambda}] \uparrow_{\lambda \in \Lambda} [x] \text{ and } \\ \bar{\rho}([p_{\lambda}]x) < +\infty & \text{for all } \lambda \in \Lambda, \\ +\infty, & \text{elsewhere.} \end{cases}$$

We see obviously $\bar{\rho}(x) \leq \bar{\rho}(x)$ $(x \in R)$ and $\bar{\rho}(x) = \bar{\rho}(x)$, if $\bar{\rho}(x) < +\infty$. The functional $\bar{\rho}(x)$ $(x \in R)$ has the same properties as $(\bar{\rho})$ and moreover has the stronger property than 6) of $(\bar{\rho})$:

(15) If
$$[p_{\lambda}] \uparrow_{\lambda \in A} [x]$$
, then $\sup \overline{\overline{p}}([p_{\lambda}]x) = \overline{\overline{p}}(x)$.

Now we can construct a convex modular m(x) $(x \in R)$:

(16)
$$m(x) = \int_{0}^{1} \overline{\overline{\rho}}(tx)/t \ dt \ (x \in R)$$

²⁴⁾ $[p_{\lambda}]y \uparrow_{\lambda \in A} [x]y$ for all $y \ge 0$.

228 T. Itô

Evidently we see

(17)
$$\bar{\rho}(x/2) \leq m(x) \leq \bar{\rho}(x) \ (x \in R) .$$

It is obvious also that this functional m(x) on R satisfies (C) from the fact that $\bar{\rho}(tx)/t$ is a non-decreasing function of t>0.

We shall check the modular condition (ρ) about m(x), $(x \in R)$. $(\rho)-1)$; $\sup_{\alpha \ge 0} m(\alpha x) = 0$ implies $\sup_{\alpha \ge 0} \bar{\rho}(\alpha x) = 0$, hence from the definition of $\bar{\rho}$ and $(\bar{\rho})-2)$ we can see $\sup_{\alpha \ge 0} \rho(\alpha x) \le 1$, therefore x=0 follows from (12). $(\rho)-2$) is evident from (17) and $(\bar{\rho})-1)$: $0 \le m(x) \le \rho(2x/\delta_1)/\delta_1$. $(\rho)-3$) and 4) are almost evident. $(\rho)-5$); from (15) we see $\sup_{\lambda \in \Lambda} m([p_{\lambda}]x) = m(x)$ for $[p_{\lambda}] \uparrow_{\lambda \in \Lambda} [x]$, and since $m(\alpha x) = \int_{0}^{\alpha} \bar{\rho}(tx)/t \, dt$, $m(\alpha x)$ is a left-continuous function of $\alpha \ge 0$, therefore $0 \le x_{\lambda} \uparrow_{\lambda \in \Lambda} x$ implies $\sup_{\lambda \in \Lambda} m(x_{\lambda}) = m(x)$. $(\rho)-6$); for the orthogonal system $x_{\lambda} \ge 0$ ($\lambda \in \Lambda$) such as $\sum_{\lambda \in \Lambda} m(x_{\lambda}) < +\infty$ we see $\sum_{\lambda \in \Lambda} \bar{\rho}(x_{\lambda}/2) \le \sum_{\lambda \in \Lambda} m(x_{\lambda}) < +\infty$, hence $\sum_{\lambda \in \Lambda'} \bar{\rho}(x_{\lambda}/2) \le 1$ for some $\Lambda' \subset \Lambda$ such as $\Lambda - \Lambda'$ is a finite set. $(\bar{\rho})-2$) and 4) imply $\sum_{\lambda \in \Lambda'} \rho(x_{\lambda}/2) \le 1$, whence $\sum_{\lambda \in \Lambda'} \bar{\rho}(x_{\lambda}/2) \le 1$, whence $\sum_{\lambda \in \Lambda'} x_{\lambda}$ exists by the orthogonal completeness of ρ .

c) \rightarrow d). Let m(x) $(x \in R)$ be a convex modular on $R(\rho)$, then we have an ordered norm |||x||| on R by the formula ([5]):

(18)
$$|||x||| = \inf \{ \varepsilon > 0 ; m(x/\varepsilon) \leq 1 \}.$$

We can see easily $\lim_{n\to\infty} |||x_n|||=0$ if and only if $\lim_{n\to\infty} m(\alpha x_n)=0$ for all $\alpha \ge 0$. Hence $\lim_{n\to\infty} |||x_n|||=0 \Rightarrow \lim_{n\to\infty} ||x_n||_m=0$. Therefore the completeness of $|||x||| (x \in R)$ follows from Theorem 1.

d) \rightarrow a). Let |||x||| $(x \in R)$ be a complete ordered norm on $R(\rho)$. It is sufficient to show the fact $||x||_{\rho}$ is equivalent to |||x|||. In general we can prove the following lemma.

Lemma 2. If R is a σ -complete²⁵⁾ vector lattice and $||x||_1$, $||x||_2$ $(x \in R)$ are two complete ordered quasi-norm on R, then they are equivallent each other.

Proof. For any $\varepsilon > 0$ we can find positive numbers δ_{ε} and γ_{ε} such that (19) $||x||_1 \leq \delta_{\varepsilon}$ implies $||\gamma_{\varepsilon}x||_2 \leq \varepsilon$.

Because; in the contrary case, there exist $\varepsilon_0 > 0$ and $0 \le x_{\nu} \in R$ $(\nu = 1, 2, \cdots)$ such as $||x_{\nu}||_1 \le 1/2^{\nu}$ and $||x_{\nu}/\nu||_2 \ge \varepsilon_0$ $(\nu = 1, 2, \cdots)$. Since

²⁵⁾ Every upper-bounded sequence of elements has a supremum in R.

 $\sum_{\nu=1}^{\infty}||x_{\nu}||_1 \leq 1, \text{ from the completeness of } ||x||_1 \text{ we can find } x_0 \in R \text{ and } \lim_{n \to 0}||x_0 - \sum_{i=1}^n x_{\nu}||_1 = 0. \text{ And }$

$$0 \leq ||x_0 x_{\nu} - x_{\nu}||_1 = ||x_0 x_{\nu} - \left(\sum_{i=1}^n x_i\right) x_{\nu}||_1^{26} \leq ||x_0 - \sum_{i=1}^n x_i||_1 \to 0 \quad (n \to \infty),$$

hence $x_0 \ x_{\nu} = x_{\nu}$, that is, $x_0 \ge x_{\nu}$ ($\nu = 1, 2, \cdots$). Therefore we have a contradiction: $||x_0/\nu||_2 \ge ||x_{\nu}/\nu||_2 \ge \varepsilon_0$ and $\lim_{n \to \infty} ||x_0/\nu||_2 \ge \varepsilon_0 > 0$.

Thus, given $\lim_{n\to\infty}||y_n||_1=0$, for any $\varepsilon>0$ we have $||y_n/\gamma_{\varepsilon}||_1\leq \delta_{\varepsilon}$ for almost all n, hence $||\gamma_{\varepsilon}y_n/\gamma_{\varepsilon}||_2=||y_n||_2\leq \varepsilon$ for almost all n, that is, $\lim_{n\to\infty}||y_n||_2=0$.

Remark. Under the assumption $\sup_{\alpha>0} \rho(\alpha x) = +\infty$ ($x \neq 0$), the condition b) in the above Theorem 2 may be replaced with the following.

b') for some $\varepsilon_0 > 0 \{x ; ||x||_{\rho} \le \varepsilon_0 \}$ contains a convex neighbourhead of 0.

The application to function spaces. The detailed proof will be omited. Let m(x) be a convex modular $L_{M(u,\omega)}$. By Radon-Nikodym's theorem we can find a convex (M)-function $N(u,\omega)$ and m(x) dan be represented as follows

 $m(x) = \int_{\Omega} N[|x(\omega)|, \omega] d\mu \qquad (x(\omega) \in L_{M(u,\omega)}).$

The orthogonal completeness of m implies $L_{N(u,\omega)} = L_{M(u,\omega)}$. Thus by Theorem 2 Mazur-Orlicz's result in §1 can be generalized;

Given $L_{M(u,\omega)}$ -space on non-atomic measure space $\Omega(B,\mu)$, the necessary and sufficient condition to exist a convex (M)-function $N(u,\omega)$ such as $L_{M(u,\omega)} = L_{N(u,\omega)}$ is that the linear topology induced by $||x||_M$ on $L_{M(u,\omega)}$ is locally convex.

B. Atomic case. In an atomic modulared vector lattice $R(\rho)$ the above Theorem 2 does not hold in general. The so-called S-space is a counter example. Putting $\Omega = \{\omega_1, \omega_2, \cdots\}$, $\mu(\omega_n) = 1$ and $M(u, \omega_n) = u/2^n(1+u)$ $(n=1, 2, \cdots)$, then $L_{M(u,\omega)}$ is S-space on Ω . It is easily proved that $||x||_M$ on $S(\Omega)$ is locally convex, but not normable.

Now we shall consider the following assumption:

(**)
$$R = \sum_{\nu=1}^{\infty} \oplus R_{\nu}^{27}$$
 and $R(\rho) \cong R_{\nu}(\rho)^{28}$ ($\nu \geq 1$),

²⁶⁾ Since |x - y - z| + |x - z - y - z| = |x - y| ([5]), we have $||x - z - y - z||_{\rho} \le ||x - y||_{\rho}$.

²⁷⁾ Every R_{ν} is a normal subspace of R, that is, R_{ν} is a linear subspace and if $R_{\nu} \ni x$ and $|x| \le |y|$ then $y \in R_{\nu}$ and $0 \le x_{\lambda} \in R_{\nu}$ ($\lambda \in A$), $x_{\lambda} \uparrow_{\lambda \in A} x$ imply $x \in R_{\nu}$ ([5]). $R = \sum_{\nu=1}^{\infty} \bigoplus R_{\nu}$ means that |x| / |y| = 0 for all $x \in R_{\nu}$, $y \in R_{\mu}$ ($\nu \neq \mu$) and every $x \ge 0$ can be represented in $x = \sum_{\nu=1}^{\infty} x_{\nu}$ for some $0 \le x_{\nu} \in R_{\nu}$ ($\nu \ge 1$).

²⁸⁾ There exists an isomorphism I_{ν} from R onto R_{ν} such as $\rho(x) = \rho(I_{\nu}x)$ for all $x \in R$.

230 T. Itô

where R_{ν} ($\nu=1,2,\cdots$) are normal subspaces²⁷⁾ and orthogonal each other. For instance, if $\Omega(2^{\alpha},\mu)$ is an atomic measure space and for any $\omega_0 \in \Omega$ $\Omega_{\omega_0} = \{\omega \; ; \; M(u,\omega_0)\mu(\omega_0) = M(u,\omega)\mu(\omega) \; \text{for all} \; u \geq 0\}$ is an infinite set, then $L_{M(u,\omega)}$ satisfies (**). As a special case, $L_{M(u)}$ on an atomic measure space $\Omega(2^{\alpha},\mu)$, where $\mu(\omega)=1$ ($\omega \in \Omega$) and Ω is infinite, satisfies (**).

Theorem 3. In the modulared vector lattice $R(\rho)$ satisfying the assumption (**), four conditions in Theorem 2 are equivalent each other. Moreover the condition b) can be replaced by the weaker condition:

b') for some $\varepsilon_0 > 0$ $\{x : ||x||_{\rho} \leq \varepsilon_0\}$ contains a convex neighbourhood of 0.

Proof. It is sufficient to show b') \rightarrow c). It follows from b') that there is $\delta_0 > 0$ such that

(20)
$$\rho(x_i/\delta_0) \leq \delta_0 \ \ (1 \leq i \leq l) \ \ \text{imply} \ \ \rho\left(\sum_{i=1}^l x_i/\varepsilon_0 l\right) \leq \varepsilon_0 \ .$$

Using the assumption (**) we shall show

$$ho(x/\delta_0) \leqq \delta_0 ext{ implies } \sum_{i=1}^l n_i \rho(x_i/\varepsilon_0 n_i) \leqq \varepsilon_0$$
 ,

where $\{x_i; 1 \le i \le l\}$ is an arbitrary orthogonal decomposition of x_i $x = \sum_{i=1}^{l} \oplus x_i$, and n_i $(1 \le i \le l)$ are arbitrary positive integers.

Because; from (**) we can find $x_{i,\nu} \in R_{\nu}$ $(1 \le \nu \le n_i, 1 \le i \le l)$ such that (21) $\begin{cases} x_{i,\nu} \cap x_{j,\mu} = 0 & ((i,\nu) \neq (j,\mu)) \\ \rho(\alpha x_{i,\nu}) = \rho(\alpha x_i) & \text{for all } \alpha \ge 0. & (1 \le \nu \le n_i, 1 \le i \le l). \end{cases}$

If we put $y_{\nu_1,\nu_2,...,\nu_l} = \sum_{i=1}^{l} \oplus x_{i,\nu_i}$, then the total number of elements $y_{\nu_1,\nu_2,...,\nu_l}$ is $n_1 n_2 \cdots n_l$ and we have

(22)
$$\sum_{\substack{1 \leq \nu_i \leq n_i \\ 1 < i < l}} y_{\nu_1, \nu_2, \dots, \nu_l} / n_1 n_2 \cdots n_l = \sum_{i=1}^l \bigoplus \sum_{\nu=1}^{n_i} \bigoplus x_{i, \nu} / n_i.$$

On the other hand

(23)
$$\rho(y_{\nu_1,\nu_2},...,\nu_l/\delta_0) = \sum_{i=1}^l \rho(x_{i,\nu_i}/\delta_0) \\ = \sum_{i=1}^l \rho(x_i/\delta_0) = \rho(x/\delta_0) \leq \delta_0 ,$$

therefore (20) and (22) imply

$$\begin{split} \sum_{i=1}^{l} \boldsymbol{n}_{i} \rho(\boldsymbol{x}_{i}/\varepsilon_{0}\boldsymbol{n}_{i}) &= \sum_{i=1}^{l} \sum_{\nu=1}^{n_{i}} \rho(\boldsymbol{x}_{i,\nu}/\varepsilon_{0}\boldsymbol{n}_{i}) \\ &= \rho\Big(\sum_{\substack{1 \leq \nu_{i} \leq n_{i} \\ 1 \leq i \leq l}} \boldsymbol{y}_{\nu_{1},\nu_{2}}, \dots, \nu_{l}/\varepsilon_{0}\boldsymbol{n}_{1}\boldsymbol{n}_{2} \cdot \cdot \cdot \cdot \boldsymbol{n}_{l}\Big) \leq \varepsilon_{0} . \end{split}$$

Next, we put

(24)
$$\widetilde{\rho}(x) = \sup_{\substack{x = \Sigma \oplus x_i \\ 0 < \xi_i \le 1}} \rho(\xi_i | x_i / \xi_0) / \xi_i | (x \in R).$$

The functional $\tilde{\rho}(x)$ $(x \in R)$ has the following properties;

- 1) $\rho(x/\varepsilon_0) \leq \tilde{\rho}(x)$ for all $x \in R$,
- 2) $\rho(x/\delta_0) \leq \delta_0$ implies $\tilde{\rho}(x) \leq 2\varepsilon_0$,
- $(\tilde{\rho})$ 3) $|x| \leq |y|$ implies $\tilde{\rho}(x) \leq \tilde{\rho}(y)$,
 - 4) x = y = 0 implies $\tilde{\rho}(x+y) = \tilde{\rho}(x) + \tilde{\rho}(y)$,
 - 5) $\tilde{\rho}(tx)/t$ (t>0) is a non-decreasing function of t>0 for all $x \in R$.
 - 6) $[p_{\lambda}] \uparrow_{\lambda \in A} [x]$ implies $\sup \tilde{\rho}([p_{\lambda}]x) = \tilde{\rho}(x)$.
- $(\tilde{\rho})$ -2) is a direct consequence of $(*_*^*)$, and other properties are obvious from the definition of $\tilde{\rho}$.

Now we can construct a convex modular m(x) on R:

(25)
$$m(x) = \int_0^1 \widetilde{\rho}(tx)/t \ dt \ (x \in R) .$$

Evidently we see

(26)
$$\rho(x/2\varepsilon_0) \leq \tilde{\rho}(x/2) \leq m(x) \leq \tilde{\rho}(x) \ (x \in R) \ .$$

It is easy to check the convex modular condition: (ρ) and (C). (C) follows from $(\tilde{\rho})-5$). $(\rho)-1$) and (C)0 are implied by (C)2 and (C)3. (C)4 and (C)5 are almost obvious. $(\rho)-2$ 1: It is sufficient to see $m(\alpha x)<+\infty$ for some $\alpha=\alpha(x)>0$. For x we can find $\alpha>0$ such as $\rho(\alpha x/\delta_0)\leq\delta_0$, hence from $(\tilde{\rho})-2$ 1 and (C)3 we have $m(\alpha x)\leq\tilde{\rho}(\alpha x)\leq 2\varepsilon_0<+\infty$. Q.E.D.

Finally we remark that in an atomic modulared vector lattice $R(\rho)$ it can be proved that $||x||_{\rho}$ is normable if and only if there is a convex modular on $R(\rho)$ (cf. [8]). It will be studied in another paper.

References

- []] M. A. KRASNOSIELSKIJ, J. B. RUTICKIJ: Convex functions and Orlicz spaces, Moscow, 1958 (in Russian).
- [2] S. MAZUR, W. ORLICZ: On some classes of linear spaces, Studia Math., 17 (1958), p.p. 94-116.
- [3] J. MUSIELAK, W. ORLICZ: On modular spaces, Studia Math., 18 (1959) p.p. 49-65.
- [4] J. MUSIELAK, W. ORLICZ: Some remarks on modular spaces, Bull. Ac. Pol. Sc. (1959), p.p. 661-668.
- [5] H. NAKNO: Modulared semi-ordered linear spaces, Tokyo Math. Book Ser., I (1950).
- [6] H. NAKANO: Modulared linear spaces, J. Fac. Sci. Univ. Tokyo, I, 6 (1951), p.p. 85-131.

232 T. Itô

- [7] W. ORLICZ: Über eine gewisse Klasse von Räumen vom Typus B, Bull. Ac. Pol. Sc. (1932), pp. 207-220.
- [8] SH. KOSHI, T. SHIMOGAKI: On quasi-modular spaces, Studia Math., (1961), (in press).

Department of Mathematics, Hokkaido University

(Received November 26, 1960)